Journal of Computational Mathematics, Vol.12, No.4, 1994, 380-386.

A QUASI-NEWTON ALGORITHM WITHOUT CALCULATING
DERIVATIVES FOR UNCONSTRAINED OPTIMIZATION*V

Sun Lin-ping
(Department of Mathematics, Nanjing University, Jiangsu, China)

Abstract

A new algorithm for unconstrained optimization is developed, by using the
product form of the OCSSR1 update. The implementation is especially useful
when gradient information is estimated by difference formulae. Preliminary tests

show that new algorithm can perform well.

1. Introduction

We consider the unconstrained optimization problem
Min f(z) (1.1)

where f(z) : IR™ — IR is a real continuously differentiable function.

Many algorithms have been proposed for solving (1.1). Typically, given both an
approximation H to [72f(z)]™! and g the gradient 7 f(z) at the current point z, a
quasi-Newton algorithm starts each iteration by taking a step

ry =z —oaHg, | (1.2)
where the steplenth a > 0 is chosen so that
f(@) ~ F(z4) > oagTHg (1.30)
and
| g1 Hg |< 7¢"Hg (1.3b)

are satisfied, where o € (0,1/2) and 7 € (o0,1); and then to form H,, an estimate of
72 f(z)]~! by using an updating formula satisfying the quasi-Newton condition

Hyy=s, (1.4)

where s =1z, — r and y = g4+ — ¢ . For the SSR1 update

(s ~ 6Hy)(s — 0Hy)*
(s — 6Hy)Ty

* Received August 18, 1993,
1) The Project Supported by National Natural Science Foundation of China.

A Quasi-Newton Algorithm without Calculating Derivatives for Unconstrained Optimization 381

Osborne and Sun!?! propose a new algorithm (OCSSR1) with Da;vidﬂn’s optimal con-
dition, in which the scaling factor € is taken either

61 = c/b— \/c2/B? — c/a (1.6a)

or

61 = c/b+ \/02/b2-—c/a, (1.6b)

where ¢ = y"Hy,b = 8Ty and ¢ = sT H™'s. Preliminary numerical tests show that
the OCSSR1 method compares favourably with good implementations of the BFGS
method!5:1%:14],

Here, a new implementation of the OCSSR1 algorithm is developed by writing
the expression for the SSR1 update in product form. If the derivatives are available,
the implementation is equivalent to the OCSSR1 algorithm. Moreover, it is especially
useful when gradient information is estimated by finite difference formulae, in this case,
the algorithm can perform well. In Section 2, an expression of the SSR1 update in
product form is derived. In Section 3, an algorithm using the OCSSR1 update without
calculating derivatives is outlined. Numerical results are contained in Section 4.

In this paper, the following notations are used: I is an unit matrix; x(.) denotes
the condition number of a matrix; Tr(.) is the trace of a matrix; det(.) denotes the
determinant of a square matrix.

2. The SSR1 Formula in Product Form

The SSR1 update (1.5) can be written in product form. That is

H, = (I +wh0HI + uo™)T, (2.1)
where
u = (s — 8Hy), ‘ (2.2)
v=(H 15— 0y)/6 (2.3)
e —0 % \/(cf — b6%)/(b — ab) :
= ¢ — 260 + ab? | 124
Let Hy = C+C¥T and H = CC7, from (2.1) we have
Cy = VO[C + u(CTv)7]. (2.5)

Remark 2.1. Osborne and Sun!® point out that if # > 0 and 8Ty > 0, then H, is
positive definite if and only if

0 ¢ [s"y/y" Hy,sTH 's/sTy]. (2.6)

Thus, in (2.4), it always holds that (c6—b82)/(b—a#) > 0. In addition, c—2b0+ a2 > 0
because ac > b2,

382 SUN LIN-PING

Remark 2.2. Product form updates are well known to be suitable for implementing
. quasi-Newton methods. However, in the literature mainly the BFGS updates are used.
For example, see Osborne and Saunders [8], Davidon [3], Han [4], Powell [10] and Coope

2],

3. The OCSSRI Algorithm without Calculating Derivatives

Let
w = CTy, (31
then
© = uCw (3.2)
and
Cy = VBC[I + bpwwT]. (3.3)
For the vector
’ g= CTQ: | (3'4)
its components are directional derivatives of f(x) in the directions {¢;,7 = 1,2,---,n}
which are the columns of C. Thus we can use the central difference formula
g flz+ hic;) — flz — h;c;
glJj) = i) .f(%) (3.5)
2h,
to estimate this gradient information. Moreover, we have
§=CTy=gy -3¢ (3.6)
and (3.1) can be written as
w = —[§ + (e/6)3]. (3.7)
In order to calculate 9, the following equations are obtained by using (3.4) and (3.6):
a=g"9, (3.8a)
b= —ad’§ (3.8b)
and
c = azﬁTﬁ. | (3.8¢)

Based on the above discussion we can establish the implementation of the OCSSRI1

algorithm without calculating derivatives.

|
Algorithm 3.1 (NGOCSSR1).

Step 0. Givene; > 0,69 > 0 and z € IR". Set (' =1 and k = 0.
atep 1. If the convergence cr_iteriﬂn is achieved, then stop.
- Step 2. Calculate the search direction d using the equation

A Quasi-Newton Algorithm without Calculating Derivatives for Unconstrained Optimization 383

where C satisfies the update (3.3).
Step 3. Select a > 0 such that the criterion (1.3a) is satisfied, that is

f(z+ad) < f(z) — cag’y, (3.10)

where o = (0.0001 is a typical value.
Step 4. Set z = r + ad and calculate g, and .

Step 5. If
F > —e |l gll2ll 9 i, (3.11)
set C = C and go to Step 10.
Step 6. If -
~(eg+ 99> e [l ag +7 2l 9 |2, (3.12)
set @ = 1 and go to Step 9. Else continue to Step 7.
Step 7. If
| C(@ + avg) ||2% &2, (3.13)
where v = a/b, set |
. Cy = (1/A)C (3.14)

and go to Step 10. Else calculate 6; and 8, by using (1.6) and (3.8).
Step 8. Determine 8.
Step 9. Update C by using (3.3).
Step 10. Set k =k + 1 and go to Step 1.

Remark 3.2. It is important for the OCSSR1 update to guarantee sTy > 0. Here
an equivalent test (3.11) is done from (3.8b).

Remark 3.3. In Algorithm OCSSR1 we use the strategy of forcing 8 = 1 if the
inequality 5 '

(s—Hy)'y>er || s— Hyll2]| v [l2
15 satisfied. This test is implemented here in the equivalent form (3.12) using
(s - Hy)Ty=—(ad +§)75. (3.15)

Remark 3.4. We use (3.14) when Hy and s are linearly dependent. This is
equivalent to the corresponding test for the OCSSR1 update follows from (3.15).

Remark 3.5. 8 is chosen by a heuristic strategy which aims at making m(C.;.C_'{)
smaller. We choose § = 8; except when the following conditions satisfied:

Tr(C4+Cq)o=b, > Tr(C+CY)o=s,. (3.16)
In fact, from Osborne and Sun [9] we know that

det(C4+CT)o—g, < det(C1+CT)p=s,,
which implies

T] 22 < T1 2%,

1=1 1=1

384 SUN LIN-PING

where A¢ are the eigenvalues of the matrix (CCT)g at 8 = 8;(j = 1,2) with A] < A <
+++ < A2. On the other hand,

Te(CL O3 = Y AL

i=1
Thus, :!f.:((ll.(3’3_")45&5;2 is probably smaller than H-(C+C$)g=91 when (3.16) holds. It is not
difficult to calculate the values Tr(C4CY). For the initial C' = I, we have

Tr(CCT) = 9[Tx(CCT) + rTr/wT), (3.17)

where r = Cw. !
Remark 3.6. In the update (3.3), if

det(I + Ouww?) > 0

is required then

p > —1/0wlw. (3.18)
Thus, in (2.4) we practically choose
" —0 + /(c8 — b82) /(b — aB)
= : 3.19
4 c — 2b8 + af? W

Remark 3.7. The criterion (3.10) is a efficient weak line search strategy to guar-
antee termination (see Osborne [7}).

Remark 3.8. It should be stated that if we consider how to choose 8 so that the
condition number of the matrix C~1C,. becomes optimal, then the derived value of @
is the same as the formula (1.6).

4. Numerical Results

In this section, we report some numerical experiments performed by the NGOCSSR1
algorithm. The test functions are outlined as follows: |

TF.1 Beale xo=(1,1),

TF.2 Brown Badly Scaled z¢ = (1,1),

TF.3 Brown and Dennis zg = (25,5, -5, —1),

TF.4 Broyden Tridiagonal g = (—1,---,—1),

TF.5 Modified Cragg ¢ = (1,2, 2, 2),

TF.6 Dixon zp = (—2,+-+,—2),

TF.7 Extended Powell o = (3,-1,0,1,---,3,—1,0,1),

TF.8 Helical zg = (—1,0,0),

TF.9 Hilbert zo = (—4,—-2,—-1.333, —1),

TF.10 Powell o = (1,1,1,1),

TF.11 Penalty zo = (1,2,---,n),

TF.12 Rosenbrock zg = (—1.2,1),

TF.13 Tridia g = (1, N 1),

A Quasi-Newton Algorithm without Calculating Derivatives for Unconstrained Opﬁinlizatiun 385

1 1
TF.14 Trigonometric zg = (; ee ;)

TF.15 Variably Dimensioned zy=(1 — >

TF.16 Wood zp=(-3,-1,-3,-1)
where TF.1, TF.2, TF.3, TF 4, TF.5, TF.7, TF.8, TF.10, TF.12, TF.14, TF.15 and
TF.16 appear in More, Carbow and Hillstrom [6]; TF.6 appears in Wolfe [15}; T1.9
appears in Schittkowski [11]; TF.11 and TF.13 appears in Shanno [13] .

Table (Numerical Tests for NGOCSSR1)

| Function | n | N: | Ny r 2

| TF1 [2 [1| & 0 0.339 x 10~1°
TF2 | 2 | 10 | 58 0 [0.575 x 10~ 14
TF.3 | 4 | 18 | 209 | 85822.2 0.858222 x 10°
TF4 [10| 39 | 845 | 0 0.158 x 10~
TF.5 4 | 49 | 455 0 D.726 x 107°
| TFe |10 45 | 971 0 0.353 x 10~ 19
TF.T 4 | 41 | 387 0 0.543 x 1071°
a2 46 | 3062 0 0.588 x 10~
. | 64 | 48 : 6_3_?: 0 0.680 x 10-1°
TF.8 3 | 42 | 314 0 0.408 x 1011
TF9 | 4 | 4 | 47 0 0.598 x 10~ !
TF.10 | 20 | 35 | 1480 0 0.699 x 10~1°
[50 7 | s19 L 0 0.183 x 10~

TF.11 | 4 [70 | 653 | 0.000022499 | 0.22499799 x 10+

‘ 10 | 189 | 4231 | 0.000070876 | 0.70876530 x 10— *
TF.12 [2 | 22 | 124 ‘ 0 0.148 x 10~1°
TF.13 |10 | 11 | 255 0 0.188 x 10™11
| 50 | 49 | 5053 | 0 0.647 x 10~ ®
TF.14 5 | 31 | 355 0 0.845 x 10711
TF.15 [20| 16 | 89 0 0.210 x 10712
| 50 | 15 { 1871 0 0.210 x 10~12
TF.16 | 4 l 37 [3541 0 0.266 x 10~

All tests used double precision on an IBM PC/AT alone. The corresponding ma-
chine precision is of the order of 1019,

For each test functimi, the Table reports the dimension of the objective function
argument (n), the number of iteration (/N;), the number of function evaluations (Ny),
the value of the objective function at the minimum z* (f *) a.nd the value of the objective
function at the termination point z; (f;).

The convergence criterion is

| f= £ <107 max(1,| f |). (4.1)
For the size of the differencing interval h;, in (3.5), we suggest that
Ch;=10"%|Cjlls, j=1,---,n (4.2)

386 : . SUN LIN-PING

Remark 4.1. In order to estimate derivative information by the central difference
formula, 2n extra function evaluation must be made at every iteration. Thus an ideal
amount of calculation is that N; = (2n + 1)/M,.

References

1] K.W. Brodlie, A.R. Goulay and J.Greenstadt, Rank-one and Rank-two corrections to pos-
itive definite matrices expressed in product form, J. Inst. Maths. Applics., 11 (1973),
T3—82.

[2] 1.D.Coope, A conjugate direction implementation of the bfgs algorithm with automatic
scaling, Research Report, No. 42, Department of mathematics, University of Canterbury,
1987.

[3] W.C. Davidon, Optimally conditioned optimization algorithms without line searches, Math.
Prog., 9 (1975), 1-30.

[4] S-P.Han, Optimization by updated con_]uga.te subspace, in “Numerical Analysis: Pitman
Research Notes in Mathematics Series”, 140, 82-97.

[5] Ladislav Luk¥an, Computational experience with improved variable metric methods for
unconstrained optimization, Kybernetika, 26 (1990), 415-430.

[6] J.J. More, B.S. Garbnw and K.E. Hillstrom, Testing unconstrained optimization software,
ACM Transaction on Mathematical Software, 7 (1981), 17-41.

[7] M.R.Osborne, An efficient weak line search with guaranteed termination, MRC Report
No.1870, Mathematics Reseach Center, University of Wisconsin, 1978.

8] M.R. Osborne and M.A. Saunders, Descent methods for minimization, in “Optimization”,
Eds: R.S. Andersen, L.S. Jennings and D.M. Ryan, University of Queensland Press, 1972,
221-237.

[9] M.R. Osborne and L.P. Sun, A new approach to the symmetric rank one updating algorithm,
CSTR. Report NMO/02, Stat.Res.Sec., SMS, ANU, 1988.

(10] M.J.D. Powell, Updating conjugate direction by the BFGS formula, Math. Prog., 38 (1987},
29-46.

[11] K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, 282, 1987. |

[12] R.B. Schnabel, Sequential and Parallel Methods for Unconstrained Optimization, in Math-
ematical Programming Recent Developments and Applications, Eds: Masao Iri and Kunio
Tanabe, Kluwer Academic Publishers, The 13th International Symposium on Mathematical
Programming, 1989, 227-262.

[13] D.F.Shanno, Conjugate gradient methods with inexact searches, Math. Comp., 34 (1978},
499-514.

(14] L.P.Sun, Scaling Rank-one updating formula and its application in unconstrained optimiza-
tion, Ph.D Thesis, ANU, 1990.

[15] M.A.Wolfe and C.Viazminsky, Supermemory descent methods for unconstrained minimiza-
tion, JOTA, 18 (1976), 455-469.

	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg

