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REGULARITY OF BIRKHOFF INTERPOLATION*Y

Shi Ying-guang
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Abstract

A comparison theorem concerning the regularity of Birkhoff interpolation is
given. As an application of this theorem the regularity of (0,1, ---,p — 1,p +
1,---,M — 1, q) interpolation (0 < p < M < q) is characterized.

‘1. Introduction

The following definitions and notations are taken from [1, pp. 2-3]. ‘
Let G = {g0,91,**,gn} be a system of linearly independent, m times continuously
differentiable functions on [—1,1]. A matrix

E=leg; $=1,2- ;0 k=0,1,-,m], n21 m>0 (1.1)

is called an interpolation matrix if its elements e;; are 0 or 1 and if the number of 1’s
in E is equal to N+ 1, |E| = Y e;x = N + 1. Let X denote a set of knots

12z1>22> >z 2 1. (1.2)

A Birkhoff interpolation problem E, X (with respect to G) is, given a set of data c;;
(defined for e;; = 1) to determine a polynomial P = Z;-\LO ajg; (if any) such that

P(k)(:l?,) = c,k, e =1 eix € E. (1.3)

The pair F, X is called regular if the system of equations (1.3) has a unique solution for
each given set of c;;; otherwise the pair F, X is singular. The matrix E is called order
regular if the pair F, X is regular for any ordered set of knots X. Since the system
(1.3) consists of N + 1 linear equations with N + 1 unknowns a;, a pair E, X is regular
if and only if the determinant of the system

D(E,X) := D(E, X; g0, -+, gn) = det [g{ (), -+, %) (2:); e =1, e € E] (1.4)

is nonzero; or équiva,lently, a pair E, X is singular if and only if some nontrivial poly-
nomial P €span G is annihilated by E, X, i.e., P satisfies the homogeneous equations
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P®)(z;) = 0 for e, = 1. We order the pair E, X in (1.4) lexicographically [1, p.3]. By
A(E, X) we denote the (N +1) x (N + 1) matrix that appears in (1.4).

A function Py = Zé\;o a;jg; with e;x =1 and e;, € F is said to be a fundamental
function for the pair E, X if

'P'L(kl:-‘)(zl’) - 5ill6ky., eyp, = 1, CV“ (= E, (1.5)

Clearly the determinant (1.4) is often very complicated; it is difficult to claim
whether or not D(E,X) vanishes. Thus simplification of D(E,X) is of important
interest. ’

One of the objects of this paper is to establish a comparison theorem, which makes it

possible to decrease the order of D(E, X ) and to simplify D(E, X) (Section 2). Then, in

Section 3, we apply this theorem to (0,1,+--,p—1,p+1,--+, M -1, q) interpolation (0 <
p< M < qg< N-n+1). (Here we agree that such a interpolation is (0,1,---, M —2,9)
interpolation when p = M — 1.) That is the problem E, X, where E is the n X (N+1)
matrix with
{ 1, i=1,2,:--,n, k=0,1,---,p-1,p+ 1,---,M —1,q,
ik = : (1.6)
0, otherwise .

In what follows we restrict ourselves to the case when span G = Py, the set of
algebraic polynomials of degree at most N. In this case we can assume that m < N,
and by adding zero columns if necessary, we can make m = N. Such a matrix we shall
call normal.

In the following we have to apply a theorem several times proved by Atkinson and
Sharma [1, Theorem 1.5, p. 10]. For the sake of convenience we shall state it here. To
this end we need some further definitions from [1, pp. 7-9].

For normal matrices the condition

s

n
Y Y ex>s+1, s=01,---,N (1.7)
k=01i=1
is called the Pélya condition. A sequence of 1’s of the ith row of E is supported if
that (i,k) is the position of the first 1 of the sequence implies that there exist two 1’s:
€iy k1 = Cigjky = 1 with 41 < @ < i, k1 <k, and kz < k. Then we have :
Theorem A. A normal interpolation matriz is order regqular for algebraic inter-
polation if it satisfies the Pélya condition and contains no odd supported sequences.

2. A Comparison Theorem

Let E, Ey, and E3 be n x (N + 1) matrices, not necessarily normal, the elements
in which take 1 or 0. We write E = E; + E» if it stands for the ordinary addition of
matrices. The main result in this section is the following theorem, a special case of
which can be found in [1, Theorem 8.1, p. 101].
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Theorem 1. Let n x (N + 1) normal interpolation matrices E and E' have the
forms
E = E; + Es, E’=E1+E£, |E2|"—=|Eé|=8, 1<s<N. (21)

Assume that the pair E', X is regular. Then the following statements are equivalent:

(a) The pair E, X is regular;

(b) There exist s fundamental functions T € Py, eix = 1, ex € Ea, for the pair
E X;

(¢) There exist s linearly independent functions h; € Py, i = 0,1,---.,8 — 1,
annihilated by F1,X, such that

D(E3, X;ho, -+ ha—y) := det [h$ (), -+, A (2:); e =1, eix € Es]  (2.2)

1 'Yg—

8 monzero.

Proof.

(a)==(b) Trivial.

(b)==(c) We order the s functions 7z, e;x = 1, ejx € Es lexicographically and
name them hg, -+, hs—1. If we order the pair in (2.2) in the same order then by (1.5)
the matrix that appears in (2.2) is the unit matrix which implies that the determinant
(2.2) is nonzero.

(c)==>(a) Let fix € Pn, eix = 1, ey € E' be the fundamental functions for the
pair E', X. Then f;;’s must exist uniquely, since the pair E’, X is regular. Meanwhile
fir’s span the set Py. We rewrite the functions fi, e = 1, ei,;, € Fj as go,+ -+, gs—1 in
their lexicographic order and fix, eix = 1, e € Ey as gs, -+, gn in their lexicographic
order, too. Thus the pair E, X is regular if and only if the determinant D(E, X) is
nonzero.

We rearrange the corresponding matrix A(F, X) to have as the first s rows those
corresponding to e;;, = 1 from Ej in their lexicographic order, then rows corresponding
to ejx = 1 from E; in their lexicographic order also. This transforms A(E, X) into

A(E2’ X;QOa A ags—l) *
: (2.3)
0 A(E1, X306, ,9N) ||
Hence
D(E’X) - D(E2’X;90a St »gs—l)D(El,X;gh' Nt agN)° (2'4)

According to (1.5) we have that A(E1,X;gs,"--,gn) is the unit matrix and hence
D(Ey, X;9s,-+,9n) = 1. Then

D(E’X)=D(E21X;90""7gs—l)- (2.5)
It remains to show, with a nonzero constant C

D(E2) X;ho,--- )hs—l) b CD(E2, X;go, il 7gl—1)' (2'6)
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In fact, since hg,---,hs—1 are annihilated by the pair E;,X, by the definitions of

go,*** 3y 9s—1 and gsy***ygN We obtain
s—1
hu__‘zcngj, v=0,1,---,5 -1, (2.7)
=0

which implies

s—1
k
h{¥) (z;) = Ecvj9§ Nz:), v=0,1,---,s—1, ex=1, e € Ey.
=0

Thus _
A(E, X3 ho, -+ he1) = [cuj; v,5=0,1,-++,8 = 1] x A(E2, X390, ", 9s-1)-
This yields
D(E3, X;ho, -+ hs—1) = det[cyj; v,5=0,1,--+,8—1] x D(E2,X;g0,""*,9gs—1)-

Since ho, -, hs—1 are linearly independent, det[c,j; v,j =0,1,--+,s — 1] # 0, which
proves (2.6).

This completes the proof.

Remark. With this theorem Theorem 8.1 in [1, p. 101], which characterizes the
regularity of an almost-Hermitian matrix, follows easily. In fact, the polynomials F’s
in the proof of that theorem are just the functions h;’s here. Then the determinant
(8.22) in [1, p. 101] can be immediately obtained from (2.2). We omit the details.

3. (0,1,---,p—1,p+1,---,M —1,q) Interpolation
Let E be defined by (1.6). We set
é = {0;1,:-,p-1,p+1,--- .M — 1,q}, . ¥ ={1,2;---,n}. (3.1)
Then by definition a fundamental function 7 € Py, 1 € ¥, k € @, is defined by
r(2,) = by, vET, peD. (3.2)

In order to apply Theorem 1 it is suitable to take E' as an interpolation matrix
corresponding to (0,1,--+, M — 1) interpolation. Let A;; € Py be defined by

AS;:)(:B,,) = 61111610;“ ,v=12,.--,m, k,p=0,1,:-- yM —1. (33)

Then each P € Py can be uniquely written as

n M-1

P)=Y Y P®(z;)Au(z). (3.4)

=1 k=0
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If we write

~w-=——‘€"—(£)—— wp(2)=(—z1)(z—22) - (T—2
W@) = s @) =@ m)e—a) @ —m),  (69)

we have the formulas [2]

Air(z) = [aiko(@ — 2)* + -+ + a3 m—ik-1(z — z:) M iM (2),
i=1,2-.-,n k=0,1,---,M =1, (3.6)
where
N - ]
a,-k,-=ﬁj—!z,.M(a:)]§g=>m‘,, i=1,2,---,m, k=0,1,---,M -1,
j=0,1,---,M—k—1. (3.7)

Then we have

Theorem 2. Let E correspond to the matriz of (0,1,--:,p—1,p+1,---,M —1,q)
interpolation with0 < p< M < q< N -n+1. Ifg= M and M — p is even then the
pair E, X is reqular; if ¢ > M or M — p is odd then the pair E, X is regular if and only
if the matriz

A, = [AS;)(x])) 4,Jj=1,2,--- an] (38)

s nonsingular.

Proof. 1t is easy to see that E satisfies the Pélya condition. If g = M and M —p
is even then the matrix E has no odd supported sequences. Applying Theorem A we
conclude that the pair E, X is always regular. If g > M or M — p is odd then taking E’
as the matrix of (0,1,---, M — 1) interpolation and applying Theorem 1 we conclude
that the pair E, X is regular if and only if the matrix A, is nonsingular.

This completes the proof.

As immediate consequences of this theorem we state some corollaries.

Corollary 1. Let E correspond to the matrix of (0,1,---,p—1,p+1,---,M —
1, M) interpolation with 0 < p < M. If M — p is even then the matrix A, is always
nonsingular. : 5

Proof. Apply Theorem A and Theorem 1.

Corollary 2. Let E correspond to the matrix of (0,1,--+,p—1,p+1,-+-,M -1, q)
interpolation with 0 < p < M < ¢ < N —n + 1. If both ¢ — p and n are odd and if X
satisfies

i = —Tp—it+l, 1= 1’ 2’ ke ki (3.9)

then the pair E, X is singular.
Proof. By the definition of A;j, it follows from (3.9) that

A.‘lp(z) = (_l)pAn—g-*-l,p(—'z), Z' = 1, 2, REE ,n.
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Hence
ASZ)(wJ) = (_l)q—pA(q—)-z+1 p(_x.‘l) =-A q—)—z+1 p(mn—j‘l'l)a ,J=12,--+,n

Then
det A, = det [AD(z;); 4,j=1,2,--,7]

= (-1)" det[AD,; (@n_ju1); 5 =1,2,--+,n]
= (—1)"det A, = —det A,,.
This means that detA,, = 0 and the pair F, X is singular.
Theorem 3. Let E correspond to the matriz of (0,1,---,p—1,p+1,---,M —1,q)
interpolation with 0 < p < M < q < N —n+ 1. If a fundamental function ri, © €
U, k € ®, exists then

(@) = Au(o) + 3°rD(25) Asp(a) (3.10)
=1

(The functions Aiq are assumed to be 0), and if the pair E, X is regular then
rie(z) = Ap(z) — ZAzk (23)rigle), €%, ke, (3.11)
j=1

Proof. (3.10) follows from (3.2)-(3.4) and (3.11) follows from (3.2) and (3.4).

This completes the proof.

In general detA., is still complicated. But for the case ‘when q =Mandp=M-1
it is of a simpler form.

Theorem 4. Let E correspond to the matriz of (0,1,- -, M —2, M) interpolation.
Then

Mily(z1)  l(z1) - (=)
l' (.’1}2) Ml’ (11:2) LA l’ (.’Dz)
detAp = M™| g ¢ (3.12)
1(zn) b(zn) -+ Ml (za)
and
M 1 1
2.7#1 T1—T; T1—T9 X T1—Tn
T 1S ypiwe e SEGER 1
det A, = M" . i#2 23 -a; T2—Tn (3.13)
M
zn}'zl wnlwz iy Ei#" Tp—T;

Proof. In this case using (3.6) and (3.7) the functions A; 1 have the simpler

forms
1

(M—_l)“,(m — )M M), i=1,2,--,nm

Aim-1(z) =
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This yields

AD (@) = MM (@), = MPU(2:) (3.14)
and for j # 1
T; — T M-1 5
0 s(ay) = S M), = M(a; - )M ). (319
Thus
Ml (1) (21 — z)M M (21)M oo (21— @a)M L (@)M
R [CE e TR Miy(z,) (g — )M (2g)M |
et A, =
(wn 3 xl)M_llll(“’n)M (wn Sy “’2)M_1lé(mn)M 2i Ml;(z»n)
(3.16)

It is easy to check that

and for j # ¢

li(x;) = “olel)

(x5 — zi)wy(2:)
By means of these formulas the jth row of the determinant (3.16) times w!,(z;)~* and
the jth column times w/,(z;)* yields (3.12) if k = M — 1 and (3.13) if k = M.

This completes the proof.

It is natural to ask the existence of which subsets of the set {rjx : e =1, ejx €
E} implies the regularity of the pair F, X. ‘According to Theorem 1 it is enough to
transform E into E’ by shifting 1’s in some positions into new positions so that the pair
E', X is regular. Then we can conclude that the existence of the fundamental functions
in the original positions implies the regularity of the pair E, X. The following theorems
give answers to this question for (0,1,---,p—1,p+ 1,.- -+, M —1, q) interpolation. Since
by Theorem 2 the pair E, X is always regular if ¢ = M and M — p is even, we assume
that ¢ > M or M —p is odd. We treat the case when ¢ = M and the case when ¢ > M,
separately. First for the case when ¢ = M we have

Theorem 5. Let E correspond to the matriz of (0,1,---,p—1,p+1,--+,M)
interpolation with 0 < p < M. Assume that M — p is odd. Then the pair E, X is
reqular if one of the following conditionsiis valid:

(a) For some index k = M —2v > p with a nonnegative integer v there exist at least
8= [%1] functions from the set {ry: 1=1,2,-+-,n};

(b) For some index k = M — 2v < p with a positive integer v or k = 0 with p > 1
all the functions ry, ©=1,2,---,n, exist;

(c) For k=0 and p =1 there exist at least n — s functions ryp, i=1,2,---,1 and
i=t+s+1,--+,n, where 0 <t <n-—s.
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Proof. Let the statement (a) be true and let such functions be ri, @ = 41, -+, %s.
We replace E by a new matrix E', obtained from E by removing the 1’s in positions
(i1, k), -, (is, k) into the new positions (i,p), i € ¥ \ {i1,-+-,is} if n is even and
(i,p), i € ¥\ {ig,---,is} if n is odd. This transforms E into E' so that E’ has no
odd supported sequences. Thus the pair E', X is regular. Hence by Theorem 1 the
statement (a) implies the regularity of the pair £, X.

For the statement (b) we distinguish two cases when k > 0 and when k = 0 with
p>1.

It is particularly simple to treat the case when k > 0. Let E’ correspond to the
matrix of (0,1,--+,k—1,k+1, -, M) interpolation. Obviously the pair E', X is regular,
because M — k = 2v is even. It remains to apply Theorem 1.

In case k = 0 with p > 1 we shift the 1’s in positions (1,0),---,(n — 1,0) in E
into the new positions (1,p),:--,(n — 1,p). The obtained matrix E' still satisfies the
conditions of Theorem A and the pair E', X is regular. Thus by Theorem 1 we obtain
even that the existence of 75, = 1,2, -,n— 1, implies the regularity of the pair E, X.

For the statement (c) we obtain E' by moving the 1’s in positions (4,0), i =
1,2,--,tand i = t+s+1,---,nin E into the new positions (,1), ¢ =t+1,:--,t+n—s.
This matrix E' is still order regular. Then applying Theorem 1 gives the required
conclusion.

This completes the proof.

Theorem 6. Let E correspond to the matriz of (0,1,---,p—1,p+1,---,M —1,q)
interpolation with0 < p < M < ¢ < N —n+1. Then the pair E, X is regular if all the
functions riq, i=1,2,---,n, exist or all the others exist. :

Proof. Let E' correspond to the matrix of (0,1,---, M — 1) interpolation. Then
we apply Theorem 1 to obtain the first conclusion.

In order to prove the second conclusion by (3.4) we write z°, s = ¢,¢+1,---,q+n—1,

n M-1

)' : kAzk(ac).
=1 k=0

Differentiating g times and putting z = z; for j = 1,2,---,n yields

Ml(s

T ), 23" A (z;). (3.17)

On the other hand, from (3.10) we obtain for k # p and k # ¢

M:

Il
-

k=

o

%

(tI) D (z;) = A(Q)(.’L‘J) + Z r(P)(xu)A(Q) i)

v=1

or

(q)(a"J) = ZT(”)(:I;,,)AS,?(Q:,), 5,3 =12,---,n
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Substituting these values into (3.17) we get for j =1,2,---,n

Z p)| z_pA(q)( J) Z Z g: k)’ :—kZT(P)(mV)A(q) )

i=1 0<k<M—1
k#p

e g—p)" 630 5 §Z k;, 2574 rR (i) | AD (25).

v=1 0<k<M-1

k#p
This shows that the vector [z]77,- .-, 2279] belongs to the linear span of the set
{42 @), -, AP @a)] : i=1,2,-,n}. (3.18)

Remembering that s—¢ = 0,1,---,n—1 and the n vectors [z¥,---,z*], k =0,1,---,n—
1, are linearly independent we conclude that the vectors in the set (3.18) are also linearly
independent. Therefore the matrix A, must be nonsingular. Namely the pair E, X is
 regular.

- This completes the proof.
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