Journal of Computational Mathematics, Vol.12, No.1, 1994, 71-77.

A PRECONDITIONER DETERMINED BY A SUBDOMAIN
COVERING THE INTERFACE*Y
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(Computing Center, Academia Sinica, Beijing, China)

Abstract

A method for construction of a preconditioner for the capacitance matrix on the
interface is described. The preconditioner is determined by a subdomain covering
the interface, and the condition number of the preconditioned matrix is dependent
on the width of the covering subdomain and independent of the discrete mesh size
and dis¢ontinuity of the coefficients of the differential operator. Some applications

of our theory are presented at last.

»
1. Introduction

Let Q C R? be a polygonal region, and

2y P
=~y 6::, (a”cﬂa::,) + cu.

t,j=1

be an elliptic operator defined on it; here, (a; ;)i j=12 is symmetric positive definite and
bounded from above and below on {2, ¢ > 0.

{ﬂ(’l&, ‘U) = (f: ‘U), vE H&(ﬂ)’ (1.1)

u € H} ()
is the variational form of the boundary value problem, with the bilinear form
2
Ju Ov :
a(u,u) = L [IJZ= aija:!}i 33?_;5 | cuv].

For convenience we discuss only the homogeneous Dirichlet boundary value problem
here. The norm in H} () introduced by a(-,-) is equivalent to the original one. Hg(2)
will be treated as a Hilbert space with inner product a{-,-) in the following.

(1,1) is discretized by the finite element method. Triangulation and linear contin-
uous element will be discussed. The triangulation is supposed to be local and regular.
The discrete form of (1.1) is

{a(u,v) = (f,v), v € SH),

u € SE(Q). o)
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The domain  is decomposed into two non-overlapping subdomains ; and {22 by
the interface T which coincides with the finite element triangulation. & = QU Oy, 1N
Qo =1, N = 0.

{2 represents the set of finite element node points in £2, €, = QN €, = NNy, =
I'N Q. (1.2) may be written in matrix -vector form

Aop Aol Aoz zo bo
Alg An 0 L1 — bl (1.3)
Az 0 Az2 r2 by

where zq,z; and z2 are vectors corresponding to restrictions of the finite element func-
tion on I', {}; and (5. (1.3) can be attributed to a small scale problem on I' by Gauss

elimlnation
C:Bg =i (1.4)

where
= Au{] = Amﬂﬁlﬂm - AU2A2_21A201

#» d= bO - AO] Afll bl = ADZAszle:

and C is the capacitance matrix or Schur complement. -

When (1.4) is solved, (1.3) will become two isolated Dirichlet boundary value prob-
lems. The iterative method is often used to solve (1.4). Since Cond (C) = O(h™1),
a proper preconditioner 18 necessary. There are many preconditioners constructed in
recent years ([1-4] and the probing technique in [4]), but those preconditioners are
proved or verified numerically to be spectrally equivalent to the capacitance matrix,
but it should be noted that the condition number of the preconditioned matrix by these
preconditioners will depend on the shape, size of 2, Q; and §22 and the coefficients of
the differential operator.

We will construct a new preconditioner in this paper, which is determined by a
subdomain covering the interface. The condition number of the preconditioned matrix
is independent of the subdomains and the interface (§21,2,I') and discontinuity of the
coeficients of the differential operator, which is determined by the width of the covering
subdomain.

2. A Preconditioner Determined by a Subdomain
| Covering the Interface

(), is a subdomain of § covering I, the boundary of which coincides with the finite
element mesh line. g has a uniform overlap with {4 and : the width of Qg is of
order 0(6) o1 = o N 21, Qoo = U N Na.

{:,1 € 1} is the set of the usual finite element basis functions. The element of the
stiffness matrix is

oy

aij = alpi, @), & J €Y
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the element of the capacitance matrix is
cij = a($i, ¢;), i,j€ET,
l.e. , the capacitance matrix is
C = (a($i,85)); jer (2:1)
where J:,- is a finite element function, 5..; = Gilp :;5;1-
in {}; and 3. The right-hand side of (1.4) is d = ((f: ) e
Our preconditioner @ is defined as

Q@ = (9i;) = (a(i, ), e (2.2)

= (0 and &,: i1s discrete
21—

o ™ 0 and ¢; is discrete harmonic

where qgi is a finite element function, cf’,rlr = ¢ilp, qag
h&l‘IﬂOﬂiC in le and Qgg.

3. Estimation of the Condition Number

It is obvinus,that 0= U Uy, ie., {Q, 4, (22} amounts to an open cover
on §2. There must be a unit decomposition {%0,%1,v2} belong to this open cover,
0<¥; <1, Supp (1) C Qi,i =0,1,2, and ¥y + 791 + Y2 =1on ). We suppose these
unit decomposition functions are Lipschitz continuous and L is the maximum of these
three Lipschitz constants. We have

Theorem 3.1. There exists a constant C independent of the finite element trian-
gulation and the shape of the domain, subdomain and splitting line, so that

Cond (Q™'C) < C(1 + L?).

Before we prove this theorem, we introduce some lemmas. S¢(Q), S2(Q) and
S¢(€2) are subspaces of SH(), SE() = {u € S¢{(SY), Supp (u) C £}, and P, is the
orthogonal projection operator from S%(9) to S¢(€) under the inner product a(:,-),
i=0,1,2. ~ -

Lemma 3.1.% If there exists a constant C, and if for any u € SF(Q) there exist
u; € SG(%) so that u = ug + uy + uy and > E o lluill? < Cflull?, we have

2
a(u,u) < Cu(z_ﬂru,u).

i=()
Lemma 3.2. There exists a constant C independent of the finite element iriangu-
lation so that for any u € Sé‘_(ﬂ)

1 a(37 o Piu,u)
C(1+ L?) = a(:r,, u) 24 L

Proof,
2 2 ' 2
“(Z Fu, u) = Za(ﬂu,&u) < Zﬂ'ﬂi (u, u)

i=0 =0 =0
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74
where "
aq, (u,v) = fﬁ_ [Z ﬂ-ij%g:: } cui:].
i ij=1 3 Oy
It is obvious that!®! :
a(EPiu,u) < 2a(u,u).

P;u), where Yu is a continuous function

For any u € S§(f2), we have u = 3t ol
the interpolation operator from

and ¥;u € Hi (%), 1 = 0,1,2. We use I; to represent
Co(S%) to SH(€). Then
2
u = Z Li(vu).

i=0

I;(u) € SE(£). We have got a decomposition of u, by the

It is obvious that
Poincare inequality

& @w)|? < ClLi(gau)lig, =C Y | L(@a)li g

TCH;
On any element T of the triangulation,
Ts(iu) B oy = VGl — i + i yul oy
(where ); is the average value of 1; on T')
< 2|5 (Paw) [ ) + 215 — ¥i)ul|3n Ty
(by the inverse inequality of the finite element space and 0 £ ¥; < 1)
< 2|Lulfp ) + 20h~2|| L{(%: — ¥a)ulllzzen)

(1Lt~ Bull sy = [ 1B{(ws = Bl

< |7 - max (s — Gi)ull* < L*A*|Timaarluf

2
(2 U
< o dEiipiT < crrridr i)

< 2uftp oy + 20L%fullfa < €A+ L)\ |ullz 7y

By Lemma 3.1, Lemma, 3.2 is proved.

Proof of Theorem 3.1. Cond (Q~1C)
and lower bounds of the generalized Rayleigh quotient

—1 xXr, &
(cc(zcmi), ) (3.2)

S,cp idi- It is obvious that iz = 0|y and
discrete harmonic in {01 and

may be estimated by the ratio of the upper

For z € R, let iy = Y. p Tithi, Uiz =

iy = 0|, Gz 18 discrete harmonic in € and Q2, @z 18
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902:
(CQ-IC;I:, :B) ﬂ('ﬁ-q—lom, 'ﬁ-z) . a(ﬁQ—IGﬂ” 'ﬁ-m) _ ﬂ(Pﬂﬁm, ﬁz)

(Cz,z) a(ty, i) a(tiy, ty) oy, Uy)

In the last step, we have used

ﬁQ—IC‘z —_— Pﬁﬁm.
Let Poiiz|p = y. We need only to show y = Q~'Cz. Obviously,
Qy = a(Potie, $i) = aPoiiz, ¢i) = a(flz, ¢) = a(fiz, ) = Caz.

Since
Pia, = Pty =0,
we have , i
(CQ_IGQ:, iI;) _ ﬂ( i=0 H’ﬁ-m,um)
(Cz,x) a(tiz, tiz) |
By (3.1) we obtain
- _
1 ” (CQ ' Cz,x) & i
» C(1+ L2) o (Cz,zx) -

The theorem 1s proved.

4. The Condition Number is Independent of the Discontinuity
of the Coeflicients of the Differential Operator

We will discuss only the model problem
Lu=—alAu=f, wue€H}N) (4.1)

where a = a; on 21, a = a3 on {1y, and a;, @z are two positive constants, and a; < as.
Proposition 4.1. The condition number of the finite element capacitance matriz

of (4.1) is @y
- Cond (C) =O(;—;—h )
Proof.
(Cz, x) _ a(itz, i) _ ﬂllﬁmﬁ,m +“2|ﬁ*ﬂ‘iﬂz
(z, ) (z,z) (z,2) |
Hence e -~ 2
iy ﬂ-llﬂ'mll,ﬂ1 < (C:B,:I:) < azlu‘“lliﬂz < agh_l-
(z,z) (z, ) (z,2)
We get G i
Cond(C)=O(El-h ).

Theorem 4.1. There exists a constant C independent of the discontinuily and the
shape of the domains and subdomains so that

Cond (Q71C) < C(1 + L?),
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where the preconditioner Q is defined by (2.2).

Proof. We need only to show that the constant C in Lemma 3.2 is independent of
the discontinuity of the coefficients, i.e., we need to show

3" a{fi(¥iu), K(yin) < C(1+ L)a(u, u) (4.2)

1=0
where C is independent of the discontinuity of the coefficients.

(L (1), [ (1)) = el i(@w)[2 g, < Caa(1 + L?)|lulli g,

= C(1 + L*ag, (u, u). (4.3)
Similarly,
a(I2(au), I2(2u)) < C(1 + L)aq, (u,u), (4.4)
a(To(vou), To(3ou)) = a1llo(¥ou)i a0y + ag|Io(wou)|1.ay,
<O+ L2)(ay|u}l2 ay, + a2lull? qp,) < C(L+ L¥)agy(u,u).  (4.5)

From (4.3),(4.4) and (4.5) we get (4.2), and the theorem is proved.

When the covering subdomain g is a strip of width 28, the Lipschitz constant
will be L = 1, and the condition number is Cond (Q~1C) = O(1 + 3z). The wider the
covering subdomain, the smaller the condition number, and vice versa. But the increace
of the width of the covering subdomain will increase the cost of preconditioning.

The resolution of Qz = d is equivalent to the resolution of a Dirichlet problem on
ﬂ[]:

x d -
AU Il =t 0| (4.6)
T2 0

Ap = m’(‘ﬁ’i:‘i’j)) —%, JE€E ﬁn.

The capacitance matrix is a full matrix in general. When the width of the covering
subdomain is small, the preconditioner may have a band structure; for example, when
the triangulation is uniform and é = h (the mesh size), @ will be a tri-diagonal matrix,
and when § = 2h, Q will be a seven-diagonal matrix. When the covering subdomain is
fixed and the triangulation is refined, the bandwith of @ will increase, but the relative
bandwith (bandwith/order of the matrix) of Q remains unchanged.

5. Some Applications

There is a great freedom in the shape and width of the covering subdomain. Some
preconditioners constructed in other papers may be deduced from the covering subdo-
main preconditioner when the covering subdomain is properly selected.
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If a rectangular region is decomposed into many strips by parallel interfaces, the
capacitance matrix will be a block tri-diagonal matrix. If we select a st rip to cover every
interface, and these covering strips do not intersect each other, the covering subdomain
preconditioner will be a block diagonal matrix. If the minimum width of these covering

subdomains is of order O(5), the condition number will be Cond (Q~1C) = 01 + 612)

This result is equivalent to that of [7].

If the domain is a rectangular and the operator is Laplacian, the domain is decom-
posed into two smaller rectangles by a straight line. C = §; + S5 ([2]). It was proved
that C is spectrally equivalent to 8§; and S,. If Q; is wider than (15, we may select
a subdomain Q] of ©; so that Q) and ; are symmetric about the interface and the
covering subdomain is £y = Q) Uy UT, and the covering subdomain preconditioner
will be @ = 25;. From Theorem 3.1 we know Cond (8;'C) = O(1 + 3 ), where § is

the width of Q5.
We may select a fictitious domain ), containing Q; so that ¥, and Q; are symmetric

about the interface. 2 may be treated as a covering subdomain of QU UT, and
from Theorem 3.1 we know Cond (S7'C) = Cond (C~18;) = O(1 + %), where § is the
width of 25. We wﬂl discuss the fictitious technique further in another paper.
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