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Abstract

In this paper, we develop a new technique called multiplicative extrapolation
method which is used to construct higher order schemes for ordinary differential
equations. We call it a new method because we only see additive extrapolation
method before. This new method has a great advantage over additive extrapola-
tion method becawse it keeps group property. If this method is used to construct
higher order schemes from lower symplectic schemes, the higher order ones are also
symplectic. First we introduce the concept of adjoint methods and some of their
properties. We show that there is a self-adjoint scheme corresponding to every
method. With this self-adjoint scheme of lower order, we can construct higher
order schemes by multiplicative extrapolation method, which can be used to con-
struct even much higher order schemes. Obviously this constructing process can
be continued to get methods of arbitrary even order.

Introduction

When we construct a higher order scheme for systems of ordinary differential equa-
tions:

y = f(y) (1)

(where y = y(z), and z is a variable), we often use the “Taylor series expanding”
method, but sometimes this method is very tedious when it is applied to get higher
order schemes. There is another method: Lie series, it is the method we use in this
paper. J.Dragt, F.Neri, and Stanly Steinberg have done a lot of work in developing this
method. For details, one can refer to [4,6,8]. We just apply this method to our problem,
and do not need to compute out the exact terms of the “Lie series” of a scheme: we
" just use the form of them. Thus the deduction becomes simple when this Lie series
method is applied to multiplicative extrapolating method as we will show later.
In section 1, we will give the definition of adjoint methods, self-adjoint methods and
some properties of them. Section 2 is about the multiplicative extrapolation method.

* Received March 18, 1991.
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This paper is a summary of a pre-print one, all the proofs and other details omitted
here are given in that paper.

Notice: all the functions considered in this paper are supposed to be analytic.

1. Adjoint Method And Self-adjoint Method

We know every one-step difference scheme can be written as follows:

Yn+1 = 8(T)Yn (2)

where s(r) is the operator corresponding to the difference scheme, and r is the step
length.

Definition 1.1. An operator 8*(7) is called the adjoint operator of (1), if

s*(—7)s(r) =1 (3.1)
s(r)s™(—1) =1 (3.2)
are satisfied.
We rewrite (2) in the form:
' bt = Yo + T8(2, Yo, 7) @

here

{yn+1 = yr(mn o T)
Yn = Yr(Tn)
and ®(x,y,, ) is the increment function corresponding to the scheme (2).
Definition 1.2, A scheme y, ;1 =y, + TR, yn, T) is the adjoint of (4) if

B=A-78(z+1, A, —7) (6.1)
A= B +1%*(z,B,7) (6.2)

()

are satisfied.

Theorem 1.3. The definitions 1.1 and 1.2 are equivalent.
Definition 1.4. We call an operator 8(7) is self-adjoint, if s*(1) = (7).

Theorem 1.5. For any operator 8(7), s*(1)s(7) (or s(1)s*(7)) is a self-adjoint
operator.,

Theorem 1.8. The symmetric composition 81(7)s2(7)s1(7) of self-adjoint opera-
tors 81(7), 82(7) is a self-adjoint operator.

2. Multiplicative Extrapolation Method for Constructilig of Higher
Order Integrators

g 4 . daT
[dyl * dya? ' dy, where

Denote f — [f11f211”':fﬂ]T:g o [glsgﬂa"':gﬂ]T:D =
fl: f21"':fn and 91,92, " ,9n are scalar functions. Let

n B |
Lf:fTD"—"Zfi"é,; (7)

=1
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be a first order differential operator. The action of Ly on a scalar function ¢ yields:

Lip=()_F ai)fp = f ' De(y).

=1
Definition 2.1. The commutator of two first order differential operators Ly and
L, is given by

Lg, Lg) = LyLy — LoLy. ®)

The commutator of the two operators is still a first order differential operator.
We can prove that for this kind of commutator the total of the first order differential

operators form a Lie algebra.
Definition 2.2. A Lie series is an exponential of a first order linear differential

operaior,
o0 tﬂ-Lﬂ
: (9)

Eth i Z = :

n=0

The action of a Lie series on a scalar function ¢(y) is given by:

FEes tkLiE o0 tk
eﬂ‘f‘,o(y) = E T‘P(ﬂ) = Z J—c-'-(fT(y)D)ktp(y) (10)
k:ﬂ i k=D ) 10

t2
= o) + tFT W)(De) + 5 F WD @) Do) + -+
We give several properties of Lie series. All of them can be proved as in [4]. Let:

£ =[fiw), fo(®), -+ Fa@)]T 9 = [91(1), 92()s -~ gu WY

T T T T
R A

(1) Composition:
et g(y) = g(e"1y) _ (11)

(2)Product preservation:
' e’ (pq) = (e!21p)("1q) (12)

where p(y),q(y) are scalar functions.
(3)Non-commuting exponential identities: Since the total of first order differ-

ential operators we defined form a Lie algebra, we have the Baker-Campbell-Hausdroff

formula:
etlsetls — etLs +Lg)+t2wattiws (13)

where
1
wz2= 5 [L g, Lo]

1 1
w3 = E[[L;‘: LglaLf] T ‘i‘z‘[[Lfa Lg]: Lg]

1
Wy = ﬂ[Lf[Ly[Ly:Lf]]]: ------ ‘
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(4)Differential equation property: If y(t) = etf Dy o = y(0),then y'(t) = f(y(t)).

From property (4), we know the solution of (1) can be represented in the form
y(t) = e**£y(0), we hope that the operator of a scheme can also be represented in this
form. In [6], Dragt and Finn showed us the relation between z one parameter family
of symplectic transformations and a Hamiltonian system. From their work we get:

Lemma 2.3. The action of any operator s(7) on an initial value y(0) can be
represented formally in the form of the solution of some ODE problem.

This is just the general case of the conclusion of Dragt and Finn when we deal with
non-Hamiltonian systems and use non- symplectic schemes.

Since s(7) may not form a one parameter group, the corresponding ODE problem
may be time-dependent, but we still can get the formal exponential representation of
s(7) as follows!!:

s(r) =exp(tA+1°B+7°C + 1D + °E + - - )

and the sequence
» TA+7T°B+71°C+ D+ °E+ ...

may not be convergent, where A, B,C,D,E,--- are first order differential operators.
However, we still can get:

Lemma 2.4. Every operator s(r) has an exponential representation.

Now using Lemma 2.4, we can get an important result(2.

Theorem 2.5. Every self-adjoint operator has an even order of accuracy.

Corollary 2.6. Let s(7) be a self-adjoint operator of order 2n, then the operator
s(c17)s(ca7)s(e17), with ¢y, ¢y satisfying:

| 1
1 ~25
28%11-1-1 cgﬂ--l-l =0, 20 4+cp=1 (when n=1,¢ = » 2= 9 2l)
: e A

is of order 2n + 2.

We say the operator s(c17)s(ce7)s(c17) is constructed from the operators 8(e;T)(i =
1,2, 3) by multiplicative extrapolation method because the sum of the three composition
coeflicients ¢y, ¢z, ¢3 is 1, and the coefficient ¢, is negative.

Yoshidal?! get the same result for symplectic explicit operators used to solve sepa-
rable Hamiltonian systems. The result we get here is based on Yoshida’s work an? can
be applied to non-Hamiltonian systems and non-symplectic integrators.

An example: The trapezoid method is self-adjoint and of order 2, then

¥ = go + ————1(f(v0) + f(u1))

2(2 — 23)
v =+ oo e n) + S (w2) (14)

1
ys = ya + = 2_;_)7(1’(312) + f(y3))
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is & scheme of order 4.
At last we point out that the Gauss-Legendre methods are seli-adjoint, and they

are also multi-stage, one-step methods, so the multiplicative extrapolation in this paper
can also be applied to them as to trapezoid method in the above example.
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