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Abstract

In most domain decomposition (DD) methods, a coarse grid solve is employed to
provide the global coupling required to produce an optimal method. The total cost
of a method can depend sensitively on the choice of the coarse grid size H. In this
paper, we give a simple analysis of this phenomenon for a model elliptic problem
and a variant of Smith’s vertex space domain decomposition method [11, 3]. We
derive the opfimal value H,; which asymptotically minimizes the total cost of
method (number of floating point operations in the sequential case and execution
time in the parallel case), for subdomain solvers with different complexities. Using
the value of H,,, we derive the overall complexity of the DD method, which can
be significantly lower than that of the subdomain solver.

1. Introduction

Domain decomposition (DD) is a class of techniques for solving elliptic boundary
value problems in which the solution is obtained by iteratively solving smaller sub-
domain problems. These methods have received a lot of study in recent years (see
6, 1, 2, 7, 10]). They are attractive because of their inherent parallelism and their
optimal convergence rates (i.e. independent of the mesh size). The optimality of the
convergence rate requires the solution of a coarse grid problem at each iteration. The
study of how to incorporate such a coarse grid solve in a DD method has received a lot
of study in the literature.

The focus of our paper, however, is on the choice of the size H of the coarse grid.
It is intuitively obvious that the total cost of a DD method can depend sensitively on
this choice, in addition to the obvious dependence on the efficiency of the subdomain
solver. A small H generally improves the convergence rate (because the coarse grid
problem is a better approximation to the original fine grid problem) at the cost of a
more costly coarse grid solve, whereas a large H has the opposite effect. Therefore,
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an optimal value H,y often exists and indeed has been observed empirically [9, 12].
Surprisingly, there has been almost no systematic study in the literature on this issue.
Qur approach is to take a simple model elliptic problem and a particular DD method;
this allows a simple but complete and easily understood analysis which we think give
insights for more general situations.

For concreteness, we focus our analysis on a variant of Smith’s vertex space method
[11] developed by us earlier {3]. We consider subdomain solvers with different com-
plexity, including banded Gaussian elimination, nested dissection, modified incomplete
Cholesky factorization (MIC) and multigrid solvers. For simpligity, we assume the same
solver is used for the subdomains and the coarse grid problem, and that these are solved
exactly. By expressing the computational complexity as a function of the coarse grid
gsize H and the fine grid size h, we derive the optimal value H,y; which asymptotically
(as h tends to 0) minimizes the total cost of method. Using the value of Hopt, We
can derive the overall complexity of the DD method as a function of k alone, which
can be significantly lower than that of the subdomain solver. That is, through the use
of DD, a given salve; can be made more efficient for solving the original problem, by
using it to solve smaller (bui more) sub-problems. This is a simple consequence of the
divide-and-conquer principle. The assumption of the asymptotic limit is not necessary
but does allow a close form expression for Hyy from which one can see more clearly
the general trend.

2. Fourier vertex space domain decomposition method

We consider the following 2nd order self adjoint elliptic problem on 2 C RZ .
~V - (a(z,y)Vu) = f in Q, yu=0o0n o8, (1)

with a(z,y) € R?*? uniformly positive definite, bounded and piecewise smooth on
(). We assume that the domain ( is partitioned into N non-overlapping sub-domains
Qy,---, 0y of diameter H,which form the elements of a guasi-uniform coarse grid tri-
angulation 7. We also assume that the sub-domains §); are refined to produce a fine
grid quasi-uniform triangulation 7" having elements of diameter A. Corresponding to
the coarse grid and fine grid triangulations, we discretize (1) either by using finite ele-
ments, see [5], or by using finite difference methods, see 113}, resulting in the symmetric
positive definite linear systems Apup = f, on the fine grid and Agug = fug on the
coarse grid.

Let I denote the union of the interiors of the sub-domains, and let B denote the
interface separating the sub-domains, i.e. I = U;Q;, B = (U;84);) — 99. According te
this partitioning, A, and f can be written in block form:

Ah=(AH Am) $=($1) f=(fr)
| Apr ApB B fs |
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After eliminating z;, we obtain the reduced Schur complement problem on B

Szp = (App — Ap1Af A1)z = 9 = fB — ABIAT} fI. (2)

Since computing Sv is much cheaper than calculating and storing S itself, the main
idea is now to solve this system by a preconditioned conjugate gradient method (PCQG).
The Fourier Vertex Space (FVS) method [3] is one such preconditioner.

To describe this, the interface B is further partitioned into a union of edges E;;
and cross points U(zgl,ygl), i.e. B = U;; By U (Uk(zf,yfT)), where E;; denotes the
edge separating sub-domains {2; and ©; . Let V) denote the portion of B within a
distance of BH from (zf ,y{') for some positive fraction 0 < 8 < 1 (the vertex region);
for details see [11, 3]. We define Rg,, and Ry, as the pointwise restrictions of nodal
values to F;; and V} respectively, i.e. REp,.9 =g on E;; and Hy, g = g on Vi. Let Rg
represent linear interpolation from the coarse space V¥ to the fine space V*. We define
Sg,; = Rg, SRp,; and Sy, = R, SRy,.

The Fourier vertex space preconditioner can now be defined by:

ME&’S — RTI;AI_IIRH + 2 RE;_,- (gEij)_lREij + E Rﬁ(ng)mlRVh ' (3)

ij k
Here Sg,, is a standard interface preconditioner on the edge E;;. In [3], a scaled
version of the square root of the 1-D Laplacian operator is used and can be inverted
efficiently by the Fast Fourier Transform (FFT). ng is a dense matrix approximating
Sy, and is inverted by a direct solver. It is proved in [11, 3] that Mpy g is an optimal
preconditioner for S. In theory, the condition that 8 = O(1) implies that the number
of nodes of the vertex region has to increase with decreasing h. However, as shown in
[11, 3], in practice the size of the vertex region can be chosen to be a small constant
(independent of k) without affecting the optimal convergence rate. Therefore, the cost
of the edge and vertex space part of the preconditioner is often negligible compared to
the cost of the coarse grid solve A .

3. Optimal Computational Complexity: Sequential Case

We now make the assumption that the cost of the FVS method is dominated by that
of solving the subdomain problems (in inverting A;; in computing the matrix-vector
product Su in PCG) and the coarse grid problem (in inverting Ay in the precondi-
tioner). This is a reasonable assumption if h is small enough and H is neither too small
or too large, so that the subdomains have a reasonably large “area-to-perimeter” ratio
and the coarse grid is not too small.

Let the complexity of the solver used for both the sub-domain problems and the
coarse problem be O(mF) for the preprocessing phase (e.g. factorization) and O{m?) for
the solution phase on an m x m grid. For example, for banded Gaussian elimination,
MIC and multigrid, p = 4,2,2 and s = 3,2.5,2 respectively. For nested dissection,
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p = 3 and the solution phase has complexity O(m?logm). We assume that the itera-
tion number R is bounded and independent of the fine and coarse grid sizes, which 1s
supported by the theoretical and numerical results in {11, 3]. For example, numerical
experiments in [3] indicate that R is between 9 and 15 for a tolerance of 10~° for a
wide range of values for h and H and for widely different coefficients of the elliptic
problem. It is then easy to see that the leading order terms of the operation count for
the FVS/PCG method are given by:

ops(H) ~ 5 (0 + o5 +R{5(3) + g5h (4)
where C is a generic constant that depends on the particular solver. The first two

terms are the preprocessing cost (e.g. factorization of Ajy and Ag) and the last two
terms are the cost during the PCG iteration. The leading order terms have the form:

flops(H) ;Ijz (f)a I I?a’ | (5)

where a = max{p, s} and the generic constant ' may depend on R but is independent
of H and h. In other, words, the dominant cost consists of solving 1/H? sub-domain

problems and one coarse grid problem.
The optimal coarse grid size Hop is obtained by setting the first derivative of func-
tion in (5) (with respect to H) to zero, giving:
s | o | zak, s
Hopt(a) = (—)" A

Usiﬁg this value of Hope, We obtain for the asymptotic complexity:

for a > 2. (6)

2

— X

' ..- ' 3 S : + ¥ i o i ey
min flope(H) = fops(Hope) ™ C{(25) 5 + (=)= 1" (D)
When o = 2, i.e. an optimal solver such as a multigrid method,
cC C _
flops(H) =~ =+ 7 (8)

which indicates that H should be chosen as large as possible (O(1) in our model prob-
lem). 5T | |

Note that Hoy is independent of the constant C (i.e. the solver). Clearly, Hop
depends non-monotonically on the complexity exponent o. For o = 2.5,3,4, Hopt =
51/35,5/6 g1/4p3/4 91/612/3 respectively. As c — 00, Hope — h'/2. |

"The complexity of the FVS algorithm; using Hop, is given by:

flops(Hope) = O(()™),

where y(a) = 2:12.' For a = 2,2.5,3,4, v = 2,'2.08, 2.25, 2.67 respectively. As a — 00,

~(a) — af2. Thus, using a domain decomposition approach results in a substantial

‘reduction in the asymptotic complexity of the solver. The reduction is greater the
higher the complexity of the solver is. | |

We s'umma;rize these complexity results in Table 1, where we present the results in
terms of an n X n fine grid (n = I/h) and an ny X ny coarse grid (ng = 1/H).
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Table 1: The sequential complexity of solvers on an n x n grid; coarse grid size ny.

Basic Solver Complexity | Optimal ng | Complexity of DD Solver
using optimal ng
Multigrid O(n?) [ - 0o(n?)
MIC O(n?5%) | 0.58n5/8 O(n>L8)
Nested Dissection O(nd) | 0.76n3/4 O(n*2°)
Band-Cholesky O(nt) 0.89n2/3 O(n287)
O(n®),a — o nl/2 | O(n>/?)

4. Optimal Computational Complexity: Parallel Case

In the parallel case, the operation count model has to be replaced by a true tim-
ing model, taking into account both the arithmetic cost and the communication cost.
However, in the spirit of the asymptotic analysis used in the last section, we can make
some simplifying assumptions which allow us to extract useful information from our
model. The Ipusf important assumption we shall make is that the communication cost
is not dominant over the arithmetic cost, which is valid if the number of unknowns in
the interior of a subdomain is not too small compared to those on the boundary (i.e.
a small perimeter-to-area ratio) and is consistent with our assumptmn in Sec. 3 The
full treatment with communication cost can be found in [4]. | '

We shall also assume that there are enough processors so that the subdomain prob-
lems are solved completely in parallel. A crucial issue is how to solve the coarse grid
problem in a parallel environment. According to Gropp [8], one of the best methods
is to collect the necessary data on one processor, solve it there and then broadcast
the result. Finally, we can do the coarse grid solve either (a) sequentially, after the
subdomain solves, or (b) in parallel to the subdomain solves. |

Making these assumptions, it is easy to see that the leading order terms of the
parallel time of the FVS method is:

el H) { C(H/h)* + C(1/H®) case (a)
max{C(H/h)*,C(1/H*)} case (b),

where C is a generic constant modeling the time per arithmetic operation. In both
cases, the optimal value of H can be easily seen to be:

Ho = Vh,

independent of o (i.e. the solver). We note that this optimal choice of Hyy implies
that the size of each subdomain problem is equal to the size of the coarse problem. It
also implies that the optimal number of processors is n (= (1/vk)?).

The parallel time of the FVS method using H,,; is:

time(Hop:) = O(n*/?),
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Table 2: The sequential complexity of solvers on an n X n X n grid; coarse grid size ng.

Basic Solver Complexity | Optimal ny | Complexity of DD Solver
| using optimal ngy
Multigrid O(n3) 1 - O(n®)
MIC O(n>%) 0.61n7/8 O(n3-%)
Nested Dissection O(n®) 0.93n2%/3 | O(n?)
Band-Cholesky O(n") . 0.95n7/11 O(n*49)
1 O(n®),a — nl/2 | O(n*/?)

and the speed-up is:
Speed-up = O(n*)/0(n*/?) = O(n/?).

Note that the speed up is greater than O(n) (the number of processors) if o > 2. This
“superlinear” speed-up is possible because we are not parallelizing a. “fixed” algorithm
— the FVS algoritht with the optimal coarse grid has different sequential complexity
for different n.

5. Higher Dimensional Problems

A similar analysis can also be extended to a d-dimensional problem. For a solver of
complexity O(m®) on an m? grid, the results in the sequential case are:

),

fa—d
The d = 3 case is summarized in Table 2. The results in Sec. 4 for the parallel case
are independent of d, except that the optimal number of processors is nd/2,

a i3, T -
Hopt = (—) R % flops(Hopt) = O(h

6. Concluding Remarks

The results obtained above should also apply to other opts'inﬁl domain decomposition
methods, such as other substructuring methods and overlapping Schwarz methods.
The optimal coarse grid size is obtained as a simple balance between the cost of the
subdomain solves and the cost of the coarse grid solve. Therefore, the conclusions are
valid for any DD method, as long as these costs dominate the overall cost and the
convergence rate is independent’ of H and h. - |
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