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Abstract

The nonparametric kernel estimation of probability density function (PDF) pro-
vides a uniform and accurate estimate of flood frequency-magnitude relationship.
However, the kernel estimate has the disadvantage that the smoothing factor h is
estimate empifically and is not locally adjusted, thus possibly resulting in deteri-
oration of density estimate when PDF 18 not smooth and is heavy-tailed. Such a
problem can be alleviate by estimating the density of a transformed random vari-
able. and then taking the inverse transform. A new and efficient circular transform
is proposed and investigated in this paper.

1. Introduction

Flood magnitude and the corresponding frequency can be estimated from the avail-
able date sample by the parametric method whereby various theoretical distributions
(i.e., Log-Pearson Type IlI) are employed. During the past several years parametric
modeling has been a subject of intensive investigations by many researchers (Singh,
1986). It is now well recognized that the main problems of parametric procedures are
due to the presence of asymmetrical and multimodal densities in the observed flood
data. The data also might be of such a type that there is no suitable parametric family
that gives a good fit (i.e., the separation effect, Beran et al., 1986) and subsequently
will lead to erroneous conclusions. |

Many parametric distributions have been recommended for use in hydrology. How-
ever, tHere is no general consensus among hydrologists as to the “best” theoretical fre-
quency distribution for use in flood frequency analysis (Wallis et al., 1985). In order
to obtain some degree of uniformity when performing flood analysis (Thomas, 1985),
several countries imposed a choice of the procedure (i.e. Log-Peason Type IIl in A,
Generalized Extreme Value in U.K.). In other countries the choice of a distribution
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is suggested to be limited to several methods (i.e. Log-Normal Type III, Log-Pearson
Type II1, Generalized Extreme Value, Wakeby and Weibull Distribution) as is the situ-
ation in Canada (Pilon et al., 1985). It is then up to the designer to make the decision
as to which method is the most appropriate for a given circumstance. Both of the
above administrative recommendations (i.e., imposition of a bass method, or limiting
the choice) illustrate a need for a new method which would be uniform, give accurate
results, and be suitable for asymmetrical and multimodal distributions.

Under such circumstances, a new nonparametric method was investigated by
Adamowski (1985). The nonparametric density estimation does not require assumption
of any functional form of density. In fact, very little is assumed, and the assumptions
made are mild (Rao, 1984). Adamowski (1985) compared the performance of sev-
eral parametric and nonparametric estimators and concluded that the nonparametric
method is accurate, uniform, and particularly suitable for multimodal data.

The nonparametric method requires a selection of a kernel function K (.), and a
smoothing factor h. The choice of a kernel has little effect on the efficiency of the
method. Nevertheless, there exists an optimal kernel of Epanechnikov which is in the
form of a circular function (Rao, 1983, p.66).

However, the choice of a smoothing factor A plays a crucial role because it affects
the bias and variance of the estimator. The optimal choice of a smoothing factor
depends on the unknown a priori density and the derivatives of that density. In practical
situations since density is unknown, therefore h has to be estimated empirically by
various methods (Devroye et al, 1985, p. 191, Adamowski, 1985).

The potential of the nonparametric density estimation is not fully realized in hydrol-
ogy primarily because of the following two difficulties : a) the value of the smoothing
factor A is constant and empirically derived, and b) the nonparametric method places
small probability value in the tails of a distribution (thus the extrapolation for re-
turn periods exceeding the record length might be influenced too much by the highest
observation in the sample).

When the value of A is constant and is not locally adjusted, then the performance of
the kernel estimate might deteriorate especially for a density which is not smooth and
heavy tailed (skewed). Such problems can be alleviate by the following two modifica-
tions, namely a) using the transformation, and b) employing a variable kernel method
(Breiman, et al., 1977). |

The problem of placing low probability values in the tails of a distribution can be
resolved by the introduction of a mixture of parametric and nonparametric methods
(Schuster and Yakowitz, 1985).

The purpose of this paper is to introduce the transformed kernel method for esti-
mation of flood frequency and magnitude relationship.
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2. The Transformed Kernel Estimate

For a given kernel function K{(.), a positive smoothing factor h., and a random
sample of observations z1, z3, ..., Tn, the kernel estimate of probability density function

is given by (Adamowski, 1985)

fal@) = (k) S K , (1)

=1

where h, is obtained from observed data.
Based upon a transformation ¥; = T(X;) the transformed density estimation 1s
(Devroye et al, 1985, page 244)

fa(z) = Gu[T'(2)]T" () (2)

where the transformed data sequence i ¥1,¥2,+++ Yn, and the density of ¥; sequence 18
estimated by

on(®) = (nh) 3 K (L) ®

» =1
where h is obtained from transformed data. Since gn (y) might not be a density on

0,1} because some portions of gn(y) can extend beyond 1 or 0, therefore the following
“normalization” is introduced

an(y) = gﬂ(y)/ /0 lgn(y)dy (4)

where f is the density of z1,...,Zn (the data), g is the density of ¥ = T(x;) given
21, ..., on and transformation T(z).

The transformation T'(z) should be chosen in such a way as to obtain the best rates
of consistency, that is

[Vn=fI= [lon—gl= T =0, as n—oo ©)

and

E( [ 1fa - 1) = E(Ja) - ®

where E(J,) is given by
| E(Ja) ~ A(K) - B(g)n ™" . (7)

where
AE) = ([ K[ SRS ®)
and

Blo) = GG([ v [ 19" Q

The quantity B(g) has a component [ ,/g that measures how heavy the tail of g
is , and a component [ ¢" that measures how oscillatory ¢ is. In view of eq. 9, the
following is assumed: g is absolutely continuous, bounded, and twice differentiable.
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Therefore, these two components that determine the efficiency of the kernel estimate,
i.e., discontinuities or sharp oscillations, and large tails, can be measured by quantity
B(g). The [ /g is small when g has a small tail and vice versa.

With the transformed kernel estimate, the value of h can be derived analytically
for a given kernel and transform, and then the factor B(g) is used as a measure of
efficiency of density estimation.

When g,.(y) is a kernel estimate then the convergence limit is proportional to B(g),
thus the transformation should be chosen so as to minimize B(g). Devroye et al (1985)
has shown that this minimum is attained for the isosceles triangular density on [0, 1].

If the distribution function F of f were known, then this triangular optimal transfor-
mation could be

- \/F(a:j/2 for F(z) < %
thade { 1 - +/(1-F(x))/2 for F(z) > -z- (10)
and
. f(z)//8F(x) for Fz) < %
g . ®) = { f(z)/v/8(1 — F(z) for F(z) > 3 (11)

- The corresponding smoothing factor h is (Devroye et al, 1985,p.106)

8 [vFlyiys
— — : 12
h= (P (12)

However, the density function f is not known, but it can be estimated nonparamet-
rically by

(o) = (k)1 30 K(EE) (13)
1=1 "

The corresponding distribution function is given by
F(z) =1 - p(x) (14)
where p(x) is exceedance probability given by

pa) = [ flade =7~ 23 W(ED) (15)

where W(.) is an integral of a kernel function k(.).

2.1. The triangular transformed density estimate

Devroye et al (1985, p.110) presents several different transforms (i.e., Uniform on
[0,1]), isosceles triangular on [0,1], Normal (0,1), Laplace (exp(—z}/2), exponential
(exp(—z)), Cauchy (w(1 + z2))~!, and students t-distribution) and concluded that the
best transform for the kernel estimate is the isosceles triangular density.
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Comparison of relative efficiencies of various kernels Rao (1983, p.66) suggests that

the Foanedhnikov's kerael 8 oglimal, and & exgressed g

K(y) = { (L= y2)3/4 for [y| <1

0 for ly| > 1
and (see €q.15)
—1/2 for y < -1
Wiy)=1¢ y(1-42/3)3/4 for-1<y<1
1/2 for y > 1.

(16)

It 18 evident then that the combination of a triangular transform and the Epanech-
nikov's kernel should provide an optimal estimation of density function, with the

smoothing factor (see eq.12) given by
h = (5/192xn)1/5

and the quantity B(g) (see eq. 9) gives

F 1
Blo) =[5( [ va)*- [ 191" = 14460,
The denominator in eq. 4 becomes

SUM1 = f; gn(y)dy = %ilw(%) - W ; 2}

=1

Therefore, eq. 2 is written as

~ gn(y)
where y = T'(z), and based on eq. 15, the following range on = applies
Lmin — e £ T € Xmaz + A

The exceedance probability (see eq. 14) is

| Pﬂ(:v)

./;m ful(x)dx
[ aalT@IT (@) do

]T RAGOEAD

SU1M1 fg;) gn [T ()] dT'(z).

Considering eq. 3, eq. 22 becomes

Pale) = —oe SW(—E) - W)

=1

(17)

(18)

(19)

(20)

(21)
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For a given set of observations z;,2 = 1,2,...,n, using eq. 23 and the transform
y; = T'(z;) it is possible to compute the exceedance probability for preselected values
of z. Alternatively, for a given probability, the value of z can be computed (i.e., design
flood with a preselected probability of exceedance).

2.2. The circular transformed density estimate

Devroye et al.(1985) investigated several different transforms and concluded that
the triangular transform is most efficient. However, it will be demonstrated in the
following that a circular transform (identical to the Epanechinkov’s kernel) performs
better than a triangular one.

The circular density transform can be expressed as follows (see also eq. 16)

K(x) = { B-w/a3fd ey 51

0 for |yl > 1. (24)

The quantity B(f) for a circular density transform is given by
»
B(g) = (337 /2%)1/5 = 1.3872 (25)

where [0 /g(z)dx = v/3n/4; [Z_|d'(z)|dz = 0; and [*°_|g"(z)|dz = 3 (see eq . 9).
Comparing eqs. 25 and 18 it can observed that the circular transform is more efficient
than the triangular one due to the smaller value of B(g). This circular transform has
not been investigated and reported elsewhere in the literature.

Based on the circular density transformation, the smoothing factor h is given by

N N

where g(.) is given by eq. 24. It can easily be shown that for a circular density the

transform is
47 + arccos(l — 2F(x))

T(z) = 2 cos| 3 ] (27)
and
56 Esin 4 + arccos(1 — 2F(z)), f(z)
THz) = % [ g ] O —2FG)) (28)

where f(x) and F(z) are given by egs. 13 and 14., respectively.
Introducing the “normalizing” adjustment (see eq. 4) gives

gn(y) = gn(y)/ ]:_ 11 gn(y) dy (29)

where the denominator in eq. 29 is given by

1
suM2 = [ galv)dy
—1

i b
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= Iyw ) pwt iy (30)

=1

where K'(.) and W{(.) are given in eq. 16. Therefore, eq. 2 becomes

gn(z) /
(z) = i 31
or after substituting eq. 3 into eq. 31 results in the following
T'(z) Y— U
== : 2
Jal®) = i sUar ; 8% )

The exceedance probability (see eq. 14) then becomes

Pa(@) = = YW (%) - w( K] G

t=1

For a given set of observations z;,2 = 1,2, ...,n, using eq. 33 it is possible to compute
the exceedance probability for a preselected value of z, or alternatively, for a given
probability the valug of x can be computed.

3. Numerical studies

A computer simulation experiment was run to compare the performance of the non-
parametric transformed method with the parametric method. 50,000 random samples
were generated (Pilon, 1986, personal communication) from a Log Pearson type III
(LP III) distribution. Of course, the true distribution of floods is not known. Thus,
the choice of the LP III distribution for simulation is arbitrary. However, it was made
based on the fact that the LP III distribution is widely used in flood frequency analysis,
it is a base (or imposed) method in some countries (i.e. USA), and has been used in
the past (i.e. Adamowski, 1985) in the evaluation of flood frequency methodology.

The data was generated from an LP III using the Wilson-Hilferty transformation
(Adamowski, 1985)
1
9
where A, B and C are scale, shape and location parameters, and ¢ is the standard normal
deviation. The values of parameters used in generation are: A = —0.06, B = 25 and
C = 7, and are average representative conditions for Canada. The generated sample
had the length equal to 50,000, and the statistics for generated data are: mean =
255, standard deviation = 73, and coef fictent of skew = 0.443.

It is obvious that the simulation study is rather limited, and the conclusions are

therefore tentative. Nevertheless, an indication of the performance of various methods
can be obtained.

LnX, = C + A{t/(3BY/%) — (1 B2/3) + B1/3)3 (34)
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The errors between estimates obtained from different methods and the population
values were computed using the root mean square error (RMSE) given by

RMSE = \/(BIAS)? + Variance. (35)

The simulation results (Table 1) suggest that the differences in the results obtained by
the different methods are not remarkable. Comparison of the nonparametric methods
indicates that the circular transformed method (CIT) is more accurate than the tri-
angular transformed method {TRT). However, the nonparametric kernel (KE) is more
accurate than both the CIT and TRT methods for low return periods of 50 and 100
years, but is less accurate for a 200 year return period.
| Certainly, due to the limited number of experiments, the results are not expected
to reproduce a wide range of conditions, nevertheless, they do provide an indication
of the likely results. It would appear that the transformed kernel estimate gives more
accurate results for a higher return period, but it is less accurate for lower return
periods. Therefore, there seems to be a compromise between the accuracy and the
transformation. The results then indicate that for skewed distribution and long return
-periods it might jbe advantageous to use the circular transformed method for higher
quantity estimate.

TABLE 1. Comparison of Flood Estimates by LP III Distribution
and the Nonparametric Methods

Flood Estimates by LP III and Nonparametric Methods
Event | Popul. Mean (Bias % )|RMSE]

LP III TRT CIT KE

Qso | 424 | 420(-0.9)[32] | 437(3.1)[42] | 443(4.5)[45] | 429(1.2)[36.5]
Qoo | 450 | 446(-0.9)[41.7] | 454(0.9)[43.4] | 458(1.8)[44.3] | 47(-0.7)[41.8]
Q0 | 475 474(0.1)[44.9] | 475(0.0)[42.1] | 461(-2.7)[47.0]

Note: Sample size equals 50, and replication equals 1000. Qgo, @100 are the 50 and 100 year
return period events; Popul. means Population, and Population = Flood estimates based on
50,000 simulated data from the LP III distribution; LP III = log Pesrson type III {maximum
likelihood) distribution; TRT = Triangular transformed; CIT = circular transform; and KE =

kernel nonparametric density estimation methods.

4. Conclusion

The triangular and circular transformed nonparametric methods of density estima-
tion for flood frequency analysis have been compared with kernel estimates and LP
IIT distribution used in data generation. It has been demonstrated that the proposed
circular transform is more efficient than the triangular transform.
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The simulation study however reveals that the transformed kernel density estimates
are less accurate than the untransformed kernel for low return periods, but is more
accurate for higher return periods. It is suggested then that for skewed distributions
and high return periods the circular transform nonparametric kernel method might be

a better procedure for estimating flood frequency quantities.
Acknowledgement. = We would like to thank Mr. Y. Alila (graduate student at

the University of Ottawa) for performing the computer simulation.
This research was supported by the Natural Science and Engineering Research

Council of Canada.

References

[1] K. Adamowski, Nonparametric kernel estimation of flood frequencies, Water Res. Research,
21 : 11 (1985), 1585-1590.

[2] M. Beran, J.ReM. Hoskings and A. Arnell, Comment on two-component extreme value
distribution for flood frequency analysis, Water Res. Research, 22 : 2 (1986), 263-266.

[3] L. Breiman, W. Meisel and E. Purcell, Variable kernel estimates of multivariate densities,
Technometrics, 19 : 2 (1977), 135-144.

[4] L. Devroye and L. Gyorfi, Nonparametric density estimation, J. Wiley and Sons Lid., 1985

[5] P.J. Pilon, R. Condie and K.D. Harvey, Consolidated frequency analysis package, Water
Resources Branch, inland Waters directorate, Environment Canada, July 1985.

[6] B.L.S.P. Rao, Nonparametric functional estimation, academic Press, 1983.

[7] E. Schuster and S. Yakowitz, Parametric/nonparametric mixture density estimation with
application to flood-frequency analysis, Water Res. Bull., 21 : 5 (1985), 797-804.

[8] V.P. Singh, International symposium on flood frequency and risk analysis, Louisiana state
university, Baton Rouge, USA, (1986), 14-17.

[9] Jr. W.O. Thomas, A uniform technique for flood frequency analysis, A.S.C.E., Journal of
Water Res. Planning and Manag., 3 : 3 (1985), 321-337.

[10] J.R. Wallis and E.F. Wood, Relative accuracy of Log Pearson III procedures, A.5.C.E.,

Journal of Hydr. Engineering, 3 : 7 (1985), 1043-1056.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg

