Numerical Integration over Pyramids
Adv. Appl. Math. Mech., 5 (2013), pp. 309-320.
Published online: 2013-05
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{AAMM-5-309,
author = {Chen , ChuanmiaoKřížek , Michal and Liu , Liping},
title = {Numerical Integration over Pyramids},
journal = {Advances in Applied Mathematics and Mechanics},
year = {2013},
volume = {5},
number = {3},
pages = {309--320},
abstract = {
Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.12-m12110}, url = {http://global-sci.org/intro/article_detail/aamm/71.html} }
TY - JOUR
T1 - Numerical Integration over Pyramids
AU - Chen , Chuanmiao
AU - Křížek , Michal
AU - Liu , Liping
JO - Advances in Applied Mathematics and Mechanics
VL - 3
SP - 309
EP - 320
PY - 2013
DA - 2013/05
SN - 5
DO - http://doi.org/10.4208/aamm.12-m12110
UR - https://global-sci.org/intro/article_detail/aamm/71.html
KW - Reference pyramidal element, nonlinear systems of algebraic equations, Bramble-Hilbert lemma, triangular, tetrahedral and pyramidal numbers.
AB -
Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.
Chuanmiao Chen, Michal Křížek & Liping Liu. (1970). Numerical Integration over Pyramids.
Advances in Applied Mathematics and Mechanics. 5 (3).
309-320.
doi:10.4208/aamm.12-m12110
Copy to clipboard