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Abstract. Recently, a class of logarithmic-quadratic proximal (LQP) methods was intro-
duced by Auslender, Teboulle and Ben-Tiba. The inexact versions of these methods solve
the sub-problems in each iteration approximately. In this paper, we present a practical
inexactness criterion for the inexact version of these methods.
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1 Introduction

Given an operator T , point to set in general, and a closed convex subset C of Rn, the variational
inequality problem, denoted by (VI), consists of finding a vector x∗ ∈ C and g∗ ∈ T (x∗) such
that

(x − x∗)T g∗ ≥ 0, ∀x ∈ C. (1)

Our analysis will focus on the case where T is a maximal monotone mapping from Rn into
itself and the constraint C is explicitly defined by

C := {x ∈ Rn : Ax ≤ b},

where A is a p×n matrix, b ∈ Rp and p ≥ n. We suppose that the matrix A is of maximal rank,
i.e., rankA = n and that intC = {x : Ax < b} is nonempty.

It is well known that the VI problem can be alternatively formulated as finding the zero point
of a maximal monotone operator Π = T +NC , i.e., find x∗ ∈ C such that 0 ∈ Π(x∗). A classical
method to find the zero point of a maximal monotone operator Π is the proximal point algorithm
(e.g., see [5, 8]). For given xk−1 ∈ Rn and λk ≥ λ > 0, the new iterate xk is the solution of the
following problem:

0 ∈ Π(x) + λ−1
k ∇q(x, xk−1), (2)
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where

q(x, xk−1) =
1

2
‖x − xk−1‖2 (3)

is a quadratic function of x. The proximal point algorithm can be seen as a regularization method
in which the regularization parameter λk does not approach +∞, thus avoiding the possible ill
behavior of the regularized problems.

The recursion form of (2)-(3) can be written as

0 ∈ xk − xk−1 + λkΠ(xk).

However, this ideal form of the method is often impractical, since the exact iteration (2) maybe
in many cases require a computation as difficult as solving the original problem 0 ∈ T (x∗). In [8],
Rockafellar has given an inexact variant of the method

ek ∈ xk − xk−1 + λkΠ(xk), (4)

where {ek} is regarded as an error sequence. The method is called inexact proximal point
algorithm. It was shown that if ek → 0 quickly enough such that

+∞
∑

k=1

‖ek‖ < +∞,

then xk → z ∈ Rn with 0 ∈ Π(z).
Instead of using the quadratical function (3) as the proximal term, Eckstein [4] investigated

the Bregman-function-based proximal method and has proved that the sequence {xk} generated
by (4) converges to a root of Π under the following conditions:

+∞
∑

k=1

‖ek‖ < +∞ and

+∞
∑

k=1

〈ek, xk〉 exists and is finite. (5)

On the other hand, for quadratic proximal method, Han and He [6] have proved the convergence
for recursion (4) under the following accuracy criterion

‖ek‖ ≤ ηk‖x
k − xk−1‖ with

+∞
∑

k=0

η2
k < +∞. (6)

It seems that the accuracy criterion (6) can be checked and complemented in practice more easily
than (5).

Recently, Auslender, Teboulle and Ben-Tiba [1] have proposed a new type of proximal inte-
rior methods replacing the quadratic function q(x, xk−1), by the logarithmic-quadratic function
D(x, xk−1) (will be specified in Section 3), this method is called logarithmic-quadratic proximal
method. In their inexact version[1], they have suggested to use the accuracy criterion of type (5).
Since the accuracy criterion of type (6) is more useful in practice, in this paper, we proposed an
accuracy criterion of type (6) for the logarithmic-quadratic proximal method.

2 Preliminaries

We list some important results on maximal monotone operator and some basic properties which
will be needed in our following analysis. The domain of T and the graph of T are defined by

domT := {x|T (x) 6= ∅} and G(T ) := {(x, y) ∈ Rn × Rn : y ∈ T (x)}.
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An operator T is said to be monotone if

(x′ − x)T (y′ − y) ≥ 0 ∀y′ ∈ T (x′), ∀y ∈ T (x), ∀x, x′ ∈ domT.

A monotone operator T is said to be maximal if its graph is not properly contained in the graph
of any other monotone operator, in other words, if

(x − x′)T (y − y′) ≥ 0 ∀x′ ∈ domT, ∀y′ ∈ T (x′) ⇒ y ∈ T (x).

The normal cone operator associated with a closed convex set C is defined by

NC(x) =

{

{y : yT (v − x) ≤ 0, ∀v ∈ C} if x ∈ C
∅ otherwise.

Clearly, domNC = C and we have NC = {0} when C = Rn or when x ∈ intC. Since C is closed
and convex then NC is maximal monotone.

Lemma 2.1. Let Ti, i = 1, 2, be maximal monotone. If intdomT1 ∩ domT2 6= ∅, then T1 + T2 is
also maximal monotone.

Proof. See Chapter 12 of [9].

In the analysis of the proposed algorithm we need the following result, which has already
been stated in [1]. Here, for the completeness and the convenience of the readers, we include its
proof as well.

Lemma 2.2. For any s > 0, t > 0 and u ≥ 0 we have

(t − u)

(

2t − s −
s2

t

)

≥
3

2
((u − t)2 − (u − s)2) +

1

2
(t − s)2. (7)

Proof. Let δ be the left-hand side of (7), then developing and regrouping terms we obtain

δ = 2t2 − st − s2 − u(2t − s) + u
s2

t

≥ 2t2 − st − s2 − u(2t − s) + u(2s − t).

The above last inequality follows from the property
s2

t
≥ 2s − t. By a simple manipulation we

get

δ ≥ s(t − s) + 2t(t − s) − 3u(t − s)

= (s − t)(3u − 2t − s) (8)

= (t − s)(s − u) + 2(t − s)(t − u). (9)

Using in (9) the identities

2(t − s)(s − u) = ((u − t)2 − (u − s)2 − (t − s)2),

2(t − s)(t − u) = ((u − t)2 − (u − s)2 + (t − s)2),

we obtain (7).
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3 The logarithmic-quadratic proximal method

Let ν > µ > 0 be any fixed parameters. For v ∈ Rp
+ define

d(u, v) =











p
∑

i=1

ν

2
(ui − vi)

2 + µ(v2
i log

vi

ui

+ uivi − v2
i ) if u ∈ Rp

+

+∞ otherwise.

It is easy to verify that d(·, v) is a closed proper convex function, nonnegative and d(u, v) = 0
if and only if u = v. One of the motivations behind the specific form of the function d(·, ·) is
as follows: The first quadratic term is a usual regularization term used in a proximal method,
while the second expression is added to enforce the method to become an interior one, i.e., to
generate iterates staying in the positive orthant.

From now on, for simplicity of exposition, we will use ν = 2, µ = 1. Then, simple algebra
shows that d given can be conveniently written as

d(u, v) =











p
∑

i=1

u2
i − uivi + v2

i log
vi

ui

if u ∈ Rp
+

+∞ otherwise.

Let ai denote the rows of the matrix A, and define the following quantities

li(x) = bi − aT
i x,

l(x) = (l1(x), l2(x), · · · , lp(x))T ,

D(x, y) = d(l(x), l(y)).

For each x ∈ intC, y ∈ intC, we have

∇xD(x, y) = −

p
∑

i=1

ai

(

2li(x) − li(y) −
li(y)2

li(x)

)

. (10)

Throughout this paper we assume that domT ∩ intC 6= ∅ and the solution set of (VI), denoted
by S, is nonempty.

The inexact Logarithmic-Quadratic Proximal (LQP) method

• Step 0 Given 0 < λL ≤ λU < ∞ and {λk} ⊂ [λL, λU ], a nonnegative sequence {ηk} with

∞
∑

k=0

η2
k < +∞. (11)

Start with x0 ∈ intC.

• Step 1 For k = 1, 2, . . ., if xk−1 6∈ S, then generate a pair of (xk, ek) ∈ intC × Rm such
that

gk + λ−1
k ∇xD(xk, xk−1) = ek with gk ∈ T (xk) (12)

and
‖ek‖ ≤ ηk‖A(xk − xk−1)‖. (13)
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The solvability of problem (12) can be found in [1]. Note that in the exact proximal point
algorithm (2), xk is the root of Π if and only if xk = xk−1. Hence, we can see the distance
‖A(xk − xk−1)‖ as an “error bound”, which measures how much xk fails to be in the roots set
of Π.

We are now in position to establish the main result of this section.

Theorem 3.1. Let {xk} be the sequence generated by LQP and {ηk}, {ek} be the sequences
satisfy conditions (11) and (13). Then there exists an integer k0 ≥ 1 and a constant c0 > 0, such
that for all k ≥ k0.

‖A(xk − x∗)‖2 ≤

(

1 +
c0η

2
k

1 − c0η2
k

)

‖A(xk−1 − x∗)‖2 −
1

6
‖A(xk − xk−1)‖2. (14)

Furthermore, {xk} is a bounded sequence and

lim
k→∞

‖xk − xk−1‖ = 0.

Proof. Let Π = T +NC , since domT ∩ intC 6= ∅, it follows from Lemma 2.1 that Π is maximal
monotone and that

x∗ ∈ S ⇐⇒ 0 ∈ Π(x∗).

Furthermore, since for xk ∈ intC, it holds that NC = {0} and we have

gk ∈ Π(xk).

From (10) and (12), we have

gk − ek = λ−1
k

(

p
∑

i=1

ai(2li(x
k) − li(x

k−1) −
li(x

k−1)2

li(xk)
)

)

. (15)

Using the definition of li and the monotonicity of Π, it follows from (15) that ∀(x, g) ∈ G(Π),

λk(x − xk)T (g − ek) ≥

p
∑

i=1

(li(x
k) − li(x))

(

2li(x
k) − li(x

k−1) −
li(x

k−1)2

li(xk)

)

. (16)

Take now in (16) (x, g) = (x∗, 0). Applying Lemma 2.2 with s = li(x
k−1), t = li(x

k) and
u = li(x

∗), and summing over i = 1, · · · , p, we then obtain

λk(xk − x∗)T ek ≥
3

2
(‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2) +

1

2
‖A(xk − xk−1)‖2.

Then

‖A(xk − x∗)‖2 ≤ ‖A(xk−1 − x∗)‖2 −
1

3
‖A(xk − xk−1)‖2 +

2

3
λk(xk − x∗)T ek. (17)

For ηk > 0, using Cauchy-Schwartz inequality we have

2λk(xk − x∗)T ek ≤
1

2η2
k

‖ek‖2 + 2η2
kλ2

k‖x
k − x∗‖2. (18)

Since A is of maximal rank and {λk} ⊂ [λL, λU ], we can find a constant c1 > 0 such that

λ2
k‖x

k − x∗‖2 ≤ c1‖A(xk − x∗)‖2, ∀k ≥ 0.
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Using (13), (18) becomes

2

3
λk(xk − x∗)T ek ≤

1

6
‖A(xk − xk−1)‖2 + c0η

2
k‖A(xk − x∗)‖2, (19)

where c0 = 2c1/3. Since ηk → 0, there exists k0 ≥ 1, such that for all k ≥ k0, 1 − c0η
2
k > 0.

Substituting (19) in (17) we obtain

‖A(xk − x∗)‖2

≤

(

1 +
c0η

2
k

1 − c0η2
k

)

‖A(xk−1 − x∗)‖2 −
1

6(1 − c0η2
k)

‖A(xk − xk−1)‖2

≤

(

1 +
c0η

2
k

1 − c0η2
k

)

‖A(xk−1 − x∗)‖2 −
1

6
‖A(xk − xk−1)‖2.

The first part of the theorem is obtained and thus

‖A(xk − x∗)‖2 ≤

(

1 +
c0η

2
k

1 − c0η2
k

)

‖A(xk−1 − x∗)‖2, ∀k ≥ k0.

Since
∞
∑

k=0

η2
k < +∞, it follows that

CS :=
∞
∑

k=k0

c0η
2
k

1 − c0η2
k

< +∞, and CP :=
∞
∏

k=k0

(

1 +
c0η

2
k

1 − c0η2
k

)

< +∞,

and thus {xk} is bounded. Also from (14) we have

1

6

∞
∑

k=k0

‖A(xk − xk−1)‖2

≤
∞
∑

k=k0

(‖A(xk−1 − x∗)‖2 − ‖A(xk − x∗)‖2) +
∞
∑

k=k0

c0η
2
k

1 − c0η2
k

‖A(xk−1 − x∗)‖2

≤ ‖A(xk0−1 − x∗)‖2 +

∞
∑

k=k0

c0η
2
k

1 − c0η2
k

(

sup
k0≤k<∞

‖A(xk−1 − x∗)‖2

)

≤ (1 + CSCP )‖A(xk0−1 − x∗)‖2 < +∞.

It follows that
lim

k→∞
‖A(xk − xk−1)‖ = 0 (20)

and consequently (since A is of maximal rank)

lim
k→∞

‖xk − xk−1‖ = 0.

The proof is complete.

We are ready to prove our main global convergence result.

Theorem 3.2. Let {xk} be the sequence generated by LQP and {ηk}, {ek} be the sequences satisfy
conditions (11) and (13). Then the sequence {xk} converges to some x∞ with 0 ∈ Π(x∞).
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Proof. Now, let

ci,k(x) := (li(x
k) − li(x))

(

2li(x
k) − li(x

k−1) −
li(x

k−1)2

li(xk)

)

.

From (16), we have

(x − xk)T (g − ek) ≥ λ−1
k

p
∑

i=1

ci,k(x). (21)

Using (8) with s = li(x
k−1), t = li(x

k) and u = li(x), for x ∈ C we obtain that

ci,k(x) ≥ {li(x
k−1) − li(x

k)}{3li(x) − [li(x
k−1) + 2li(x

k)]}.

It follows from (20) that

lim
k→∞

(li(x
k−1) − li(x

k)) = 0, i = 1, . . . , p.

Since {λk} is bounded, we obtain for each x

lim inf
k→∞

λ−1
k

p
∑

i=1

ci,k(x) ≥ 0. (22)

From Theorem 3.1, {xk} is bounded and has at least a cluster point. Let x∞ be a cluster point
of the sequence {xk} and the subsequence {xkj} converges to x∞. Taking k = kj in (21), using
(22), since {ek} converges to zero, passing to the limit in (21), it follows that

(x − x∞)T g ≥ 0, ∀(x, g) ∈ G(Π).

Since Π is a maximal monotone operator, the above inequality implies that 0 ∈ Π(x∞), i.e.,
x∞ ∈ S. Note that (14) is true for all roots of Π, hence we have

‖A(xk − x∞)‖2 ≤

(

1 +
c0η

2
k

1 − c0η2
k

)

‖A(xk−1 − x∞)‖2, ∀k ≥ k0. (23)

Since {xkj} → x∞ and
∞
∏

k=k0

(

1 +
c0η

2
k

1 − c0η2
k

)

< +∞,

for any given ǫ > 0, there is an l > 0, such that

‖A(xkl − x∞)‖ <
ǫ

2
and

√

√

√

√

∞
∏

k=kl

(

1 +
c0η2

k

1 − c0η2
k

)

< 2. (24)

Therefore, for any k ≥ kl, it follows from (23) and (24) that

‖A(xk − x∞)‖ ≤

√

√

√

√

k−1
∏

t=kl

(

1 +
c0η2

t

1 − c0η2
t

)

(

‖A(xkl − x∞)‖
)

< ǫ.

and the sequence {xk} converges to x∞.
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4 Concluding remarks

The present study deals with the logarithmic-quadratic proximal method for solving variational
inequality over polyhedral set. It assesses and reconsiders this method in a different way from the
one indicated by [1]. The innovative contribution of this study is to show that the sequence {xk}
generated by LQP converges to a root of the maximal monotone operator Π under conditions
(11) and (13) which can be regarded as a weaker criterion yet can be easily enforced in practice.
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