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Abstract. We study the numerical identification of an unknown portion of the bound-
ary on which either the Dirichlet or the Neumann condition is provided from the
knowledge of Cauchy data on the remaining, accessible and known part of the bound-
ary of a two-dimensional domain, for problems governed by Helmholtz-type equa-
tions. This inverse geometric problem is solved using the plane waves method (PWM)
in conjunction with the Tikhonov regularization method. The value for the regulariza-
tion parameter is chosen according to Hansen’s L-curve criterion. The stability, conver-
gence, accuracy and efficiency of the proposed method are investigated by considering
several examples.
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1 Introduction

The Helmholtz and modified Helmholtz equations are related to various physical ap-
plications in science and engineering. More specifically, these equations are used to de-
scribe the Debye-Hückel equation [15], the scattering of a wave [17], the linearization of
the Boltzmann equation [35], the vibration of a structure [6], the acoustic cavity prob-
lem [12], the radiation wave [19] and the steady-state heat conduction in fins [33]. In
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general, we assume the knowledge of the geometry of the domain of interest, the bound-
ary conditions on the entire boundary of the solution domain and the so-called wave
parameter, κ, and this gives rise to direct/ forward problems for Helmholtz-type equations,
which have been extensively studied both mathematically and numerically, e.g., [24, 34].
When one or more of the above conditions for solving the direct problem associated with
Helmholtz-type equations are partially or entirely unknown, then an inverse problem may
be formulated to determine the unknowns from additional responses.

Traditional numerical methods, in conjunction with an appropriately chosen regular-
ization/stabilization method, have been employed to solve inverse problems associated
with Helmholtz-type equations, such as the finite-difference method (FDM) [4, 5], the fi-
nite element method (FEM) [25, 26] and the boundary element method (BEM) [39, 40],
respectively. Both the FDM and the FEM require the discretization of the domain of in-
terest which is time consuming and tedious, especially for complicated geometries. On
the other hand, while the BEM is a boundary discretization method and hence reduces
the dimensionality of the problem by one, however it requires the evaluation of singular
integrals involving the fundamental solution and its normal derivative and the corre-
sponding BEM matrices are fully populated.

An alternative to these traditional numerical methods are the so-called meshless meth-
ods which have been used extensively in the last two decades for retrieving accurate,
stable and convergent numerical solutions to inverse problems for Helmholtz-type equa-
tions. The advantages of meshless methods are the ease with which they can be imple-
mented, in particular for problems in complex geometries, their low computational cost
and the fact that, in general, they are exempted from integrations that may become cum-
bersome, especially in three dimensions. Such methods include the boundary particle
method (BPM) [13], the singular boundary method (SBM) [14], the method of fundamen-
tal solutions (MFS) [16], the boundary knot method (BKM) [23], Kansa’s method [28],
etc.

The plane waves method (PWM) is a meshless Trefftz method applicable to the so-
lution of boundary value problems governed by the Helmholtz or modified Helmholtz
equation, [1, 2, 44], see also [20, Section 11.1.3]. The PWM has since been applied to the
modified Helmholtz equation in [36], for the calculation of the eigenfrequencies of the
Laplace operator in [3] and for the solution of inverse problems of Cauchy type in [22].
More recently, it was applied to the solution of direct axisymmetric Helmholtz problems
in [29].

The PWM is closely related to another meshless Trefftz method, the method of fun-
damental solutions (MFS) [16] which has in recent years become very popular for the
solution of inverse problems [31,32]. The reason for this popularity is due to the fact that
it is meshless and of boundary type, hence the MFS is easy to implement for problem-
s in complex geometries in two and three dimensions. These properties are shared by
the PWM which was shown to be an asymptotic version of the MFS in [2]. Moreover,
the PWM has a considerable advantage over the MFS as it does not require an external
pseudo-boundary on which the sources are to be placed. The location of this pseudo-
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boundary has been a major issue in the application of the MFS [11].
The PWM has apparently never been applied to inverse geometric problems (see [32])

and in this study, we investigate its application to a particular class of such inverse
problems, namely boundary identification problems. For Helmholtz-type equations such
problems have been solved using the BEM in [37] and the MFS in [7, 38]. The paper is
organized as follows. In Section 2 we present the inverse geometric problem under inves-
tigation. The numerical method employed for the approximate solution of the problem,
namely the PWM, and the Tikhonov regularization method are described in Section 3.
Five examples are considered and thoroughly investigated in Section 4. Finally, some
concluding remarks and ideas for future work are presented in Section 5.

2 The problem

We consider the inverse geometric boundary value problem given by

∆u+κ2u=0 in Ω, (2.1)

where κ∈C∗ is given, subject to the Cauchy boundary conditions

u= g1 and
∂u

∂n
= g2 on ∂Ω1, (2.2)

and the Robin boundary condition

αu+β
∂u

∂n
= g3 on ∂Ω2, (2.3)

where Ω is a simply-connected bounded domain in R2 with smooth or piecewise smooth
boundary ∂Ω partitioned into two disjoint parts ∂Ω1 (known) and ∂Ω2 (unknown), and
g1, g2, g3 are given functions. In (2.2) and (2.3), ∂/∂n is the partial derivative along the
outward normal unit vector n = (nx,ny) to the boundary at the point (x,y), and α and
β are given coefficients satisfying αβ≥ 0. A Dirichlet or Neumann boundary condition
in (2.3) is obtained if α = 1, β = 0 or α = 0, β = 1, respectively. If κ is real and positive
representing the wave number, then equation (2.1) becomes the Helmholtz equation in
acoustic scattering, whilst if κ = iλ with i=

√
−1 and λ real and positive representing a

heat transfer coefficient, then equation (2.1) becomes the modified Helmholtz equation
governing heat conduction in fins.

In problem (2.1)-(2.3) the goal is to determine u as well as the boundary ∂Ω2. This
portion of the boundary is presumed damaged due to a possible corrosion attack and the
corrosion coefficient γ := β/α is also known as the impedance coefficient. Physically, in
general we have that in (2.3), g3=0. Uniqueness of solution (u,∂Ω2) satisfying (2.1), (2.2)
and (2.3) holds [21] in the case of a perfectly conducting boundary (α=1, β=0, g3=0) on
which

u=0 on ∂Ω2, (2.4)
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or an insulated boundary (α=0, β=1, g3=0) on which

∂u

∂n
=0 on ∂Ω2, (2.5)

provided that g2 6≡ 0 (or g1 6≡ constant). In the case of a homogeneous Robin boundary
condition

u+γ
∂u

∂n
=0 on ∂Ω2, (2.6)

there exist counterexamples, [7], for which uniqueness of solution fails.
Prior to this paper, the inverse geometric problem (2.1)-(2.3) has been solved using the

BEM in [37] and the MFS in [38], and it is the purpose of this study to develop the PWM
for solving the same problem. In addition, we make a comparison between the MFS and
the PWM and also investigate a physical example with g3=0.

3 The plane waves method

In the PWM [2], we approximate the solution u of boundary value problem (2.1)-(2.3) by
a linear combination of plane waves

uL(x)=
L

∑
ℓ=1

aℓe
iκx·dℓ , x=(x,y)∈Ω. (3.1)

The justification of the PWM approximation (3.1) is based on the fact that the span of the
set of plane wave functions

{

eiκx·d∣
∣d=

(

cos ϕ,sinϕ
)

, ϕ∈ [0,2π)
}

is dense, in the L2(Ω)-
norm, in the set of functions satisfying Eq. (2.1), see [10]. In (3.1), the vectors dℓ are uni-
tary direction vectors with distinct directions and, clearly, each plane wave in the above
expansion satisfies the Helmholtz equation (2.1). As a result, in order to determine the
unknown complex coefficients {aℓ}L

ℓ=1 we only need to satisfy the boundary conditions
of the boundary value problem in question, in our case (2.2) and (2.3). Density results
regarding approximation (3.1) may be found in [2] where it is also shown that the PWM
may be viewed as an asymptotic version of the MFS.

In the PWM we select M+1 uniformly distributed boundary collocation points on
∂Ω1 and N−1 uniformly distributed boundary collocation points on ∂Ω2. In particular,
if the domain Ω= {(r(ϑ),ϑ)|ϑ ∈ [0,2π)} is a star-like domain, we choose the boundary
points on ∂Ω1 to be, in polar coordinates,

xm= rm (cosϑm,sinϑm), ϑm=
(m−1)π

M
, m=1,··· ,M+1, (3.2)

while the boundary collocation points on ∂Ω2 are

xM+1+j= rM+1+j

(

cosθj,sinθj

)

, θj =π+
jπ

N
, j=1,··· ,N−1, (3.3)
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where
rm = r(ϑm), m=1,··· ,M+1, (3.4)

and
rM+1+j= r(θj), j=1,··· ,N−1. (3.5)

Moreover, we choose the L unitary direction vectors to be

dℓ=(cosϕℓ,sinϕℓ), ϕℓ=
2(ℓ−1)π

L
, ℓ=1,··· ,L. (3.6)

Clearly, there could be other choices for the L unitary direction vectors dℓ, ℓ= 1,··· ,L.
The proposed choice given in (3.6) is the simplest such choice guaranteeing the distinct
directions of these vectors and, moreover, it provides a uniform distribution of the plane
waves directions in the PWM (see [2]).

3.1 Implementational details

In the PWM described above we have a total of 2L+N−1 unknowns consisting of the 2L
unknown coefficients a= {aℓ= αℓ+iβℓ}L

ℓ=1, as well as the N−1 unknown positive radii

values r = {rM+1+n}N−1
n=1 . These are determined by imposing the boundary conditions

(2.2) and (2.3). By imposing boundary conditions (2.2) at the M+1 points (3.2) we obtain
4(M+1) equations (taking real and imaginary parts) and by imposing boundary condi-
tion (2.3) at the N−1 points (3.3) we obtain a further 2(N−1) equations. Thus, the total
number of equations is 4M+2N+2 and for a determined or over-determined situation
we therefore need to have 4M+N ≥ 2L−3. The imposition of the boundary conditions
(2.2) and (2.3) is achieved by minimizing the regularized non-linear least-squares func-
tional

F(a,r)=
M+1

∑
m=1

∣

∣

∣
uL(xm)−g1(xm)

∣

∣

∣

2
+

M+1

∑
m=1

∣

∣

∣

∣

∂uL

∂n
(xm)−g2(xm)

∣

∣

∣

∣

2

+
N−1

∑
j=1

∣

∣

∣

∣

αuL(xM+1+j)+β
∂uL

∂n
(xM+1+j)−g3(xM+1+j)

∣

∣

∣

∣

2

+λ1

L

∑
ℓ=1

|aℓ |2+λ2

N−1

∑
j=2

(

rM+1+j−rM+1+j−1

)2
, (3.7)

where λ1,λ2≥0 are regularization parameters and |·| denotes the modulus of a complex
number.

Remark 3.1. (i) The normal derivative flux data in (2.2) comes from practical measure-
ment which is inherently contaminated with noisy errors, and therefore we replace
g2 by gǫ

2 given by

gǫ
2(xm)=(1+ρm p)g2(xm), m=1,(M+1), (3.8)
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where p represents the percentage of noise and ρj is a pseudo-random noisy vari-
able drawn from a uniform distribution in [−1,1] using the MATLAB c© command
-1+2*rand(1,M+1).

(ii) In (3.7), the outward normal vector n is defined as follows:

n(ϑ)=
1

√

r2(ϑ)+r′2(ϑ)

[(

r′(ϑ)sinϑ+r(ϑ)cosϑ
)

i−
(

r′(ϑ)cosϑ−r(ϑ)sinϑ
)

j
]

, (3.9)

where i=(1,0) and j=(0,1). In (3.9), we use the finite-difference approximation

r′(ϑi)≈
ri+1−ri−1

2π/N
, i=M+2,M+N, (3.10)

with the convention that rM+N+1= r1.

(iii) The last term in (3.7) imposes a C1-smoothness constraint on the unknown bound-
ary ∂Ω2. In previous studies, [8, 30], we imposed a C0-continuity constraint for
similar shape detection problems, but, after extensive experimentation, found that
the results with the higher-order C1-smoothness are more accurate. Of course, to
impose the correct degree of smoothness requires a priori knowledge about the reg-
ularity of the unknown boundary, e.g., if it is known that ∂Ω2 has corners, then a
total variation constraint, [9], would be more appropriate. Finally, it should be noted
that in the absence of such a priori information on the smoothness of the unknown
boundary, one does not need to penalise it, but instead needs to stop the iteration
process at an appropriate threshold. More details regarding general optimisation
for nonlinear and ill-posed problems can be found in [27].

(iv) The minimization of functional (3.7) is carried out using the MATLAB c© optimiza-
tion toolbox routine lsqnonlin which solves nonlinear least squares problems. The
routine lsqnonlin does not require the user to provide the gradient and, in addi-
tion, it offers the option of imposing lower and upper bounds on the elements of
the vector of unknowns (a,r) through the vectors lb and up. In our problem, there
are no bounds on a but r is bounded between 0 and 1.2 (for Examples 1-5). Unless
otherwise stated, we took the initial guess (a0,r0)=(0,0.5).

(v) In the implementation of the method, we split the unknown coefficients a={aℓ}L
ℓ=1

into real and imaginary parts {aℓ=αℓ+iβℓ}L
ℓ=1. In lsqnonlin (which can only han-

dle real variables) all the unknowns are real and consist of the 2L real and imagi-

nary parts of the coefficients {αℓ}L
ℓ=1 and {βℓ}L

ℓ=1, respectively, and the radii values

r={rM+1+n}N−1
n=1 . For the imposition of the boundary conditions (2.2) and (2.3), the

complex approximation (3.1) is obtained from first constructing the complex coeffi-

cients {aℓ}L
ℓ=1 from their real and imaginary parts. The boundary conditions (2.2)

and (2.3) are imposed by imposing the satisfaction of both their real and the imagi-
nary parts. Thus the functions provided to lsqnonlin are all real.
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4 Numerical examples

In all figures presented in this section the reconstructed boundary is shown in red dots
(···). In numerical Examples 1 and 2 below we chose κ=

√
2 and consider boundary data

g1, g2 and g3 constructed from the analytical solution

u(x,y)=eax+by, (4.1)

where a=0.1 and b= i
√

a2+κ2.

4.1 Example 1

We first consider the unit disk Ω in which ∂Ω1 and ∂Ω2 are the upper and lower semicir-
cle, respectively, that is,

∂Ω1=
{

x=(x,y)|−1≤ x≤1; y=
√

1−x2
}

(4.2)

and
∂Ω2=

{

x=(x,y)|−1≤ x≤1; y=−
√

1−x2
}

. (4.3)

4.2 Example 2

We next consider a peanut-shaped domain described parametrically by

Ω=
{

x=(x,y)|x2+y2
< r2(ϑ); ϑ∈ [0,2π)

}

, where r(ϑ)=

√

cos2ϑ+
1

4
sin2ϑ (4.4)

iter=10 iter=100

iter=1000 iter=2000

Figure 1: Example 1: Results for α= 1, β= 0 and no noise. The reconstructed boundary is shown in red dots
(···).
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iter=10 iter=100

iter=1000 iter=2000

Figure 2: Example 1: Results for α=0, β=1 and no noise.

and ∂Ω1 and ∂Ω2 are defined by

∂Ω1={x=(x,y)|x= r(ϑ)cosϑ;y= r(ϑ)sinϑ, ϑ∈ [0,π]} , (4.5a)

∂Ω2={x=(x,y)|x= r(ϑ)cosϑ;y= r(ϑ)sinϑ, ϑ∈ (π,2π)}. (4.5b)

In Figs. 1 and 3 we present some results with no noise and no regularization for α=1,β=0
(Dirichlet boundary condition on ∂Ω2) and M=10,N=20,L=20 for various numbers of
iterations, for Examples 1 and 2, respectively. The corresponding results for α= 0,β= 1
(Neumann boundary condition on ∂Ω2) are presented in Figs. 2 and 4. From Figs. 1-4 it
can be seen that in case of no noise the iterative reconstructions are convergent to the true
shapes (4.3) and (4.5b) for both Examples 1 and 2, respectively, and for both Dirichlet and
Neumann problems in about 2000 iterations. It can be observed that for the Neumann
problem convergence is reached after about 1000 iterations whilst for the Dirichlet prob-
lem convergence requires more iterations, i.e., the iterative method converges faster for
the former problem than for the latter problem. An argument regarding the number of
iterations will be presented in the next paragraph.

Next, we introduce p = 10% noise, as described in Eq. (3.8). We only illustrate the
reconstructions for Example 2, as similar results have been obtained for Example 1. Sim-
ilarly, for brevity, we only illustrate the numerical results for the Neumann problem with
α= 0, β= 1. The results obtained without and with regularization in either λ1 or λ2 are
presented in Figs. 5-7. First, from Fig. 5 it can be seen that in the case of no regularization,
i.e., λ1 = λ2 = 0, the numerical reconstructions after 1000 to 2000 iterations are reason-
able but with some slight oscillations manifesting, especially near the points where the
boundaries ∂Ω1 and ∂Ω2 meet. These oscillations are likely to grow, as the number of
iterations increases, due to the instability of the nonlinear ill-posed problem. In order
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iter=10 iter=100

iter=1000 iter=2000

Figure 3: Example 2: Results for α=1, β=0 and no noise.

iter=10 iter=100

iter=1000 iter=2000

Figure 4: Example 2: Results for α=0, β=1 and no noise.

to restore stability, regularization is employed. As stability is ensured through appro-
priate choices of the regularization parameters λ1 and/or λ2, there is no need to cease
the iteration process at a threshold dictated by a discrepancy-type stopping criterion. In
this situation, the iterative process can be allowed to run until no further progress is re-
alised and convergence has achieved a level of stationarity (in our case, in around 2000
iterations). The numerical reconstructions after 2000 iterations presented in Figs. 6 and 7
show that regularization with λ1 retrieves very accurately the desired shape (4.5b) whilst
regularization with λ2 has less of an effect. From Fig. 7 one would probably choose a
regularization parameter λ2 between 10−2 and 10−1, but from Fig. 6 one can see that a
wide range of values of λ1 between 10−10 and 10−4 all produce stable and very accurate
results.
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iter=10 iter=100

iter=1000 iter=2000

Figure 5: Example 2: Results for α=0, β=1, noise p=10% and no regularization.

λ
1
=0 λ

1
=10−12 λ

1
=10−10

λ
1
=10−9 λ

1
=10−7 λ

1
=10−4

Figure 6: Example 2: Results for α=0, β=1, noise p=10%, λ2 =0 and regularization with λ1.

4.3 Example 3

We investigate an example considered in [38] given by κ=1 and

u(x,y)=cos

(

x+y√
2

)

(4.6)

in the unit circle with ∂Ω1 and ∂Ω2 given by (4.2) and (4.3), respectively. We consider the
Neumann case α= 0, β= 1. We took M= 12, N = 12, L= 14 with initial guess (a0,r0)=
(0,0.55) and examined the effect of regularization with noise p=5%. Similar results have
been obtained for p=10% and are therefore not presented. The effects of regularization
with λ1 or λ2, after 2000 iterations, are presented in Figs. 8 and 9, respectively. From
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λ
2
=0 λ

2
=10−6 λ

2
=10−2

λ
2
=10−1 λ

2
=100 λ

2
=101

Figure 7: Example 2: Results for α=0, β=1, noise p=10%, λ1 =0 and regularization with λ2.

λ
1
=0 λ

1
=10−6 λ

1
=10−5

λ
1
=10−4 λ

1
=10−3 λ

1
=10−2

Figure 8: Example 3: Results for noise p=5%, λ2=0 and regularization with λ1.

these figures, it can be seen that regularization with λ1 between 10−5 and 10−3, or with
λ2 between 10−3 and 101 produces stable and accurate reconstructions of the semicircular
shape (4.3). In order to give a justification for the choice of the regularization parameters,
the L-curves, see [18], are plotted in Fig. 10. From this figure, it can be seen that L-shaped
curves are indeed obtained when plotting, on a log-log scale, the residual (given by the
square root of the first three terms in the right-hand side of (3.7)) versus the solution
norm ‖a‖ or ‖r′‖ given by the square root of the fourth or fifth term, respectively, in the
right-hand side of (3.7). Then, selecting values of λ1 or λ2 near the corners of these L-
curves provide suitable candidates for appropriate regularization parameters, balancing
smoothing versus stability.
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λ
2
=0 λ

2
=10−3 λ

2
=10−2

λ
2
=10−1 λ

2
=100 λ

2
=101

Figure 9: Example 3: Results for noise p=5%, λ1=0 and regularization with λ2.

We finally mention that the results obtained with the PWM in Figs. 8 and 9 are compa-
rable to those in Fig. 10(b) in [38] which were obtained using the MFS, parametrization of
∂Ω2 by a function y= f (x) with regularization using the NAG [42] Fortran routine E04UNF
from the initial guess y=0 for −1< x<1. This is to be expected since the PWM may be
viewed as an asymptotic version of the MFS as the source points move further away from
the simply connected bounded domain Ω, see [2]. The PWM is also faster than the MFS
because, in two-dimensions, the plane waves are calculated faster than Bessel functions.

4.4 Example 4

We next consider a physical example (with g3 = 0) given by the homogeneous Robin
boundary condition (2.6) with the corrosion coefficient

γ(ϑ)=
1

−τsin(ϑ)+ π
4 cos(ϑ)tan

(

π
4 cos(ϑ)

) , (4.7)

where τ=
√

π2

16 −κ2 and we take κ=1/
√

2. We take ∂Ω1 and ∂Ω2 given by (4.2) and (4.3),

respectively, and then one may easily verify that γ(ϑ)>0 for ϑ∈ [π,2π), i.e., γ>0 on ∂Ω2.
The analytical solution is taken as

u(x,y)=
√

2eτycos
(πx

4

)

, (4.8)

from which the Cauchy data (2.2) on ∂Ω1 is constructed. We took M=16, N=16, L=20
and initial guess (a0,r0)=(0,0.55). In Fig. 11 we present some results with no noise and
no regularization for various numbers of iterations. From this figure, it can be seen that
convergence to the exact shape (4.3) is achieved within 1000 iterations. The effects of
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0.01 0.05 0.1

10
0

10
2

λ
1
=10−3

λ
1
=10−4

λ
1
=10−2

||Residual||
2

|| 
a|

| 2

(a)

0.01 0.025 0.05
10

−4

10
−2

10
0

λ
2
=50λ

2
=10

λ
2
=10−1

||Residual||
2

|| 
r′ || 2

(b)

Figure 10: Example 3: L-curves for noise p=5%. (a) Varying λ1 while λ2=0; (a) Varying λ2 while λ1=0.

iter=10 iter=100

iter=1000 iter=2000

Figure 11: Example 4: Results for no noise.

regularization with λ1 keeping λ2 =0, and λ2 keeping λ1 =0, for noise p=7% and 8000
iterations are presented in Figs. 12 and 13, respectively. From these figures, it can be seen
that regularization with λ1 between 10−10 and 10−9 or with λ2 between 10−1 and 100

produces stable and accurate reconstructions of the semicircular shape (4.3).
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Figure 12: Example 4: Results for noise p=7%, λ2 =0 and regularization with λ1.

λ
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=0 λ
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λ
2
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2
=100

Figure 13: Example 4: Results for noise p=7%, λ1 =0 and regularization with λ2.

4.5 Example 5

We finally consider a square of side
√

2 rotated by π/4 with boundaries ∂Ω1 and ∂Ω2

defined by

∂Ω1={x=(x,y)|0≤ x≤1; y=1−x}∪{x=(x,y)|−1≤ x≤0; y=1+x} , (4.9a)

∂Ω2={x=(x,y)|−1≤ x≤0; y=−1−x}∪{x=(x,y)|0≤ x≤1; y=−1+x} . (4.9b)

We considered the Neumann case α=0,β=1 and took the exact solution (4.1) with a=1,
b = i

√
a2+κ2 and κ =

√
2. The initial guess was (a0,r0) = (0,0.65) and M = 21, N = 21,
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Figure 14: Example 5: Results for noise p=10%, λ2 =0 and regularization with λ1.
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Figure 15: Example 5: Results for noise p=10%, λ1 =0 and regularization with λ2.

L=20. The effects of regularization with λ1 or λ2, after 2000 iterations, for p=10% noise
are presented in Figs. 14 and 15, respectively. From these figures, it can be seen that stable
and accurate reconstructions of the right-angle wedge shape (4.9b) are obtained.

5 Conclusions

In this work, the PWM was successfully applied, apparently for the first time, for obtain-
ing stable and accurate solutions of an inverse problem associated with two-dimensional
Helmholtz-type equations, namely the reconstruction of an unknown portion of the
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boundary from a given exact boundary condition on this part of the boundary and addi-
tional noisy Cauchy data on the remaining known portion of the boundary. This inverse
geometric problem is ill-posed and in discrete form yields an ill-conditioned system of
nonlinear equations, which was solved, in a stable manner, by employing the Tikhonov
regularization method [43]. The value of the regularization parameter was chosen ac-
cording to Hansen’s L-curve criterion [18]. Five examples for two-dimensional simply
connected, convex and non-convex domains and having smooth and piecewise smooth
boundaries, were considered. From the numerical experiments, it can be concluded that
the proposed method is stable with respect to noise in the Cauchy data. Furthermore, it
is accurate and computationally very efficient. The application of the PWM for the detec-
tion of internal defects as well as to three-dimensional inverse geometric problems will
be the subject of future research.

References

[1] C. J. S. ALVES AND S. S. VALTCHEV, Numerical simulation of acoustic wave scattering us-
ing a meshfree plane waves method, International Workshop on Meshfree Methods, 2003,
http://www.math.ist.utl.pt/meshfree/silen.pdf.

[2] C. J. S. ALVES AND S. S. VALTCHEV, Numerical comparison of two meshfree methods for acoustic
wave scattering, Eng. Anal. Bound. Elem., 29 (2005), pp. 371–382.

[3] P. R. S. ANTUNES, Numerical calculation of eigensolutions of 3D shapes using the method of fun-
damental solutions, Numer. Methods Partial Differential Equations, 27 (2011), pp. 1525–1550.

[4] F. BERNTSSON, V. A. KOZLOV, L. MPINGANZIMA AND B. O. TURESSON, An alternating
iterative procedure for the Cauchy problem for the Helmholtz equation, Inverse Problems Sci. Eng.,
22 (2014), pp. 45–62.

[5] F. BERNTSSON, V. A. KOZLOV, L. MPINGANZIMA AND B. O. TURESSON, An accelerating
alternating iterative procedure for the Cauchy problem for the Helmholtz equation, Comput. Math.
Appl., 68 (2014), pp. 44–60.

[6] D. E. BESKOS, Boundary element method in dynamic analysis: Part II (1986–1996), ASME Appl.
Mech. Rev., 50 (1997), pp. 149–197.

[7] B. BIN-MOHSIN AND D. LESNIC, Identification of a corroded boundary and its Robin coefficient,
East Asian J. Appl. Math., 2 (2012), pp. 126–149.

[8] D. BORMAN, D. B. INGHAM, B. T. JOHANSSON AND D. LESNIC, The method of fundamental
solutions for detection of cavities in EIT, J. Integral Equations Appl., 21 (2009), pp. 381–404.

[9] A. BORSIC, B. M. GRAHAM, A. ADLER AND W. R. B. LIONHEART, In vivo impedance imaging
with total variation regularization, IEEE Trans. Med. Inaging, 29 (2010), pp. 44–54.
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