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Abstract

The nonlinear complementarity problem can be reformulated as a nonsmooth equa-
tion. In this paper we propose a new smoothing Newton algorithm for the solution of
the nonlinear complementarity problem by constructing a new smoothing approximation
function. Global and local superlinear convergence results of the algorithm are obtained
under suitable conditions. Numerical experiments confirm the good theoretical properties
of the algorithm.
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1. Introduction

Let F' : R — R™ be a continuously differentiable mapping and X be a nonempty closed
convex set in R™. The variational inequality problems,; denoted by VIP(F,X), is to find a
vector z* € X such that

Fa)"(x—2*) >0 forallze X (1.1)

If X = R%, VIP(F, X) reduces to the nonlinear complementarity problem, denoted NCP(F),
which is to find z € R™ such that

z>0,F(z) > 0,21 F(z) =0. (1.2)

Two comprehensive surveys of variational inequality problems and nonlinear complementarity
problems are [1] and [3]. The study on iterative methods for solving VIP(F, X') and NCP(F) has
been rapidly developed in the last decade. One of the most popular approaches is to reformulate
NCP(F') as an equivalent nonsmooth equation so that generalized Newton-type methods can
be applied in a way similar to those for smooth equations.

Much effort has been made to construct smoothing approximation functions for approach
to the solution of NCP(F) in recent years [2, 4, 5, 6, 7, 18, 19]. This class of algorithms, called
smoothing Newton method, is due to Chen, Qi, and Sun [2]. In [2], the locally superlinear
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convergence of a smoothing Newton method is established. In this paper, we will construct
a new smoothing approximation function and present a new smoothing Newton method. The
proposed smoothing Newton method meets the demands used in the Chen et al. in [2] and is
easy to implement. We will show global and superlinear convergence of the proposed method
under the same assumptions as used by Chen et al. [2] and by Qi et al. [19].

Next we introduce some words about our notation: Let G : R™ — R™ be continuously
differentiable. The VG(z) € R™*™ denotes the Jacobian of G at a point z € R". If m =1,
VG (z) denotes the gradient of G at a point € R"™. If is G : R™ — R™ only local Lipschitzian,
we can define Clarke’s [12] generalized Jacobian as follows:

OG (x) := conv{H € R™*"|3{z*} C D¢ : 2% — z and G'(z*) — H};

here Dg denotes the set of differentiable points of G and convsS is the convex hull of a set S.
If m =1, we call 0G(z) the generalized gradient of G at z for obvious reasons.

Usually, 0G(z) is not easy to compute, especially for m > 1. Based on this reason, we use
in this paper a kind of generalized Jacobian for the function G, denoted by 0¢cG and defined
as(see [13])

0cG = 0G1(x) x 0G5 (x) x -+ x OG(x),

where G;(z) is ith component function of G.

Furthermore, we denote by ||z|| the Euclidian norm of = if x € R™ and by ||A|| the spectral
norm of a matrix A € R™ "™ which is the induced matrix norm of the Euclidian vector norm.
If A€ R™*" is any given matrix and M C R\*\ is a nonempty set of matrices, we demote by
dist(A, M) := infge || A — B|| the distance between A and M.

The remainder of the paper is organized as follows: In the next section, the mathematical
background and some preliminary results are summarized. The algorithm is proposed in de-
tail in section 3. Section 4 is devoted to proving global local superlinear convergence of the
algorithm. Numerical results are reported in section 5.

2. Preliminaries

In this section, we first introduce the conception of NCP-function. A function ¢ : R2 — R
is called an NCP-function if ¢(a,b) = 0 is equivalent to a > 0, b > 0, ab = 0. Let us define the
function H(x) = (hy(z), h2(x),- -+, ha(x))T, where for each i = 1,2,--- n,

hi(z) = min{x;, F;(x)}. (2.1)
Then NCP (F') can be reformulated as the following nonsmooth equation:
H(z)=0. (2.2)

Function h; and hence H are not differentiable everywhere but semismooth in the sense of
Mifflin [17] and Qi [11] if F' is continuously differentiable. Denote

alz) = {i: Fi(z) <z}, B8(x) ={i: Fi(x) = z;},v(x) = {i : Fi(z) > z;}.

Then we have

Fi(x), if i € a(x)
hi(z) =< min{x;, Fi(x)}, ifi€ B(z)
i, if i € y(x)

By using the chain rule for generalized derivatives of Lipschitz functions(see [12]), we have the
following expression of c®(z) = Ohy(x) x Oha(x) X --- X Ohyp(x) for each i =1,2,---,n,
{VF;(z)}, ifi € o)
Ohi(z) = {Z(L+pler, 3(1 - p)VE(2)}, ifi€ B(x) (2.3)
{ei}, if i € y(z)
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where e; denotes the ith unit vector in R™ and parameter p € [—1,1].

Smoothing techniques have attracted much attention in recent years [2,4-7,10-11,21-23].
Now let us construct a new smoothing approximation function of NCP(F') and discuss its some
useful properties. we define the function H,(z) = (hi(z,p), ha(z, ), -, hn(z, p))T as follows:

Fi(z), i€ alz,p),

Fi(a) + 2= ng};) ~ i€ o),

(Fz(x) gp]g’ — /J‘)3’ 1 € ﬁl(m7u)7

Ty, i€ y(w,p)

hi(z,p) == (2.4)

z; +

where

a(a,m) = {i: Fi(e) <@ - i},

ﬁl(mhu) = {Z tmp —p < Fl(x) < mi}:

Bz, p) = {i:x; < Fi(z) < @i + p},

Y(@, 1) = {i: Fi(z) > @i + p},
It is not difficult to see that h;(x, u), for every i = 1,2, -+ -, n, is continuously differentiable if u >
0 whenever F is differentiable. And it is easy to find the fact that a(x, u) = a(x), 81 (z,u) U

B2, ) = B(x),y(w, ) = ~y(z) as p— 0.
It is not difficult to show the following result.

Lemma 2.1. For any ' > pu > 0, we have for all i =1,2,---,n,
haCe, ) — halar, )| < 5 — ), Vi € R
Particularly, we have for every p > 0,
haCe, ) — (@) < 1, Vr € B
Lemma 2.1 shows that h;(x, 1) — h(x) uniformly as u — 0. Furthermore, we have

Lemma 2.2. For any p' > u > 0, we have,

4/n
1y (e) — Hala)ll < 0 ), v € R (2.5
Particularly, we have for every p > 0,
44/n n
1) ~ H@) < Y%, ve € B (2.6)
Note that h;(x, u), for all i = 1,2,---,n, is differentiable everywhere if p > 0 whenever F
is differentiable. By direct deduction we obtain for each i = 1,2,---,n,
VFi(z), i € a(z,p),
N 2
VE(@) + BB M o - VR W), i€ mn),
Vhi(e,p) = ) (2.7)
Fy(z) — a; — .
et BELGm (VR @) —c), i€ b,
€, i € y(z,pm).
Denote
07 i € Oé(.’L',,U/),
oo 2
(ml F%l(j;) ,u) ) Z € ﬁl (mau)a
ai(ma ,LL) = 2
Fy(z) — a; — .
1- B ofi e o)

1, i € y(w,pm),
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17 i € Oé(.’L',,U/),
i — Fi — )’ :
( ) 1- (x 21(;1;2) /’L) , L € ﬁl (mau)a
bl Z,un) = 2
( (‘T) 2,[;12; ,u) ) Zeﬁ?(mau)a
0, i €y(w,p).
Then we get
Vhi(z,p) = ai(z, p)e; + bi(z, p) VE; (z). (2.8)

Let us introduce the definition of the Jacobian consistency property [2, 10].

Definition 2.3. Let H = (hy,hs,--+,hy,)T : R* — R" be a Lipschitz function in R". We
call H, : R* x Ryt — R" a smoothing approzimation function of H, if H, is continuously
differentiable and there exists a constant ¢ > 0 such that for any x € R"™ and p > 0,

|1Hy(z) = H(2)]| < cp. (2.9)
Further, if for any x € R"™,

hﬁ} dist(VH,(z), OcH(z)) =0, (2.10)
o

then we say H and H,, satisfy the Jacobian consistency property, where OcH (x) defined by
OcH(z) = Ohy(z) X Oha(x) X --- X Ohy(z).
The inequality (2.6) implies that H,(z) approximates H(z) uniformly. Moreover, we can

show that H(z) and H,(x) satisfy the Jacobian consistency property if F' is continuously
differentiable.

Lemma 2.4. Let € R" be arbitrary but fixed. Then functions H(x) and H,(z) satisfy the
Jacobian consistency property, i.e.,

liILIOI dist(VH,(z), OcH(z)) =0. (2.11)

Proof. By (2.7),

oo - | TR @B e, - VR, i€ falo,)
iR = (2) — 2 — p)? )
et B (V@ —e).  iehn).
Hence, we get .
Vhi(x,p) = §(ei + VF;(z)), i€ B(x). (2.12)

Thus, the assertion follows from (2.3) with p =0 if i € 8(z).

3. Algorithm

In this section, we give a detailed description of our smoothing Newton method for the
nonlinear complementarity problem. In the algorithm, the subproblem is the following linear
equation

VHNk (wk)d-{—H(ZEk) =0. (3.1)

Let {n} be a positive sequence satisfying

o0
> e <n< oo, (32)
k=1
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where 7 ia a given positive constant. At iteration k, we determine a stepsize A > 0 so that the
following inequality holds for A = Ag:

|H (zr, + M, )| < 1 Hpy, ()] — ol Ak N* + 11, (3.3)

where o > 0 is a constant and dj, is the solution of (3.1). Clearly, at each iteration k, (3.3)
holds for all A > 0 sufficiently small, since 7, is positive and independent of A\. The proposed
smoothing Newton method is stated as follows.

Algorithm 3.1.(Smoothing Newton Method)

(5.0) Choose constants p1,p2 € (0,1), 0 < v < min{ﬁ,%}, o1,09 > 0. Select a

positive sequence {7} satisfying (3.2). Choose an initial point o € R™ and a positive constant
pto < FIH (wo)||. Set k := 0.

(S.1) If ||H(z)|| = 0, stop. Otherwise, solve the linear equation (3.1) to get dy.

(S.2) If
| H (2 + di, ) || < pol [ Hy ()| = o1 lldi |1, (3.4)

then let A := 1 and go to (S.4).

(S.3) Let Ay be the maximum number in the set {1, py, p?,---,} such that A = p! satisfies
the line search condition (3.3) with o = o5.

(84) Let Tp41 = Tg + Aedy,.
(S.5) If (3.4) holds or v||H (xg+1)|| < pg, let

.Y 1
pr = min{ o || H (zera) ], 50} (3.5)

Otherwise, let pp41 := pg.
(5.6) Let k:=k+1. Go to (S.1).

Remark 3.2. It is easy to see that if Algorithm 3.1 generates an infinite sequence {zy}, then
H,, (xr) # 0 for k, and the positive sequence {p} is not increasing and satisfies

pe < || H ()], VE. (3.6)
It then follows from (2.6) that
44/n
e < A e+ 1 ).
Since /ny < :1; by (S.0), we obtain
pre < 0[[Hp, ()], (3.7)
1R L
where v = v/(1 - =%=v) € (0, \/ﬁ)
Remark 3.3. Define index set K = {0} U K; U K5, where
Ky = k1 H (zr4 )l < g}, (3-8)
and
Ky = (k|1 H (241, )| < p2ll H (p, i) || = o1 l|de I}, (3.9)

Then, we have

1 .
< sup, ifke K
= S QHk ) 3.10
Hk1 { =, ifk ¢ K. ( )
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Define matrix Gu(l') = (gl(a:,u),g2(:r,u), e ,gn(a:,,u))T, where gz(x)p‘) € Rn, i = ]-72> e, N,
are defined by

[ @il pe; + bi(z, p) VE(2), i € a(z) Uy(z),
g, ) = (% —1 fu2)ei + (% + 7 Jf'uz)VFi(a:), i € B(x,)- (3.11)

It is clear from (2.3), (2.8) and (3.11) that g;(z, ) € Ohi(x) for each i = 1,2,---,n and any
w#0,and G, () € OcH(x). By (2.8) and (2.12) , we get

0, i € a(r)Uy(z),
Vhi(x, p) = gi(x, p) = 1__'1_1_2(62. — VFi(z)), i€ B(x). (3.12)
7
Lemma 3.4. Let G(x,u) be defined by (3.11). If p > 0, then we have
IVH,(z) — G(z, p)l| < vnp(l +[|[VE(@)]). (3.13)

Proof. It suffices to show that for every i = 1,2,---,n,
IVhi(z, 1) — gi(a, Il < (1 + [VF@)]). (3.14)
For i € a(z) Uy(x), (3.14) holds clearly. If i € (x), then we get 1—!_17 < . This together

with (3.12) implies that (3.14) holds for every i € 3(x).
It is not difficult to see from Lemma 3.4 and (3.6) that

dist(VHy, (z1), 0cH (zr)) < Vroy(1+ IVF (i) D H (i) - (3.15)

4. Convergence Analysis

In this section, we discuss the global convergence of Algorithm 3.1. Firstly, we give the
following assumption.
Assumption A.
(i) The level set
Q= {z[||H(z)|| < 2[[H (w0)]| + n}

is bounded, where the positive constant n is given in (3.2);
(ii) For each v > 0, VH,(2) is nonsingular for any = € Q.

Lemma 4.1. Let {z} be generated by Algorithm 3.1. Then the following two statements are
equivalent:
() lim inf ||H (z)|| = 0.
k—o00

(i) Jim inf |H,, (r2)]| = 0.
Proof. From (2.6) and (3.6), we get

V)l < B Gl + 5% e < 1 ()l + L)L

This implies,

3
H < ——F||H, . 4.1
1@ < =g 1H )] (4.1)
Noticing that, by (S.0) of Algorithm 3.1, v/ny < 1/3, so 3 — 4y/n7y > 0. Similarly we have
4\/n 3+ 4y/ny

Hy, (i)ll < [1H @)l + —5—mx < 1H ()] (4.2)

3
This together with (4.2) shows the equivalence between (i) and (i7).

Lemma 4.1 reveals that if NCP(F’) has an accumulation point that is a solution of VIP(F, X),
then every accumulation point of {z} is a solution of NCP(F).
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Lemma 4.2. Let {x} be generated by Algorithm 3.1. Then for every k, we have {z;} C Q.

Proof. By (2.6), we have for every k,
4v/n
1L )< 1, )+ 257 e = ). (4.3
If )y, is determined by (S.2), then we have
4\/n
Vel < poll )l = il = e |2+ 0 s =), (4
If )i, is determined by (S.3), then we get
4\/n
3
Notice that p2 € (0,1), for every k we have from (4.4) and (4.5),

4./n
VGl < 1, )+ 2 s — ) . (46)

1H (@)l < W Hpseoy (@)l = o2llze — wpal® + == (-1 — ) + 1. (4.5)

Summing two sides of (4.6) for k, we obtain

4 o
1 Hps @Ol < ([ (@)l + ¢Tﬁ(’“’ ) + Y
4 4
<@ + 240 + 2 (g — ) + 1

Thus,

4/n 2
VL) < 1B ()l + 25 < B o)l + 2| H o)+ < 2 HGo)l| + 1.

This completes proof of the lemma.

Lemma 4.3. Let {z} be generated by Algorithm 3.1. If the index set K defined in Remark
3.3 is infinite, then we have

lim || (24)]] =0, (4.7)
k—o0
and every accumulation point of {zy} is a solution of NCP(F).

Proof. Since K = {0} UK; UK,. The assumption that K is infinite means that either K is
infinite, or K is finite but K is infinite. In the first case, it means (4.4) holds infinitely often.
Since ps € (0,1), this implies limy_,o0 ||Hp, (2x)]| = 0. Then (4.7) follows from Lemma 4.1.

For the latter case, without loss of generality, let K; = K = {0 =ko < k; < ks < ---}. By
(S.5) of Algorithm 3.1, we get

1H ()1 < 7ty =1 = 7 sy < SIH @ )l < - < (3 H (o)

This shows that limy_,o ||H (z1)|| = 0. Hence every accumulation point of {z} is a zero point
of H, or equivalently, a solution of NCP(F).

Theorem 4.4. Suppose that Assumption A holds and the sequence {x} is generated by Algo-
rithm 3.1 . Then the index set K must be infinite and hence

lim H(zy) =0.
k— o0

Moreover, every accumulation point of {x} is a solution of NCP(F).
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Proof. Suppose to the contradiction that K is finite. Then there exists an integer k& such
that puy = pg for all & > k. Denote uz = fi. Notice that the finiteness of K implies that K
defined (3.9) is also finite, and hence there is an index & such that when k > k, the stepsize Ay
is determined by (S.3) of Algorithm 3.1. That is, we have for every k > max{k, I~c},

| Hp(xr + Xedi) || < | Hp(x)l| — o2l Ardi]|* + - (4.8)

By Assumption A(ii), there exists a constant M; > 0 such that for allz € Q, [|[VHz(z) || < M.
Then for all k > max{k, k} sufficiently large ,

x|l = IV Hp ()~ - H(zp)l] < My||H (zx)]], (4.9)
and there is a constant M, > 0 such that for all £ > max{k, l::} sufficiently large ,
1H ()|l = IV Hp(wr)di || < Ms||dg]]- (4.10)

Without loss of generality, we can assume that {dj},cg — d(k — o) and let Z be an accu-
mulation point of the corresponding sequence {xj},cz, that is, {xp}cg — T(k — 00). Let
A = lim SUDPj (e R)—so0 k- Lhen A€ [0,1]. If X > 0, then d = 0. So it follows from (3.1) that
H(z) = 0 since (4.8) particular implies Apdy — 0 as k — oo. This is a contradiction.

We now consider the case of A = 0, or equivalently, lim SUPL(eR)—o0 Ak = 0. By (S.3) of
Algorithm 3.1, when k € K is large enough, A, = A\¢/p1 does not satisfy (4.8). Therefore, we
have

1 H (2 + Ny )| = || Hp () | > =02 Aedi] .

Multiplying the both sides by (A;) ™" (|[Hg(xr + Aidi )|l + [|Hz(x)||) and then taking the limit
as k(e K) — oo yield

2H,(7)'VH,(z)d > 0. (4.11)
Since H(xy) = —VHy, (xx)di, by (4.1), taking the limit as k(€ K) — oo yield H(Z) =
—VHp, (Z)d. It then follows from (4.11) that

Hy(z)"H(z) <0.
This together with (3.6) implies,
(=) H@ P <|[Hz @) + (1 - Eny?) | H (@)1
< | Hz(@)|]? +1H ()| — np?
= | Ha(z) — H(@)|* - Fnp® + 2H(z)"H(z)
< (3vni)? - Pnia® +2Hy(@)TH(&) < 0

(4.12)

where the third inequality follows from (2.6). Notice that 0 < v < that is, g—? <

1
3v/n’
1- mn72 < 1, hence (4.12) is also a contradiction. So, K must be infinite, and thus the
assertion follows from Lemma 4.3.

We now turn to analyze the convergence rate of {z,} generated by Algorithm 3.1. Through-
out this section, we assume that the sequence {x} converges to a solution z* of NCP(F), or
equivalently, H(z*) = 0.

Theorem 4.5. Let Assumption A hold and {x1} be generated by Algorithm 3.1. Suppose that
there is an accumulation point =* of {xr} such that all matrices in OcH (z*) are nonsingu-
lar. then {xy} converges to x* superlinearly. Moreover, if VF' is Lipschitzian at x*, then the
convergence rate is quadratic.
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Proof. Theorem 4.4 implies that the index set K defined in Remark 3.3 is infinite. By
Assumption A(ii), there exists a constant M; such that ||VH,, (zx) 7! < My for k € K
sufficiently large. Thus, we get

|z + di — 2*|| = ||z — 2% — VHy, (2) " H ()|
<|\\VH,, (xx)  IVHy, (2k) (zr — 2*) — H(2zx) + H(z*)]||
< Mi([(VH, (k) — Gy (z) (@ — 27) ||
+ |G (zk) (1, — %) — H(zp) + H(z")]|)
< My (Vy(L+ IVF (@) DIH () |2 — 2]
+ |H(zk) — H(z") — Gy, (zr) (zr — 7))

where G, () = G(xg, ux) € OcH (xr) is defined by (3.11) and the third inequality follows
from (3.15). Since H is semismooth at z*, we have for k € K sufficiently large,

(4.13)

1H (zr) = H(z") = Gy (2x) (2 — 27) || = ol[lax, — 2™|))- (4.14)
Notice that {||H (zx)||} — 0, it hence together with (4.14) implies that we have
e + di — 27[| = o([|z, — =7]]) (4.15)

for k € K sufficiently large. Furthermore, we obtain (see [11])
|1 H (zr. + di) || = ol[|H (zx)]]) (4.16)
when k € K is large enough. This together with (4.1) and (4.2) implies

VL o)l > (1= Vi) H (o) (4.17)
and 4
1H o (@ + di)| < (1 V)| H (@ + di)l| = o([|H (zi)]]) (4.18)
for k € K is sufficiently large. Therefore, we get that when k € K is large enough,
[ Hp (@ + di)ll = p2llHyw, (i) || + o ||
< —po(1 = FVIH (@)l + o[ H (z) ) + o1 M| H ()| (4.19)
= —p2(1 = gV H (x| + o([| H (2)]])-
It is then not difficult to see that there is an integer k > 0 such that when k > kand ke K ,
1 Hu (wr + di) | = p2ll Hyy (2) ] + 01 [ldi]* < 0. (4.20)
In particular, for z;  , = z; + d;,, we obtain from (4.20)
1H ()N < p2ll Huy ()l = ol |, (4.21)
which implies that keK. Repeating the above process, we may prove that for all k& > k ,
ke K and x4, = xp + dy.
Thus, the superlinear convergence follows immediately from (4.15).
Moreover, if VF' is Lipschitzian at z*, then H is strongly semismooth at z* so that
|H (21) — H(z") = Gy (i) (wr — 27| = O(Jor — 27|7).
Since H is obviously locally Lipschitzian, we further have
|H (@)l = ||H (z) — H@*)| < Lo — o]l

Hence the quadratic rate of convergence of {zj} to z* follows from (4.13) by using similar
argument as for the proof the local superlinear convergence.
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5. Numerical Experiments

In this section we present some numerical experiments for the algorithm proposed in section
3. Throughout the computational experiments, the parameters used in Algorithm 3.1 were
o1 =09 =0.25, p1 = p2 = 0.9, n = 27%. The stopping criterion is: ||H (z})|| < 1075.
Example 1. We first consider the following nonlinear complementarity problem. Test functions
are of following forms:

35[7% + 22122 +2w§ + 3+ 3x4 — 6
223 + m1 + 23 + 10z3 + 234 — 2
322 + 11wy + 223 + 223 + 924 — 9
z? + 323 + 223 + 314 — 3

This problem has two solutions on interval [ 0, +00):

F(z) =

V6

=T

The numerical results are given in table 1 using different starting points.

1
z* =(1,0,3,001  and 0,0, 5)T.

Table 1. Numerical results of Example 1

Starting points | Num. of iter. Starting points Num. of iter.
(0, 0, 0, 0)T 7 (1, 1, 1, 1)T 4*
0,1,1,1)T 5* (102,10%,10%,10*)T T
(0,1,0,1)T 6** (10°,10°,10%,10°)T &
(1,0,1,0)T 5* (-10°,-10%,—10°, —10°)T *

Example 2. We consider following linear complementarity problem(see [15, 16]):
F(zx) =Mz +gq,

where the matriz M and vector q are of following forms respectively,

4 -2 -1

1 4 =2 -1
M= ; q=1 -
1 4 =2 -1

1 4 -1

For different dimensions n, the numerical results are given in the following table 2 using
starting point xo = (0.5,0.5,---,0.5)T.

Table 2. Numerical results of Example 2
Dimensions | 10 | 40 | 80 | 160 | 240 | 320 | 400 | 480
Num. of iter. | 4 | 4 | 4 4 4 4 4 4

Example 3. Finally we consider another nonlinear complementarity problem(see [14]). This
problem was tested by Kanzow with five variables defined by

5
2z —i+2)exp{D (zi —i+2)°}, 1<i<5,

i=1

fi(z) =

This exzample has one degenerate solution x* = (0,0,1,2,3)T. The numerical results are given
in Table 3 using different starting points.
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Table 3. Numerical results of Example 3

Starting points Num. of iter. | Final #_value

(1, 1, 1, 1,1)T 7 5.2310e-14
(-1,-1,-1,-1,-1)T 10 2.3864e-13
(2,2,2,2,2)T 6 6.3321e-13
(-2,-2,-2,-2,-2)T 25 9.4276e-14
(3,2,1,2,3)T 3 2.3406e-15
(1,0,1,3,5)T 5 7.8962¢-14

(0, 0, 0,0, 007 14 1.2794e-13
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