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Abstract. Let ζ(s) be the Riemann zeta function, s=σ+it . For 0<σ<1 , we expand
ζ(s) as the following series convergent in the space of slowly increasing distributions
with variable t :

ζ(σ+it)=
∞

∑
n=0

an(σ)ψn(t),

where

ψn(t)=(2nn!
√

π)−1/2e
−t2

2 Hn(t),

Hn(t) is the Hermite polynomial, and

an(σ)=2π(−1)n+1ψn(i(1−σ))+(−i)n
√

2π
∞

∑
m=1

1

mσ
ψn(lnm).

This paper is concerned with the convergence of the above series for σ>0. In the de-
duction, it is crucial to regard the zeta function as Fourier transfomations of Schwartz’
distributions.
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1 Results

Let ζ(s) be the famous Riemann Zeta function which is holomorphic for s=σ+it∈C−{1}.
It is well known that if 0<σ<1 then

ζ(s)= s
∫ ∞

0

[x]−x

xs+1
dx

(see [1] or [2]). By the substitute of variables x= ey, we get

ζ(s)= s
∫ ∞

−∞
([ey]−ey)e−sydy.
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Set
f (y)= [ey ]−ey. (1.1)

Then for 0< σ < 1 , e−σy f (y) is a slowly increasing function , so can be regarded as an
element of S ′, the dual space of the space S of rapidly decreasing functions on R. The
Laplace transformation L( f )(s) of f is then defined on the trip 0 < σ < 1 both in the
ordinary and distributional sense, that is

L( f )(s)= ζ(s)/s.

Let f ′ ∈S ′ be the derivative of f in the distributional sense. then e−σy f ′(y)∈S ′ for
0<σ<1 , and Laplace transformation L( f ′)(s) is defined on the strip 0<σ<1 such that

L( f ′)(s)= ζ(s)

([3] Chapter 8). So by the relation of Fourier and Laplace transformation of distribu-
tion (see also [3]), we see that ζ(σ+it) as function of t is the Fourier transformation
of e−σy f ′(y) in the distributional sense, where the Fourier transformation is defined by
g(x)→

∫ ∞

−∞
g(x)e−ixydx for g∈L1(R).

Recall that the Hermite polynomials are defined as

Hn(x)= ex2
(

d

dx
)ne−x2

, n=0,1,.. .

ψn(t)=(2nn!
√

π)−1/2e
−t2

2 Hn(t), n=0,1,.. .

form a complete normalized orthogonal system in L2(R).
Xiaqi Ding and his collaborators introduced and developed the theory of Hermite

expansions of generalized functions [4]. The aim of this paper is to give the Hermite
expansion of ζ(σ+it) as function of t for 0< σ < 1 . For this, we give first the Hermite
expansion of e−σy f ′(y)∈S ′ for fixed σ. Now

f ′(y)=−ey+
∞

∑
m=1

δ(y−lnm),

where δ is the Dirac δ-function. So

e−σy f ′(y)=−e(1−σ)y+
∞

∑
m=1

1

mσ
δ(y−lnm). (1.2)

The following lemma gives the Hermite expansion of −e(1−σ)y.

Lemma 1.1. For any complex number a,

∫ ∞

−∞
eaxψn(x)dx=(−i)n

√
2πψn(ia).
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Proof. Since eaxψn(x)∈L1(R), its ordinary Fourier transformation exists. Let cn=(2nn!
√

π)
1
2 ,

then

∫ ∞

−∞
eaxψn(x)e−ixydx=

(−1)n

cn

∫ ∞

−∞
e

x2

2 −i(y+ia)x

(

d

dx

)n

e−x2
dx

=
1

cn

∫ ∞

−∞
e−x2

(

d

dx

)n

e
x2

2 −i(y+ia)xdx

=
e

1
2 (y+ia)2

cn

∫ ∞

−∞
e−x2

(

d

dx

)n

e
1
2 (x−i(y+ia))2

dx

=
in

cn
e

1
2 (y+ia)2

∫ ∞

−∞

(

d

dy

)n

e−x2+ 1
2 (x−i(y+ia))2

dx

=
in

cn
e

1
2 (y+ia)2

(

d

dy

)n

(e
−1
2 (y+ia)2

∫ ∞

−∞
e−x2+ 1

2 (x−i(y+ia))xdx)

=
in

cn
e

1
2 (y+ia)2

(

d

dy

)n

(e
−1
2 (y+ia)2√

2πe−
1
2 (y+ia)2

)

=
(−i)n

√
2π

cn
e−

1
2 (y+ia)2

Hn(y+ia)

=(−i)n
√

2πψn(y+ia).

Taking y=0 in the above formula, we get

∫ ∞

−∞
eaxψn(x)dx=(−i)n

√
2πψn(ia),

hence the lemma is proved.

Notice that although e−σy f ′(y)∈S ′, both the first and second terms in (1.2) are not
in S ′. In fact, they are only in D′, the dual space of the compactly supported smooth
functions. Especially, the series of the second term is only convergent in D′. Since ψn is
in S ′ but not in D′, although it is easy to get

<
1

mσ
δ(y−lnm),ψn(y)>=

1

mσ
ψn(lnm),

it is not obvious if the series
∞

∑
m=1

1

mσ
ψn(lnm) (1.3)

converges. The following theorem addresses this issue.

Theorem 1.1. For 0<σ<1 and n=0,1,··· , the series (1.3) is convergent.
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Proof. Set

χ1(y)=

{

1, y∈ (−∞,ln 3
2 ]

0, otherwise

and for m=2,3,··· ,
χm(y)=

{

1, y∈ (ln(m− 1
2),ln(m+ 1

2)]
0, otherwise.

Denote by gm(y) the element of S ′ given by the integrable function χm(y)e−σy f (y). Then
for any ϕ∈S , we have

< e−σy f (y),ϕ(y)>=
∫ ∞

−∞
e−σy f (y)ϕ(y)dy

=
∞

∑
m=1

∫ ∞

−∞
χm(y)e

−σy f (y)ϕ(y)dy=
∞

∑
m=1

< gm(y),ϕ(y)> .

This means that

e−σy f (y)=
∞

∑
m=1

gm(y)

is convergent in S ′. Thus by a fundamental result in distributional theory, its derivative

(e−σy f (y))′=
∞

∑
m=1

g′m(y)

is also convergent in S ′. Now

g′m(y)=−σgm(y)+e−σyχ′
m(y) f (y)+e−σyχm(y) f ′(y), (1.4)

e−σyχ′
1(y) f (y)=−e−σy f (y)δ

(

y−ln
3

2

)

=−(
3

2
)−σ f

(

ln
3

2

)

δ

(

y−ln
3

2

)

,

e−σyχ′
m(y) f (y)=

(

m− 1

2

)−σ

f

(

ln(m− 1

2
)

)

δ

(

y−ln(m− 1

2
)

)

−
(

m+
1

2

)−σ

f

(

ln(m+
1

2
)

)

δ

(

y−ln(m+
1

2
)

)

.

Since for any ϕ∈S ,ϕ(y)→0 as y→±∞, and | f (y)|≤1, we have

<

M

∑
m=1

e−σyχ′
m(y) f (y),ϕ(y)>

=−
(

M+
1

2

)−σ

f

(

ln(M+
1

2
)

)

ϕ

(

ln(M+
1

2
)

)

→0, as M→∞.



B.-H. Li / J. Math. Study, 49 (2016), pp. 319-324 323

Thus by (1.4), the series
∞

∑
m=1

e−σyχm(y) f ′(y)= e−σy f ′(y) (1.5)

converges in S ′. Now

e−σyχm(y) f ′(y)=−e(1−σ)yχm(y)+
1

mσ
δ(y−lnm) (1.6)

and e(1−σ)yψn(y) is integrable on R, so

∫ ∞

−∞
e(1−σ)yψn(y)dy=

∞

∑
m=1

∫ ∞

−∞
e−σyχm(y)ψn(y)dy

is a convergent series. Thus by (1.6),

<

∞

∑
m=1

1

mσ
δ(y−lnm),ψn(y)>=

∞

∑
m=1

1

mσ
ψn(lnm)

is a convergent series. The proof is complete.

By the general theory on Dirichlet series, we have

Corollary 1.1. The Dirichlet series

∞

∑
m=1

1

ms
ψn(lnm)

is convergent for Re(s)>0, and n=0,1··· .
Corollary 1.2. For 0<σ<1 , the following Hermite expansion

e−σy f ′(y)=
∞

∑
n=0

bn(σ)ψn(y),

is convergent in S ′, where

bn(σ)=−(−i)n
√

2πψn(i(1−σ))+
∞

∑
m=1

1

mσ
ψn(lnm).

Proof. Since e−σy f ′(y)∈S ′ , it is proved in [4] that

e−σy f ′(y)=
∞

∑
n=0

< e−σy f ′(x),ψn(x)>ψn(y)



324 B.-H. Li / J. Math. Study, 49 (2016), pp. 319-324

holds in S ′. By (1.5) and (1.6), we have

< e−σx f ′(x),ψn(x)>=
∞

∑
m=1

< e−σxχm(x) f ′(x),ψn(x)>

=
∞

∑
m=1

(

∫ ∞

−∞
e(1−σ)xχm(x)ψn(x)dx+

1

mσ
ψn(lnm)

)

.

Thus Lemma 1.1 and Theorem 1.1 imply

bn(σ)=< e−σy f ′(x),ψn(x)>,

hence the corollary is proved.

Since
∫ ∞

−∞
ψn(x)e−ixydx=

√
2π(−i)nψn(y),

Corollary 1.2 implies that

Theorem 1.2. For 0<σ<1 ,

ζ(σ+it)=
∞

∑
n=0

an(σ)ψn(t)

in S ′, where

an(σ)=2π(−1)n+1ψn(i(1−σ))+(−i)n
∞

∑
m=1

√
2π

mσ
ψn(lnm).
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