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Abstract

In this paper, the dual mixed method for an unilateral problem, which is the simplified
modelling of scalar function for the friction-free contact problem, is considered. The dual
mixed problem is introduced, the existence and unigeness of the solution of the problem
are presented, and error bounds O(h%) and O(h%) are obtained for the dual mixed finite
element approximations of Raviart-Thomas elements for £k = 0 and k = 1 respectively.
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1. Introduction

In the early work [2], the dual mixed finite element method for the unilateral problem with
a lower order term was considered, in which the divergence constraint is naturally incorporated
into the unilateral formulation (the details can be found in the Remark 2.1 in section 2). In this
paper , we consider an unilateral problem in the absence of the lower order term and involving
the complex boundary conditions, which can be considered as the simplified modelling of scalar
function for the friction-free contact problem (c.f.[5], [6] and [7]).

Let © be a bounded domain in R?, with boundary 69 = I‘DUFFUI‘C,lI‘DﬁFF =¢,['pNlc =
$, X =00\ Tp and I'c C X. For a given f € L?(Q),t € L?(T'r),g € HZ (L), we consider the
following unilateral problem:

find u € C, such that (1.1)
(Vu,V(v—u)) > (f,v—u)+<t,v—u>pr, VY veCl, '
where (-, -) denotes the L?() inner product, < -,- > denotes the duality product, and
C={veH (2 :v>g on I'c} (1.2)
and
Hi () ={veH' () :v=0 on I'p}. (1.3)

It can be easily seen that the variational inequality (1.1) is equivalent to the following mini-
mization problem:

find v € C, such that (1.4)
F(u) =min F(v) V v € C, '
where .
F(v) = §(VU,V’U) —(f,v)— <t,u>p, . (1.5)
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By the general variational calculus, problem (1.1) (or (1.4)) is equivalent to the following dif-
ferential problem:
—Au=f in L*(Q),
u=0 on I'p in H%(FD),&,u:t on T'r in H_%(FF),
1
u—g>0 on I'c in HGH(Tc),0,u>0 on T¢,
< Oyu,u — g >r.,=0.

(1.6)

Here and what follows, the general notations of Sobolev spaces (c.f. [1], [8]) are used. And
we introduce the following notations for sequence use:

Hyin () = {q € (L*())* = L*(Q) : divq € L*(2)}, (1.7)

with norm
. 1
lallaiv = {lldll3.0 + lldivall§ o }=- (1.8)

The paper is organized as follows: In Sect.2 we derive a saddle-point problem with La-
grangian multiplier to relax the constraint: divp + f = 0 in 2, which is refered to as the dual
mixed problem; And in Sect.3 the existence and uniqueness of the solution of the dual mixed
problem are presented. Finally, in Sect.4, Raviart-Thomas finite element approximation (k > 0)
to the dual mixed problem is considered, and the error bounds O(h%) (for k = 0) and O(h?)
(for k = 1) are obtained respectively. Additionally, in Appendix we present the equivalence of

lull 4

1
and in v V p€ HE(T¢), which is used in the context.
Hg(Te) vEH(Q),yv|rg=p [olle ¥ p o0 (L'c)

2. Derivation of the Dual Mixed Problem

Along the lines of [3], we now derive the dual mixed formulation for the unilateral problem
(1.1).
Lemma 2.1.V v C

1
F(U) = Sup{_i(q; q)+ <aqv,9g >Fc}) (21)
acK
where

K={qeQ:q,>0 on I'c}, (2.2)
Q={a€ Hy(Q) : divq+ f =0 in Q,q, =t on T'p}, (2.3)
and v denotes the outer unit normal vector on 0X), and q, = q - v the outer normal component

of q on 01.

Proof. V v € C,q € K, by Green’s integration formula and (1.5) we have
F(v) = L(Vou, Vv) + (divg,v)— < q,,v >r,

(Vu,Vv) — (q,Vu)+ < qv,v >r,,
(V’U, V'U) - (q7 V’U)+ < qv, 9 >FC
5@, @)+ < qv,9 >re,

VIV I
| NN

and the equalities hold iff ¢ = Vv in Q and v =g on TI'¢. Thus the lemma is proved.
From (2.1) and the problem (1.1), we have the following dual problem:

infyec F(U) = inf,ec SqueK{_%(qa q)"‘ <qu,9g >Fc} (2 5)
= - infqu{%(q, Q)— < q,9 >rc},
which is equivalent to the following problem:

{ find p € K, such that
(P,a—p) >< 9,qv —Pv>r, YV q€K.
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First we introduce the Lagrangian multiplier as in [3] to relax the constraint ¢, > 0 on I'c in
the convex set K. V¢ € H-2(T'¢), let

0, £€>0 on I'¢
07 (€]0) :{ +oo€, £E<0 on T, (2.7
then
5*(£]0) = sup < & p >rg (2-8)
HEA
where L
A={pe HZ(c) : pn<0 on Tc}. (2.9)

Thus from (2.7), (2.8) and the problem (2.5), we have

inquK{%(qa q)_ < qv, g >FC}
= infqee{3(a,9)— < ¢, 9 >rc +67(¢,]0)} (2.10)
= inquQ supuEA L(q7 /’L)a

where

1
L(q,p) = 5((1, A+ < Qb —9g>re - (2.11)

It can be seen that the problem (2.10) is equivalent to the following mixed variational
inequalities:
find pe@,\€ A, such that
P, A)+ <@, A—g>r.=0 V q€ Qo, (2.12)
<Pt — A>T, <0 V peA,

where
Qo ={q € Hy;»(Q) : divgq=0 in Q,q,=0 on T'rp}. (2.13)

In order to relax the constraint: divq+ f = 0 in Q in the problem (2.12) (see the expression
of the set @ in (2.3)), we introduce another Lagrangian multiplier as follows: Let

Qf ={d € Huiv() : ¢y =1t on T'rp}, (2.14)
Qo ={a € Haiv(?) : ¢» =0 on T'r}, (2.15)
and V w € L?(Q) let
_J 0 if w=0, _
O(wl{0}) = { +o0o otherwise ves;;gﬂ)(v,w), (2.16)

then the saddle-point problem (2.10) can be written as follows
infgeq sup,ca{3(a, @)+ < @it — g >r.}
= infgeq; supLea{s (4 @+ < @, it — g >ro +0(diva + F1{0})} (2.17)
= infquf SUP[,v]eAx L2(Q) L(q; [p,v]),

where

1 .
L(g; [1,v]) = 5 (@, @) + (diva+ f,o)+ < qv, n =g >rc - (2.18)
It can be seen that the problem (2.17) is equivalent to the following dual mixed problem:

find p € Qf,[\,u] € A x L3(Q), such that
(p,q) + (divg,u)+ < ¢, A\—g >r.=0 V q € @8, (2.19)
(divp + f,v —u)+ < P, —A>r.<0 V v e L*(Q),u € A,

and the second inequality in (2.19)is equivalent to the following relations:

(divp + f,v) =0 V v e L*(Q), (2.20)



736 L.H. WANG
and

<puyb—A>r. <0 V peA. (2.21)
Thus the problem (2.19) can be written as follows:

find p € Q;,[\u] € A x L3(Q), such that
(p,q) + (divp, divq) + (divg,u + f)+ < ¢y, A — g >r=0

v qeQ (2.22)
(divp+f,v—u)+<p,,,,u—)\>p0§0 v [M)U]GAXLZ(Q)'
Let,
a(p,q) = (p,q) + (divp, divq), (2.23)
b(a; (i, v]) = (divg, v)+ < qu, b >re, '

then the problem (2.22) can be written in the abstract formulation:

find p € Q;,[\u] € A x L3(Q), such that
{ a(p,a) +b(q; [\, u]) = —(f,diva)+ < qv,g >r. VY q€ Qg, (2.24)
bo(p; [, 0] = [Nu]) < =(fiv—u) ¥ [p,0] € A x L*(Q).

Remark 2.1. Here we present the reason why it is not needed to introduce another Lagrangian
multiplier leraxing the constraint: divp —u+ f = 0 in  for the unilateral problem in [2]. The
problem in [2] is: Given f € L?(Q2),g € H'(Q), find u € C such that

(Vu, V(v —u)) + (u,v —u) > (fv—u) ¥ veC, (2.25)

where
C={veH'(Q):v>g ae on T} (2.26)

It can be easily seen that the problem (2.25)is equivalent to the following problem

find weC, such that
{ J(u) =min J(v) ¥V v e C, (2:27)
where )
J(v) = 5{(Vo, Vo) + (v,0)} = (£, 0). (2.28)

Noting the following inequalities: ¥ v € C' and q € K = {q € Hyi»(?) : q, >0 on T},
%(VU) V’U) Z _%(CL q) + (VU)q)

> —%(q, q) — (divg,v)+ < gy, v > (2.29)
> _§(q> q) - (dZ’Uq,’U)-l— <qv,9 >r,
and
t(v,v) = (f,v) > —1(divq + f,divq + f) + (divq,v) (2.30)
From (2.28)—(2.30), we have V v e C,q € K,
1 . . . 1
J(’U) Z _5{((1’ q) + (d“}qv d“}q)} - (f7 d“}q)+ <g,q >r _§(fa f)7 (231)
from which it can be seen that V v € C
1 . 1
J(U) = SUQ{—ﬁ[q, q] - (f; dZUCl)-f- <9,q >F} - §(f;f)7 (232)
qeK

where
[p,q] = (p,q) + (divp, divq). (2.33)
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Then the problem (2.27) can be rewritten as follows:

inf, ¢ & supge g {—3la, af — (f, diva)+ < g,qv >r} — 5(f. f) (2.34)
:—infqef({%[q,q]+(f,divq)—<g,q,, >F}_%(f)f)7 '

which is equivalent to the problem (see [2]): Find p € K such that

[P,a—p| >< g, —p» >r —(f,div(q —p)) YqeK. (2.35)

Due to the inequality (2.30), the constraint: divp —u + f = 0 in Q is absent from K in the
problem (2.35), while the constraint: divp + f = 0 in Q appears in K in the problem (2.6)
without the lower order term.

3. Existence and Uniqueness

In this section, we consider the existence and uniqueness of the solution of the dual mixed
problem (2.24). It can be seen that the bilinear form a(-,-) is continuous and coercive on
Hyip(22), and then by Theorem 2.1 in [2], in order to ensure the existence and uniqueness of
the solution of the problem (2.24), it is sufficient to prove the following lemma.

Lemma 3.1. There ezists a constant 3 > 0, such that

sup 2L S g

o HR)E Y (ko] € A x LA(Q). (3.1)
acQ;  |lalldiv HZ(Tc)

Proof. For any given u € A,v € L*(), there exists a solution w € H?(2), such that

Aw=wv in §, (3.2)
w=0 on I'p,0,w=0 on 'p and w=pu on T¢. ’
Let q = Vw, then
b(q; [, v]) = (divg, v)+ < qu, p >ro= |I[§ o+ < @, 1 >r - (3.3)
We now want to prove, on the one hand, that there exists 4 = const. > 0, such that
10ll6 o+ < @, >re> B{llvlleo + el ). (3:4)
HOO(FC)

1
To do this, by the definition of Hg)(I'¢)-norm and Poincare inequality (see the Appendix),

2 <C inf 2 < Cllw|? o < Clwl? 6. 3.5
““”HO%)(FC)— CeHlmmrc:uIICllm_ lwllf o < Clwli o (3.5)

By Green’s formula,
|w|i§l =<y, t >rc —(v,w) < <y, b >T¢ +C||U||0,Q|w|1y9’

from which it can be seen that

wli @ < C{lll§ o+ < a1 >rc}, (3.6)
thus the inequality (3.4)is proved. On the other hand, we want to prove that
lallZi < CIIG o +1lul? y 3. (3.7)
Hg, (Pe)

In fact, we have

< >r.< |0 f < (lw]? 2 V3 i
Qs b >1e < || uwllfg,rcllullHO;O(Fc)_(|w|1,9+||v||o,9) IIMIIHO;O(FC),

from which and (3.6), it can be seen that

lwlii o <Clllvllga +lul?, — } (3.8)
H2 (T

00 o)
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Thus
lallZ = llallg.e + lldivall o = [w]? o + [|v][5 o,

from which and (3.8), the inequality (3.7) is proved. Thus from (3.3), (3.4) and (3.7) the proof
of the lemma is completed.
From the Lemma 3.1, we have

Theorem 3.1. Assume that f € L?(Q),t € L*(T'r) and g € HO%O(FC), then there exists unique
solution (p,[A,u]) of the problem (2.24) (or (2.22), or (2.19)).

And we also have .
Theorem 3.2. Assume that f € L*(Q),t € L*(T'r),g € Hg, (D) and u is the solution of the
problem (1.1), then (p, [\, u]) = (Vu, [g — u,u]) is the solution of the problem (2.19).

Proof. (i) Since u is the solution of the problem (1.1), and taking account of (1.6), then
Y q € @, by Green’s formula, we have

(VU, q) + (dZUq, u)+ <Qqu,—u >FC
= ch quuds— < q,,u >p,= 0.

(ii) In order to prove the second inequality of (2.19), it is sufficient to prove the relations (2.20)
and (2.21). In fact, by the first equality of (1.6), it can be seen that the equality (2.20) holds.
And by the relation on I'c in (1.6), it can be seen that Yu € A

< Oy, p+ (u—g) >r.=< Opu, p >r,< 0.

Thus the proof is completed.
Theorem 3.3. Let (p; [\, u]) be the solution of the problem (2.23)-(2.24), then p is the solution
of the dual problem (2.6).

Proof. Firstly, by the lerations (2.20), (2.21), it can be seen that p € K. Next Vq € K, then
q— p € )}, and noting (2.21), we have

(P,a—P)— < 9,4 —Pv >re=a(P, 4 —P)— < 9,4 — Pv >T¢
= b(p —q; P‘v’u‘]) = (di’l)(p - q)>u)+ < Dv — qya>‘ >Fc (39)
=<py — qya>‘ >FCZ 0.

4. Finite Element Approximation

We now consider the mixed finite element approximation of the problem (2.23)—(2.24). Let
Th be the quasi uniformly triangulation of the convex polygonal domain €. Let @)} be Raviart—
Thomas space (k > 0) (see [3]) associated with Tp:

Qn ={an € Hgiv(Q) : an|r € RTy(1) ¥ T € T}, (4.1)

and
Qfn ={an € Q} : /Qhu¢hd8 = /ths V o € Pr(e), eCTr}, (4.2)

and
Qon = {an € Q} - /qhu¢hd8 =0V ¢ € Prle), eCTp}. (4.3)

Let M, C L?(Q) be the space of piecewise polynomials of degree k on Q, and let Aj, be the
nonpositive piecewise polynomials of degree k on ' (not necessarily continuous):

Ap ={pn € L*(Cc) : pinle € Pr(e) V¥ e CTe, and py <0 on T} (4.4)
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Then the finite element approximation of the problem (2.23)—(2.24) is as follows:
find py € Q3y, [An,un] € Ay x My, such that
a(Pr, dn) + b(an; [An, un]) = —(f, divar)+ < qrv, g >rc
x (4.5)
v qh € Q0h7
b(pn; [, vl = [An,un]) < —(f,vn —un) ¥ [wn,va] € Ap x My,

where the bilinear a(-,-) and b(+; [, ]) have been defined as (2.23).
We now introduce the finite element approximation of the problem (2.6) as follows:

{ find pp € Ky, such that (4.6)
a(Pr,dr — Pr) >< G, G — Phv >Te ¥V an € Kp, '
where .
Kh:{thQ:h:(dlvqh+favh):0 v UhEMha (47)
and < Qny, i >1e<0 YV pp € Ap}. '
We have

Theorem 4.1. Let (pn;[An,up]) be the solution of the problem(4.5), then pn satisfies the
problem (4.6).
Proof. Firstly, from the second inequality in (4.5), it can be seen that

(divpp + f,on) =0 YV v, € My,
< Phos i >1c<0 Y pp € Ay,
< Phvy An >1e= 0,

which means that p;, € Kj. Next, for any given q; € Kj,, then q5 — pr, € Qg),, and from the
first equation of (4.5) and (2.23), we have

a(Ph, dn — Ph)— < g, qhw — Phv >T¢

= b(Pr — an; [An, un]) + (f, div(pr — dr))

= (div(pn — qn), un)+ < Phv — Qhw, An > +(f, div(Pr — qn))
=< Phv = Qhvy A >Te= — < Qhwy An >2> 0,

here we have used that (div(pp—qn),un) = 0 since pp,qn € Kp, and also used that (f, div(pp, —
qn)) = (divpp+f, div(prn—an))—(divps, div(pr—ds)) = 0 since pp, qn € Kp and divpy, divqgy, €
My, and < phy, Ap >ro= 0. Thus the proof is completed.

In order to insure the existence of the unique solution of the finite element approximation
(4.5) and establish the error estimate, we need the following lemma and the discrete inf-sup
condition.

Lemma 4.1 (see [3]). Let the interpolation operator IIj, : Ha;, () = Q7 be defined as follows:
For any given q € Hyi (Q),IInq € QF,II.q = IIq|-, such that

[ (a=Tq)pr1dx =0 V pr1 € (Pr1(7))?, (4.8)
J.(@v — (I:Q))perds =0 V per € Pr(e),e C O, '

with k > 0(pr—1 = 0 for k = 0), then there exists a constant C depending only on k and on
the shape of T, such that

lldiv(a — IIna)lo,0 < Ch™|divg|m,o '
with 1 <m <k+1, and
IThallaiv < Cllallaiv- (4.10)

Theorem 4.2. Let Q}, be Raviart- Thomas space with k > 0, then there exists a constant 3' > 0,
such that

lanllaiv

b H U 1
P, e, NID > g1 ([luy 2 1+ [lon 3 0)? )
A [uh,vh] € Ay x My,
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Proof. For any given up € Ay, and v, € My, let a satisfy the equations:
Aa = vy in , Oya = up on T, a=0o0n 0N\Tc. (4.12)

Let g = Va and qp = I1,q, then q; € Qf, since the second equality of (4.8). Thus from (4.8),
we have

b(ITrq; [pn, va)) = (divllpq,vp)+ < Ihq - v, pp, >1e
= (divq,vp)+ < q -V, up, >rg
= llonlls o + lluall3 re.- (4.13)

/Aa-ada::/a-vhda:,
Q Q

from which, and by Green’s formula, we have

||Va||gQ:/ ,uh-ads—/vh-ada:
’ e Q

< leallo,rellallore + [lafloellvallo.e < Cllallia(llvnlloe + leallor),

From (4.12) we have

Poincare inequality yields

IVallo,e < Cllvnlloe + llkallore)- (4.14)
By (4.10) and (4.14)

MaallG, < Cllalli, = Clallf o + [1divall§ o)
= C(IVall§ o +11Aallf o) < Cllalf o + llonllf )
< Clllonllg o + lunllg r,)- (4.15)

From inequalities (4.13) and (4.15), the proof is completed.

We now turn to consider the error estimate.
Lemma 4.2 (see [2]). Let (p;[A,u]), and (pn; [An, un]) be the solutions of the problems (2.24)
and (4.5) respectively, then ¥ qpn € Ky, the following abstract error estimate holds

a(Pp —Pn,P—P1) < a(p —Pp, P — ) + b(Pr — an; [\, u]). (4.16)

Proof. By the Theorem 4.1,V qp € Ky, we have

a(p = Pp,dn — Pn) = a(P, ), — Pr) — a(Ph, dn — Ph)
< a’(pvqh - Ph)_ < 9,qhvy — Phv >T¢

= b(pPr — an; [\, u]) + (f, div(pn — an))

= b(pr — an; [\ u),

in which the last second equality holds since p, — qn € Qf, C @F, and the last equality holds
since pp, qr € K, and then (f, div(pr, —qp)) = 0 (by the arguing in the proof of Theorem 4.1).
Thus

a(p = Pp,P — Pp) = a(P — Py, P — as) + a(P — Pps dn — Pr)

<a(p— Py, P —a,) +b(Pr — an; [A, u]).
The proof is completed.

Firstly, we present the following error estimate of the lowest order approximation (i.e., k = 0)

as follows.
Theorem 4.3. Let T, be the quasi uniformly triangulation of the convex polygonal domain
Q, Q; be Raviart-Thomas element space with k = 0,with respect to Tp, and (p;[A,u]) and



The Dual Mixed Method for an Unilateral Problem 741

(Pr; [An, un]) be the solutions of the problems (2.24) and (4.5) respectively, with the regularities:
divp € HY(Q) and u € H*(Q)(i.e.,p € H (Q),\ € H2([¢)), then the following error estimate
holds: ,
P = Prllaiv < ChE(|IpllL0 + |divplo + [ulo + (Ao ), (4.17)
with C' = Const. > 0 independent of h.
Proof. By the definition (2.23) and let q; = Hp € K}, in Lemma 4.2, then

b(pn — an; [N, ul) = (div(pn — Ikp),u)+ < prv — (IThP)w, A >t - (4.18)
Firstly we estimate the first term on the right hand side of (4.18). Let

1
Py = ﬂ/vda:, Pv|, = Pv, ¥V v e L*(Q),
T T

then P : L?(Q2) — My, is the L?- interpolation operator. Thus

(div(pr, — p),u) = (div(py — P),u) + (div(p — I1,p), u)

= (div(pp — p),u — Pu) + (div(pn — p), Pu)

+(div(p — Opp), u — Pu) + (div(p — Up), Pu)

= (d“}(ph - p)au - PU’) + (d“}(p - th)au - P’U,),
here we have used (div(p, — p), Pu) = (divpy, + f, Pu) — (divp + f, Pu) = 0 since p;, € K},
and p € K, and (div(p — lI,p), Pu) = 0 since the Lemma 4.1. Then by the interpolation error
estimate and (4.9), we have

div(py, — IInp, )
< [|div(p — py)llo.ellu — Pullo,a + [|div(p — Ixp)llo.cllu — Pullo,.q (4.19)
< Chlldiv(p — pp)llo.oluli,o + Ch?|divpi oluli q-
Next we estimate the second term on the right hand side of (4.18). Let A € Ay, be the L*—
projection of A, then
< Phw — (UaP)vy A >1e=<Phw — Pv, A >ro + < pu — (IP)w, A >rp - (4.20)
And by Lemma 4.1, we have
< pv— (th)l/7 A >F07 _
=<py — (th)m)‘ - A >re + <Py — (th)ll7>‘ >Te

=<py — (Iap)u, A = A > < [Py = (ap)ullo,re 1A = Allo,ro
< Chllpy — (Map)vllo.re Al re-

By interpolation error estimates (see [4], [9]),it can be seen that

P = MaP)ullg . = Xecre 1Py = (Mp)uIG
SO ocreeco- (WP = Tpll§ . + hlp — Tipl? ;) < Chlpf; o,

from which and (4.21), we have

(4.21)

(4.22)

< py — (Mhp)s; A >r.< ChE plialAllLre .- (4.23)

As to the first term on the right hand side of (4.20), since pp, € Kp, < Phy, th >To < OV pup € Ap,
and pp, € Py(e) Ve C T, then ppy > 00n ', and from that A < 0on ', and < p,, A >p.= 0,
we have

< Phw —Pvs A >re =< Phvy A >1< 0. (4'24)
From (4.18), (4.19)—(4.21), (4.23) and (4.24), the proof is completed.

Lemma 4.3 (see [2]). Let (p, [\, u]) and (Pr, [An,un]) be the solutions of the problems (2.24)
and (4.5) respectively, then the following error estimate holds

1A = Anllo,re + [lu = unlloo

. . 4.25
< C{Ip — Pallaio + i e, A — snllore +info,enr, e — valloa), (4.25)
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where C' = const. > 0 independent of h.
By the Lemma 4.3 and Theorem 4.3, we have the following error estimate
Theorem 4.4. Under the assumptions of Theorem 4.3, the following error estimate holds

1A = Anllo,re + llu = unllo.o (4.26)
< Chi{lpl,e + |divpli,e + luli,e + [[All1re }-

Remark 4.1. The optimal error bound O(h) has been obtained for the lowest order approxi-
mation of the mixed finite element method of the unilateral problem by Brezzi et al., [2] under
the regularity: v € H*(2) N W1>(Q), and the assumption for the free boundary:

the number of points in the free boundary set
where the constraint u > g changes from binding to (4.27)
nonbinding is finite.

Next we present the error estimate of the mixed finite element approximation (4.5) for k = 1,
under the regularity: v € H3(), and without the assumption (4.27).
Theorem 4.5. Let Ty, be the quasi uniformly triangulation of the convex polygonal domain §2,
Q; be Raviart-Thomas element space for k =1, and M}, and Ay be defined as before for k =1,
with respect to Tp. Let (p;[\,u]) and (pr;[An,un]) be solutions of problems (2.24) and (4.5)
respectively, with regularity: uw € H?(Q)), then the following error estimate holds:

P — Pullaiv + 1A = Anllore + [Ju — unllo
3
< Chz(Ipl2,o + lIAllz re)- (4.28)

Proof. 1t is sufficient to modify the proof of Theorem 4.3 as follows.
Firstly, in order to estimate the first term on the right hand side of (4.18), let v’ € M}, be
the piecewise linear interpolation of v € H*(Q), then

(div(pn — Ip),uw) = (div(pr — p),u — u’) + (div(p — pr),u — u’)
< ldiv(pn — p)llo,ollu — u'llo,o + lldiv(p — Iy p)llo.ellu — v |lo.o (4.29)
< Ch?*||div(p — pu)llo,olul2,0 + Ch3|divp|i o|ul2,q,

here we also have used (div(py — p),u’) = (divpp + f,u!) — (divp + f,u!) = 0 since py, € K,
and p € K, and (div(p — IIp),u’) = 0 by Lemma 4.1.

Next we estimate the second term on the right hand side of (4.18). Let Al € Ay be the
piecewise linear interpolation of A € H 3 (T¢e), then

< Phv — (th)l/;/\ >re=< Phv _pl/;/\ >Ir'e +<py— (th)m)‘ >Ir'e
=< Phuv, A >Fc + < DPv — (th)ll7 A >Fc (SZ"I’LC@ < DPv, A >Fc: 0)

<< p, — (pp)u, A >rg (since ppy, > 0,A<0 on T¢e)
=<p, — pp)u, A = A >r. + < py, — (p)y, Al >r.
=<py — (th)l/7 A— >\I >Te (Since <pv— (th)l/7 >‘I >Te= 0’ (430)

by Lemma 4.1)
3
<llpv = (@ap)ullorc A = Mlore < ChElIpy = @ap)yllo.relNlz re

3 _ 1
<C{E crpocor (W7 Ip = Il - + Alp — Tapl )} IAg r,
< OB [plaall Mz e -

From (4.18), (4.29) and (4.30) we have

Ip = Pallaic < Ch2 (Iplag + A1z ry)- (4.31)

Then by Lemma 4.3, the proof is completed.
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Appendix

In this appendix, we will present a result, which we have used in (3.5).

We assume that the convex bounded domain €2 in R? satisfies the following hypotheses: the bound-
ary 02 of Q is smooth enough, the part I'c C 09 of boundary with the end points Ps,, Ps,, and the
right triangle with hypotenuse P, Ps, is contained in €.

We have the following

1
Proposition. Let Q satisfy the above hypotheses, then for any given p € HZ) (T ), the norm ||u/|

OO(FC)
s equivalent to inf llv||l1,0, where v : HY(Q) — H%((‘?Q) is the trace operator.
vEH(Q),yv=p on T¢
Proof. By the definition (see [A3]),
IU’(PS) — AU’(PS’) 2
L R B B e o KL
HE (To) {llelo.rc re Jre r(Ps, Psr)
p(P:)” / p(Ps)”
+ —— _dP; + ——2 _dP, }2 (A1)
/[‘ (Psapsl) T'c (PS7P32)
Thus by [A1], it can be seen that the norm ||u|| 1 is equivalent to
H020 T'c)
inf llv]]1,e, (A.2)
veEH(Q),yv=f on OQ
where /i is the zero extension of p on 0€:
- ) pon Ig,
r= { 0 on 9Q\Tc. (A.3)
Thus there exists a constant C; > 0 independent of u, such that
1
[l > C inf lolhe ¥V pe Hi(To). (A.4)
Oo(rc:) v € HY(Q)
yv=pon ¢

We now want to prove that there exists another constant C> > 0 independent of p, such that

1
Nl 3~ < Co inf olle ¥V pe Hg(To). (A.5)
Hgo (o) v e HY(Q)
yv=pon ¢

1
In fact, for any given p € HZ(T'¢) , and ¥V v € H'(Q),yv = p on T, firstly it is obviously seen that

11ll8,re < Iolls 00- (A.6)

Next, by Schwarz inequality, we have (see Fig.1)

/F %dP

< 2{/ RSSl))QdPS + / (U(PS1) _ U(Rssl))QdPs}

Ps;-Rssl) T(P517R831)
Jire dyv(ap,, ,y)dy)? (77 dev(w,yp,, )de)’
- 2{/ For dP, +/ d dP,}
lyr, — yp,, | lzp, —zp,, |

<2{/ / dyv(xp,, ,y)) dydP;s +/ / dov(z,yp,, ) dudPs}
o] o]

< 2|U|1,Q, (A.7)
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and similarly

/F 7(’“;3(51351)6113 <220, (A.8)

Finally we estimate the second term on the right hand side of (A.1) in the way as [A.2]. To do this,
we need a classical inequality, Hardy inequality (see [A.4])

/0 ff d<4/f (A.9)

where 0 < A < co. By the assumption of the domain 2, we have (see Fig.2),

v(Ps) —v(Py) 2
/ / P37 ) ) dP,/dPs
v(Ps) —v(Rssr) 12
<2 dP, dPs
/Fc /FC T(PS7 s’) )
Ps ) Rss’)
+2/ / dPsdP, . A.10
A= el (A.10)
Ps ___—.rc PSZ Ps' FC PSZ
Ps
Ry
Ps, Rgs, Ps,
Fig.1. Fig.2.

We now estimate the first term on the right hand side of (A.10)

s' Ozv(z, yp,)dz
/ / )2dP, dP; _/ / V2dP, dP;
e J T ) re Jre |1‘P, —Tp,

dev(z,yr, )z _
gc/ / ( E )2dzp,,dP;,
o Jzx

lzp, —zp,|

here we used dPy < Cdxp,, on I'c, since 952 is smooth enough. Then by Hardy inequality, we have

/ / PS,P) ))dP dP,

zp,
< 0/ / * (Owv(z, yp,)) dzdP, < C//(@Iv)dedy, (A.11)
e Jap, Q
and similarly,
/ / PS’)P (R“’)) dP,dP, <C’// dyv)2dzdy. (A.12)
re JTe ER s’)
Thus )
< .
/F /F P“P ) Sl = NP, dP, < Clollg. (A.13)
(e} C

From (A.6)-(A.8) and (A.13), the inequality (A.5) is proved. Thus the proof of proposition is
completed.
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