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Abstract .

In this paper we discuss the convergence of the modified Broyden algorithms.
We prove that the algorithms are globally convergent for the continuous differen-
tiable function and the rate of convergence of the algorithms is one-step superlinear
and n-step second-order for the uniformly convex objective function. From the dis-
cussion of this paper, we may get some convergence properties of the Broyden
algorithms.

1. Introduction

We know that the variable metric algorithms, such as the Broyden algorithms, are
very useful and efficient methods for solving the nonlinear programming problem

min{f(z);z € R"}. : (1.1)

With exact linear search, Powell(1971) proves that the rate of convergence of these
algorithms is one-step superlinear for the uniformly convex objective function, and if
the points given by these algorithms are convergent, Pu and Yu(1990) prove that they
are globally convergent for the continuous differentiable function. Without exact linear
search several results have been obtained. Powell(1976) demonstrates that the conver-
gence rate of the BFGS algorithms without exact linear search is one-step superlinear.
Byrd, Nocedal and Yuan(1987) prove that the above result is also true for other Broy-
den algorithms except the DFP algorithms. Pu(1990, 1992 and 1993) proves that the
convergence rate of the prime DFP algorithms without exact linear search is one-step
superlinear for the modified Wolfe conditions.

However there are several theoretical problems which have not been solved for the
Broyden algorithms today, and some numerical results show that the points given by the
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Broyden algorithms may not converge to the optimal point for the objective function
without convexity(Fletcher(1987)). Several modified variable metric algorithms are
proposed for solving those problems and increasing the speed of convergence. In this
paper we propose a new class of variable metric algorithms called modified Broyden
algorithms which is generalized the idea in Pu’s (1989a) short paper and prove the
algorithms are convergent for the continuous differentiable objective functions, and
superlinear and n-step second order convergent for the uniformly convex functions
when the linear search is exact.

The modified Broyden algorithms are iterative. Given a starting point 1, an initial
positive definite matrix B; and a constant ¢ € [0,1], it generates a sequence of points
{1} and a sequence of matrices of { By}, satisfying (1.2) and (1.3)

Thp1 = Tk + Sk = Tk — kB gk (1.2)

where o > 0 is the step factor, and gy is the gradient of f(x) at zx. If gr =0, the
algorithm terminates, otherwise let

s ot .
Dk+1Br+1 Rt 19k+19k 41 Bk+1Br+1

Bk+1 = Bk+1 L = (13)
1+ prt19ty1 Rt 1 Bry1 Rit19k+1
where pg41 is a positive real number
|Qk-+1 851 9k+1l
Pk+1 = kil ) (1'4)

T
Gior1Bh+19k+1

where {Qr+1} and {Rk41} are two sequences of positive matrices which are uniformly
bounded. All eigenvalues of these matrices are included in [q,r], 0 < ¢ <, And the
By is given by

Bisist By CYL
bk g Yol (5T Busk)vrvi s (1.5)

By =B
S{Bksk Yie Sk

where yx = gk+1 — k> Vk = yk(yfsk)_l - Bksk(s{Bksk)‘l. In above programming if
By, are taken By, for all k, we get the Broyden algorithms. And if ¢ = 0 we call it
modified BFGS algorithms, or abbreviated by MBFGS and if ¢ = 1 we call it modified
DFP algorithms, or MDFP algorithms for short.

The matrix Hj and Hj, are denoted the inverses of By and Bk, we may obtain the
Quasi-Newton formula Hy419x = sk by the Broyden algorithms. And Pu(1989a) gave

Hiy1 = Hep + Pr+1 Rt 19k+190 41 Rkt1- (1.6)

From the Broyden algorithms we know that if Hj, is positive definitive the Hp, 41 is also
positive definitive. Hy41 may be implied positive. To use the mathematical induction
it is easy to imply the Ekﬂ, Bi+1, Hyy1 and Hyq are positive definitive matrices by
the H; and By being.
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In section 2 the global convergence and several results without the convexity as-
sumption are given; in section 3 some results for the convex objective function are
shown; in section 4 and section 5 it is proved that the algorithms are linear convergent
for ¢ € [0,1) and ¢ = 1 respectively; in section 6 one-step superlinear convergence is
presented; in section 7 the results of the second order convergence, several numerical
examples and a short discussion are stated. '

If the linear search is exact we know, for all k, g,{HHkgk = 0 and y,fHkyk =
9% Higr + 9511 HiGk+1-

In the case that the ambiguities are not given we may omit the index of character,
for example, g, x, R denote gk, Tk, Rk, and gx, Z«, Ry denote gr41, Tk+1, Rik+1 and etc.
respectively. For simplicity let

‘el - : T i T H
_ k1tik+19k+1 Vi = 2k kY. w, = Tkt17kGk+1 (@) = 1+ ¢Wy. (1.7)

Up = —g—r—; W= k
9% Hig 9% Higr' 9t Higre

2. The Global Convergence and Severél Results Without Convexity
Assumption

In this section we assume:

1. f(z) € CY1, ie. there exists L > 0 such that, for all z,y € R", llg(z) — g(W)| <
Lljz - y|-

2. For all z; € R", the lever set S(z1) = {z | f(z) < f(x1)} is bounded.
3. f(0) = minf(z) =0.
The recurrence formula (1.6) of H and the positive property of R and Q imply

(@ +rlgIQHgll > | Hgll > (" = rllgl)IQHgI- (2.1)
On the other hand, the definitions of H and p imply

(allgl)*|Hgll (2.2)

T T17 T 2 T3 ] T
o g Rg)* = g"Hg + |QHyl|(g"Rg) = :
gTHg = g"Hg + p(¢"Rg)* = g"Hg + ||QHgl|(g" Rg) 1+ grlgl

Assumptions 1, 2, and (2.2) imply

—g%s _ (allgl)®  llgll . f ay . €
Ll > B 2 gy 2 el £ @9

Theorem 2.1 The algorithm is globally convergent, i.e.

lim g = 0. (2.4)

k—oo0
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Proof.  Suppose the theorem is not true, there exists a ¢ > 0 such that ||gx|| > € > 0 for
infinitely large k. The f(zx) is bounded below because the lever set S(z1) is bounded.
This implies

Jlim (f(zx) = f(@k+1)) = 0. (2.5)

But (2.3) implies that, for such kind of k, ||gk|| > €, there exists a C' > 0 such that
(Powell 1972)
C(=gisk)* | Ce?
f(zk) = f(zrt1) 2 >
: U
The contradiction between (2.5) and (2.6) leads to the theorem.
Several equations and inequalities below are implied without assuming the convexity

assumption of objective function. Taking the trace of both sides of (1.3) and (1.5), we
get

2
min{q*e?; 3—2} > 0. (2.6)

gl | glyl>s™Bs _ 26y™Bs _ (1-4) IBsl|> __ plBRgl>
yTs .. (yTs)? yTs sTBs 1+ pgTRBRyg

tr(B,) = tr(B)+ (2.7)

Let

u=Hg.+WHg=VHg+ Hy. (2.8)
Computing directly, we get
4 T T P
-~ sy Ys 88 L
H,=(I-—=)H(I - )+ — — 55— 2.9
( yTs) ( yTs) y’s  g"Hgn(¢) @9
where 7(¢) as the definition by (1.7). (2.8) and (2.9) imply

b e e . 2.10
Hebe (1 n(¢)) T (e

and
Hy=p—VHg=n(¢)H.g. - VHg. )

Taking the trace of both sides of (2.9), we obtain

—2g"HHy V|Hgl? __¢llul® _ lsl®
9THg gTHg  g"Hgn(¢) = y's
Taking the trace of both sides of (1.6), the following inequality is implied by (1.4)

tr(H,) = tr(H) — (2.12)

tr(H) = tr(H) + p||Rg|* < tr(H) + r*||Hgl| (2.13)

and there exists a C; > 0 such that, for all k,
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Cig"Hg > |Hglllgl*s CillHg|® > Hgg"H|? and Cy|Hg|| > r*||Hg.  (2.14)

3. Some Results for the Convex Objective Function

In this section we assume

1. The objective function f(x) is uniformly convex and there exist M and m, M >
m > 0 such that, for all z,y € R*, m|z||? < 27G(y)z < M||z|*> where G(y) is
the second-order Hessian of f(x) at y.

2. G(x) satisfies the Lipschitz condition, i.e. there exists a L > 0 such that, ||G(z) -
G(y)|l £ L||z — y|| for all z,y € R™.

3. f(0) = minf(z) =0 and G(0) = I xn, the identity matrix of order n.

In the assumption 3, G(0) = I,xx is equal to a linear affine transfer for the objective
function and does not affect the results in this paper. By Byrd et al (1987, p1175),
there exists Cy > 0 such that, for all k,

f(zr+1) £ (1 - Co cos? Bi) f(zx) (3.1)

where (i denotes the angle between gy, and Hygi. The sequence of functions {f(zx)}
is a monotonically decreasing sequence of k. We get, for all k and 4 > 0,

Mjzx||? > 2f(zk) > 2f (Tkts) > M|zl (3.2)

Let Gy, = G(zx) = [; G(zk + ts)dt, Cs = LyM(1+ L1)and (G)~! denotes the
inverse of G, then the assumption 2 and (3.2) imply, for all k,

I7 - G|l = G(0) - G|l < Csllzll, |17 -G < NG =Gl < Csflzll.  (33)
Because of y = Gs, ||y||? —ys = sT(é')%(é - I)(C:')%s, we get
2
max{m; 1— Cs||z|} < |_|51_[|; < min{M; 1+ Cs||z||} (3.4)

and

1 sl|? T S
max{M—; 1-Cs|z||} < %,_,I—,L— < mzn{a; 1+ Csl|z||}- (3.5)

The Quasi-Newton formula H,y = s and (3.3) imply lgTH,Hg| = |a~'gTH, (G -
Iy| < Cs||||||Hxgx|l||Hg||- From the uniform convexity of f(x) and (3.5), we obtain
lg"y — g"s| = |97(G — I)s| < Cs|l=|l[|s]lllgl and
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yBs _ _ Cllgllsll
g g Mg
We know that the function g(z) = 7¥a»@ > 0is monotonically increasing, and p(g”Rg)? =
|QHgllg"Rg > ¢*||Hg]|||g||?, the Cauchy-Schwarz inequality implies

(3.6)

plBRg|® _p(9"Rg)* s Ll mellzlllglllsl®
1+pg"RBRg — ||Rg|lg"Hg + p(9"Rg)*)(9"Hg) ~ r¢"Hg =  ar(¢THg)? (3.7)
3.7
Let Cy = CC3rq~>m™, for (3.7) and the inequality a® + b2 > 2|ab|, we have that

Csllglllishli=l

pl|BRg|?

= + Cyuallz|| — > 3.8
C(i +pgTRERg) T Crelel gTHg (A
holds. |
Because of g, = [} G(tay)dtxy, for all k and i > 0, the following holds
mllz|| < lgll < M|, m?||giill® < Mg, (3.9)

4. The linear convergence of algorithms for ¢ € [0,1)

In this section we assume the assumptions 1-3 in section 3 hold. The convergence
rate for the MDFP algorithms, i.e. ¢ = 1, is left over until next section because there
is some different in proofs of convergence between the MDFP algorithms and other
Broyden algorithms. In this section, we only discuss the linear convergence rate of our
algorithms as ¢ € [0,1). First we prove the following lemma for ¢ € [0,1).

Lemma 4.1. For any given ¢ € [0,1] there ezists a Cs > 0 such that, for all k,

k ;
> a;! < Csk. (4.1)
i=1

Proof. The Quasi-Newton formula implies g7 H,y = 0, (3.3) implies

V(g"Hg)* _ Vg"Hg
Wi e
From (2.10), (2.11), (4.2) and the definition (1.7) of n(¢), we get, for all ¢ € [0,1],

V|Hg — ¢H,g.|* >

(1 — Csllz])). (4.2)

—2g"HHy — V| Hg|* + ¢~ (9)l|ull? = V| Hg|* - 20(¢)g"H Hogs + dn(d)|| Hugs|?
= V“Hg = ¢H*g*||2 3 2(1 e ¢)9THH*9* + ¢(1 =t ¢)“H*g*||2

> VQZHQ [1 e C3(1 tnm)”x”} 3 [(1 L ¢)(¢ oo C3||$||)]||I~I*g*||2. (4'3)
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If ¢ = 0 then 7(0) = 1, we consider the proof of two cases for ¢ = 0. In the first case,
~ 2
if au||Higsll < 4L£ln9_*lL, then (2.14) implies

ar?|g.|l| Hgll _ 4r*M°||Hglllgll” _ 4C1r*M>g"Hg

H.g.||Hg| < 4.4
1 Begall gl < LY L . (4.4
In the second case, for ou||Hug|| > ﬁ%:lﬁ, if r2||g|| < 1, (2.2) implies
~ 29T H. 29T H. Q|| Hygs||?
a*“H*g*”2 < 2a*||H*g*||2 < g*m*g* < g*m*g* 5 *" 2*9 ” ; (4‘5)

Multiplying both sides of (2.9) by g., then taking the inner product for the result
previous with g., we get gfﬁ*g* = gTHg, as ¢ = 0 and

asl|Hgul® _ "Hg | 4y"Hy
o RS 0 a

~ Hall?
2| Hgll|gnll < V2L (4.6)

Let Cg = 4C3[2r2Ci M3m~* + 1 + m™'], combining (4.4) with (4.6) gives for ¢ =0

2C3|| Hy|[[| Hege|l
g™Hg
Given any ¢ € (0,1], — Cs||zk|| > 0 holds for sufficient large k. Substituting (4.3) into
(2.12) for ¢ € (0,1], and substituting the second equation of (4.3), (4.2) and (4.7) into
(2.12) for ¢ = 0, then using (2.13) and (2.14) the following (4.8) holds, for sufficiently
large k and any given ¢ € [0,1]

< oo + ) (1)

V[1 - (Cs + Csm™" + Ce)ll=ll] _ Cell=|l
a Qlx

tr(H.) + (4.8)

2
<tr(H) + U;STLS < tr(H)+ 1+ Csllz|| + Ci1||Hgl||-

a||d|| < Cs||z|| is obtained by the definition of C3. Let C7 = C3(1+m~1+Cy)+2MCs,
We may assume 1 > 2C7||z|| for all k. For any given ¢ € [0,1], aMgTHgtr(H) >
aMgTHHg > aM||d||> > g" Hg and (4.8) imply

k . k . — .
j=1 Qj j=1 Qa;
k i3
Vi[l = (C3+ Csm™1 +C ; Cellz;
StT(Hk+1) K Z{ J[ ( 3 .'; 6)]”:1:]”] . Z“ J” 2 Clnd]”}
j=1 g J+1

k
<tr(Hi) +k+ Y Crlle;l.
i+

V > 1, (4.9) and ||z;|| is bounded imply Lemma 4.1 is true.
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Because the discussion which give the recurrence formula of Bk+1 from By, is same
as the Broyden update formula, we may use the proof of the Lemma 4.2 in Byrd et
al(1987) word for word almost to prove the following (4.10), (4.11) and Theorem 4.1
which corresponding to (4.5), the final line of page 1182 and Lemma 4.2 in the Byrd’s
paper respectively. That is , given a ¢ € (0,1), there exist Cy > 0,Cg > 0 and integer
number K such that, for all k£ > K, '

o

2¢ecosf =g

L) < tr(B,) < 1
0 <tr(B.) <tr(By) <tr(B)+ M + 0032,3[ s G ] (4.10)
k o
]
0 < tr(By41) < tr(B1) + Mk + Cs — Cy ,§=1: 1) (4.11)

and
Theorem 4.1. For given ¢ € [0,1), there exists Cyp, 0 < Cy; < 1 such that,
f(@k41) < C10CF, f(21) for all k.

5. The Linear Convergence of the MDFP Algorithms

In this section we also assume the assumptions 1-3 in section 3 hold. We discuss
the linear convergence for MDFP algorithm, i.e. ¢ = 1. Because ||zx| — 0 and
M|z > m||zk44]|? for all k and j, the proof of Lemma 5.1 may be same as that in
Pu (1987, 1992).

Lemma 5.1. Let {Dy} be a sequence of positive numbers, {Ey} be a sequence of
positive numbers except finite numbers, and di,dz,d3, and dy4 be four positive numbers
which satisfy following inequality, for all k,

k k
By + 3 _[Dj(1 - dull;|))] < ds + dok + 3 dala (5.1)

then there exists a ds > 0 such that, for all k,

k k
Ex+ ) Dj < dgk+ Y ds||;]. ' (5.2)
j=1 =1 *
From the definition (1.7) of 7(¢#), we derive the relation n(l) =V,
Lemma 5.2. There exists a Cyo > 0 such that, for all k,

; - pill B;R;g; -
t’l‘(Bk.H) + Z o+ 0t b [/ <k+ Z 012”:2)]'”. (5.3)

=i 2(1 + p;g] R;BjR;g;) =1

Proof. As ¢ = 1, let C=2 and substituting (3.6) and (3.8) into (2.7), we get
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pill BiR;g;|*

tr(B.) + a1 - Cs|lz|) + /
2(1 + p;g] R;B;jR;g;)

— Cuclz|| (5.4)

o ey
<tr(B) + s < tr(B) + 1+ Cs|z|.

Summing the two sides of (5.4) over j = 1,2,---,k implies there exist a C' > 0 such
that, for all k,

tr(Be) + 35 |y + = BUBEIE__\ 1 (6, + el 55)
J = "
= 2(1 + pjg; R;B;Rig;) | 4
k k , » 2
A p;llBiR;g;ll
<tr(Brs1) + ) aj[1 = (C3 + Cy)llz;ll] + = + (C3 + Ca)aa ||z ||
jgl ; : ng 2(1 + p;g; R; B;R;g;)
k
<tr(Hy) + (Cs + Ca)aul@1]| + k + ) Csllz;]l.
i=1

Because ||z;|| is bounded the lemma is implied by (5.5) and Lemma 5.1 easily.
Lemma 5.3. There exists a Ci13 > 0 such that, for all k,

Hyl? . 9"Hg ., gl Hugs
IHYIE 5 085, 11 = Cuslizl).

LR & (5.6)
Proof. (1) = V, (2.11), (3.5), And the description before (3.6) imply
Hyl|? ~ ~ ~
VIV _ g, — Holl = gl + | Hol - 26T BBy (57)
>(|Hgl? + | Hegull*)(1 = Csll])
~ THg(1 - 2Cs||z
2B (1 - Calla]) + S22~ 2C8lzl)
and (2.14) implies .
[ Hagal|? > C7T | Hagel* > o (7 Hegs)(1 — Chrallz]]) (5.8)
where C14 = C3 + C;. We, thus, have
Hy|* _ ¢"Hg GLHugs o
” V2“ = (1 - Csllz]]) + T(l — Cslz|| — Challzl])- (5.9)

Let Cy3 = 2C5 + Cig4, it completes the proof of this lemma.
From the recurrence formula of the trace of the DFP algorithms (or taking ¢ = 1)
in (2.12), (5.6) and the definition (1.7) imply

| Hy|?

tr(H) + 1+ Csl|z|| > tr(Hy) + Vi4TH;

> tr(H) + (= + DL~ Cualel]l. (5.10)
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Summing the two sides of (5.10) over j=1,2,... .k, then summing the two sides of (2.13)
over j=2,3,....k, and adding the two sides of these summing forms respectively and
omitting the same forms {tr(Hj+1)}, we get by (2.14)

tr(Hry1) + Z

Cuallz]|) + —[1 = Cusllzs]| - Crllz;ll]  (5.11)

<tr(H;) +k + Z C1Cs||z; .
j=1
Theorem 5.1. There exist Ci5 >0 and 0 < § < 1 such that, for all k,

lgrll < Ci56* | (5.12)

- Proof. Adding the two sides of (5.3) and (5.11), tr(H)g"Hg > gTHHg > amgTHg
gives

U.
tr(Hi41 + Bit1) + Z{%(l — Csllz]) + [— ;

] (5.13)
J =1 ) ] aj+1

k
[1 = (C1s + C1Cs)l|zjl[]} < tr(Hy) + 2k + Y (Cs + Cua)|z]]-
=1

Lemma 5.1 implies that there exists a Cyg > 0 such that, for all k,

k ) k
~ a; —1
tr(Hgy1) + tr(Byy1) + Z [( Jaj ) a +1} Z Cisl|z;]|- (5.14)
k Cia||z
We get Z ey ZJ iy 016||:c|| let Ay = [ 5, = 1l ]”J because (A)% -1

as [|zg]| — 0, (5.3) implies

K kgl
Haj < [k_lz:a]} < A " A

t"'(Bk+1) < t’l‘(Bl) + k + Z 1 011”.'1:_7” Let 017 = tr(Bl) + Clgsup{”a:]”} + 1 then
tr(Bg+1) < Cirk holds for all k, we ‘get

k

a1m||gr41)? < a1(gf 1 Het19k4+1) £ H A ﬁ
(01 H191)Ak(C1r)? = arya (9T Hagr) =Y e

k
(k‘l 5 Clellell)
j=1

(5.16)

O‘J+1

Because of (Ak)% — 1, and ||z|| — 0 it is clear that the lemma is true.
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6. The One-step Superlinear Convergence Rate

In this section we also assume the assumptions 1-3 in section 3 hold. The algo-
rithm presented in this paper has been proved having the linear convergence. First we
know %2, ||z|| < +oo by sections 4-5. Similar to Powell (1976) and Byrd et al(1987),
this may imply that our algorithms have one-step superlinear convergence rate for
|B - B|| = O(||z||) and ||H — H|| = O(||z||). But we rather use the different method
with other papers to get some more strong convergence properties and relations.

Theorem 6.1. The algorithms presented in this paper are one-step superlinear
convergent for uniformly objective function, i.e. limg_.o l—'—ﬁ%‘:ﬁ—“ =210,

Proof. (1.5) implies, for all k and ¢ € [0, 1],

Biy1 = Bprp — (1 — ¢)(s}F Brsk)vkvi < Bprp (6.1)

where Bppp denotes the DFP update formula. Therefore all relations in the proof of
Lemma 5.2 are also true. Specifically (5.3) is true, i.e. the following inequality holds
for all ¢ € [0,1]

k 5 k
; pill Bi Rjg;ll
tr(Br+1) + a; + = <tr(B1) +k+ ) Culzill < k+Cis
,; ?" 2+ (1+pjg] R;BjR;95) ,;1 !
(6.2)
where Cig is independent of k. On the other hand, by (4.8), we obtain
tr(Hie1) | = Vi :
rfent) 15 201 Crllagl < r() + k+ 3 Ol (63)

Therefore Lemma 5.1 implies there exist Cj9 > 0 and C3 > 0 such that, for sufficient
large k,

tr(Hes1) |, o= Vi -
- P L <tr(H)+k+ > Cugllz;l < k + Cao. (6.4)
The definitions of V and W in (1.7) imply
1+W=V. (6.5)

Adding both sides of (6.2) and (6.4) respectively, we get,

t H . = k W 1- j 2
'I‘( 2k+1) + tT(Bk.H) + Z |:__l 1 (—iz—:! < Cig + Coq. (6.6)

So we may obtain tr(Hg+1 + Br+1) < Cis + Coo, Z_‘;‘_’__l W; < +o0 and a; — 1, and
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[e’s) 2 0o
Z g+ s Z Wtr(H;)tr(B;) < +oo, (6.7)

this completes the proof of theorem 6.1.

From the proof of Theorem 6.1, we may obtain there exist B and H such that
Ly o0 8 = B andilim, .. Hy = H.

7. The Two-order Convergence Rate Examples and the Discussion

In this section we list the following lemma and theorem without proof.
Lemma 7.1. (7.1)-(7.3) below are true for allk and p, 0 <k <p<k+mn,

|2k 2p = llzpll?| < 5P " L|zk |||l wrsa | (7.1)
|9p sk| = cklgy Higk| < 2 x 52 *L||zx|? | ok - (7.2)
|9% 85 — 95 sp| < 3 X 5P *L||zy|*||zha | (7.3)

where L is the Lipschz’té number and let L > 1 for simplicity.
Theorem 7.1. The algorithm is n-step second order convergent.

We have done a lot of numerical tests for the Broyden algorithms, modified Broyden
algorithms and other variable metric algorithms with or without exact linear search
respectively. The results of these tests show the modified Broyden algorithms have the
least iterations to reach the optimal point on the whole. Comparing with the Broyden
algorithm, there are about 25-40 per cent iterations cut down for the modified Broyden
algorithm in general and has better stability. Parts of these examples as follows:

Function 1. f(z) = 100(z2 — 22)? + (1 — z1)?;

Function 2. f(z) = z{ + z122 + (1 + 22)%

Function 3. f(z) = (z1 — 1)? + (22 — 1) + (z3 — 22)%;

Function 4. f(z) = (z1 — 1)? + (z2 — 21)? + (23 — 24)* + (x4 — z5)%;

Function 5 .f(z) = f1 + z4fa + C—{z + ({;’T’j 2+ (3%)2 + (3%1—;)2;
where f; is equal to Function 3 above, fa = z1(1 +23) + 23 — 4 —3v/2, L = fi + z4fo.
When we take S = I,x, and R = 0.001||g1||"*n"2I,,xn, the results for the iteration-
numbers of each class of the algorithm as follows
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Function Starting Points Broyden(BFGS) MBFGS MDFP

1 0;0 17 12 14
1 2;-2 31 17 17
2 55 12 6 7
2 5;-5 10

2 -5:5 10

3 0;0;0 99 12 12
3 2;-2;2 19 9 10
3 -2:2:-2 17 8 8
4 0;0;0;0;0 50 35 40
4 2;2:2:2;2 51 Ty 32
4 2;0;2;0;2 120 35 37
4 0;2;0;2;0 98 31 37
5(C=1) " 1:1:1;1 20 16 16
5(C=4) 0;0;0;0 21 17 16
85(C=4) 1;1;1:1 20 14 16
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