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Abstract

Asynchronous parallel multisplitting relaxation methods for solving large sparse lin-
ear complementarity problems are presented, and their convergence is proved when the
system matrices are H-matrices having positive diagonal elements. Moreover, block and
multi-parameter variants of the new methods, together with their convergence properties,
are investigated in detail. Numerical results show that these new methods can achieve
high parallel efficiency for solving the large sparse linear complementarity problems on
multiprocessor systems.
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1. Introduction

Counsider the linear complementarity problem LCP(M,q):
Mz+qg>0, 2>0, 2zI(Mz4q)=0,

where M = (my;) € R™" and ¢ = (¢x) € R" are given real matrix and vector, respectively.
This problem usually arises in (linear and) convex quadratic programming, in the problem of
finding a Nash equilibrium point of a bimatrix (e.g., Cottle and Dantzig [13] and Lemke [25]),
and also in a number of free boundary problems of fluid mechanics (e.g., Cryer [17]). Therefore,
it has various practical backgrounds. Many efficient iterative methods were established to get
a numerical solution of the LCP(M,q) on sequential computer systems, and their convergence
properties were discussed in depth (see [1], [10], [13], [14], [16], [17], [23], [24], [25], [26], [28] and
[31]). For a systematic and comprehensive study one can refer to Cottle, Pang and Stone [15].
To solve the LCP(M,q) on a high-speed multiprocessor system, we proposed two classes of
synchronous multisplitting relaxation methods by successively projecting the unknowns into
RY = {z = (1,22, -, 2,)T | 2; > 0,i = 1,2,---,a} (see Bai [3]) and by equivalently trans-
forming the LCP(M,q) into a system of fixed-point equations (see Bai and Evans [5] and Bai,
Evans and Wang [6]). In a quite different way, Machida, Fukushima and Ibaraki [27] and Bai[4]
recently presented and discussed another class of multisplitting iterative methods by implicit
splittings of the system matrix. These methods have good parallel computational properties
and are suitable for implementing on synchronous parallel computer systems. They can achieve
high parallel efficiency provided the task is roughly evenly distributed among all processors.
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However, in practical applications, many problems are natural to be decomposed into sub-
problems of unequal sizes due to the special physical properties of the original problems. Hence,
the above assumption about the balanced distribution of a task does not always hold in actual
computations.

To overcome this shortcoming of the abovementioned synchronous parallel multisplitting
iterative methods, and to reduce the idle time of each processor, so that the multiprocessor
system can achieve high parallel efficiency, in this paper, we further present asynchronous and
relaxed variants of the synchronous multisplitting iterative methods proposed in [27] and [4],
in accordance with the principle of using sufficiently and communicating flexibly the currently
available information. These asynchronous multisplitting relaxation methods can be imple-
mented on MIMD multiprocessor system without any mutual wait among the processors, and
hence, they can achieve high parallel computing efficiency in practical applications. When
the system matrix M € R"™*" is an H,-matrix , we set up the convergence theories of these
new methods under suitable conditions on both the multiple splittings and the relaxation pa-
rameters. Moreover, for the convenience of applications, some explicit variants of the new
asynchronous multisplitting relaxation methods are presented by making use of the successive
overrelaxation technique, and their convergence properties are investigated in detail. With some
numerical experiments, we show that these new asynchronous multisplitting relaxation methods
can solve large sparse linear complementarity problems on multiprocessor systems with high
parallel efficiency.

At last, we remark that this work is also a further development of the asynchronous parallel
matrix multisplitting relaxation methods and theories for linear systems of equations in Wang,
Bai and Evans [33], Bai, Wang and Evans [9] and Evans, Wang and Bai [20]; In-depth studies
on parallel synchronous and asynchronous relaxation methods based on operator projection and
fixed-point transformation techniques for solving the large sparse linear complementarity prob-
lems can be found in [3], [5], [6], [11], [18] and [29]; Asynchronous variants of the synchronous
multisplitting relaxation methods in [3], [5] and [6] were given in [3] and [8], respectively; And
generalizations to nonlinear complementarity problem of the synchronous multisplitting relax-
ation methods in [3] were discussed in [2].

2. Establishments of the New Methods

Without loss of generality, we assume that the considered multiprocessor system consists
of a processors, and the host processor may be chosen to be any one of them. For a matrix
M e R let M = B; +C; (i = 1,2,--+,a) be a Q-splittings and E; € R™" (i =

[e]3

1,2,---,a) be « nonnegative diagonal matrices satisfying ZEl = I ( the n x n identity
i=1

matrix). Then the collection of triples (B;,C;i, E;)(i = 1,2,---,«) is called a multisplitting of
the matrix M, and the matrices E;(i = 1,2,---,a) are called weighting matrices. To describe
the new asynchronous multisplitting relaxation methods for the LCP(M,q), we introduce the
following necessary notations: No = {0,1,2,---}; for Vp € Ny, J(p) is a nonempty subset
of the number set {1,2,---,a}; and for Vi € {1,2,---,a} and Vp € Ny, s;(p) is an infinite
sequence of nonnegative integers. Natural and standard conditions about J(p) and s;(p)(i =
1,2,---,a),p € Ny, in the convergence analysis of an asynchronous parallel iteration are:

(1) for Vi € {1,2,-- -, a}, the set {p € Ny|i € J(p)} is infinite;

M = (my;) € R™ ™ is called an H-matrix if my, > 0(k = 1,2,---,n) and there exist positive reals
wi(k = 1,2,---,n) such that M = W~'MW, where W = diag(w1,w2,---,wy), is a diagonally dominant
matrix. In this case, the matrix M € R™™™ is also called a generalized diagonal dominant matrix. (See the
equivalent definition of H-matrix in Section 3.)

M = B + C is called a Q-splitting if B is a Q-matrix. See the definition about a Q-matrix in Section 3.
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(2) for Vi € {1,2,---,a} and Vp € Ny, it holds that s;(p) < p; and
(3) for Vi € {1,2,---,a}, it holds that lim s;(p) = oco.
p—r00

If we denote s(p) = 1r<m£1 s;(p), then it holds that s(p) < p and lim s(p) = co.
i<a p—r00

Let (B p, CLP,Ei)i(ziZ 1,2,---,a), p € Ny, be a sequence of multisplittings of the matrix
M. Then we consider the following asynchronous multisplitting relaxation method for solving
the LCP(M,q).

Method 2.1. (Asynchronous Multisplitting Relaxation Method for the LCP(M,q))
Given an initial vector 2° € R™. Suppose that we have obtained approzimate solutions z', 22,
-+, 2P of the LCP(M,q). Then the next approzimate solution zP™1 of the LCP(M,q) is computed

according to the formulas:

zp+1 = E Eizi’p (1)
=1
and ) ()
. 2%,p _ si(p of 1
Zl’p: ﬁz +(1 6)2: ) Zfze J(p)’ Z’:]_,2,"',CK, (2)
2P, otherwise,

where 2P is an arbitrary solution of the LCP(B; p, qip):

220, Bipz+dgip >0, ZT(Bi,pZ + gip) =0,

with q; p = C; 2% P) +q, and B(# 0) is a relazation factor.

In Method 2.1, each processor is allowed to update or retrieve the global approximate
solution residing in the host processor at any time. Hence, new information can be used once
it is available. Moreover, considerable savings in computational workload are possible, since
a component of z*P does not need to be computed if the corresponding diagonal entry of
the weighting matrix E; is zero. The role of the weighting matrices F;(i = 1,2, -+, a) may be
regarded as determining the distribution of the computational work to individual processors. We
remark that when J(p) = {1,2,---,a} and s;(p) = phold for all p € Ny and alli € {1,2,---,a},
if 8 =1, then Method 2.1 becomes the multisplitting method for the LCP(M,q) in [4] and [27],
and if 8 # 1, then it turns out to be a relaxed variant of that multisplitting method.

However, at every iterate step p of Method 2.1, each processor needs to solve an implicit
linear complementarity problem LCP(B; p,¢; ). This makes Method 2.1 not so appealing in
practical implementations. The subproblem LCP(B; ,, ¢;,p) could be solved by some parameter-
free technique, like conjugate gradient, however, for the sake of convenient application in actual
computation, in the following, we present an explicit variant of Method 2.1 by specific choices
of the splitting matrices of M € R™*"™.

To this end, we let v and w(# 0) be two real constants, and take

Bip:l(D-f-’)/Lip) .

' P 1=1,2,---,q, € Ny,

{ Cip=5((w=1)D+ (w=7)Lip +wWip), b=

where D = diag(M), and fori = 1,2,---,acand p € Ny, L; , = (l,(fj’p)) € R™™" are strictly lower

triangular matrices, W; , = (w,(fj’p ') € R™™ are matrices with zero-diagonal entries, such that

(W)M=D+L;p,+W;p,i=1,2,---,a, p € Ny; and

(2) det(D) # 0.
Then the collections of triples (D + L; p, Wi, Ei)(i = 1,2,---,a), p € Ny, are called trian-
gular multisplittings of the matrix M. Now, with these special multisplittings and for g = 1,
Method 2.1 naturally leads to the following asynchronous multisplitting accelerated overrelax-
ation (AOR) method (AMAOR-method) for solving the LCP(M,q).
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Method 2.2. (AMAOR-method for the LCP(M,q))

Given an initial vector 2° = ([z°]1,[%2, -+, [2%]n)T € R”. Suppose that we have obtained
approzimate solutions z',2% - 2P of the LCP(M,q). Then the next approzimate solution
L+l ([Zerl]l’ [Zp+1]2, - [Zerl]n)T

of the LCP(M,q) is computed according to the formulas:

«
L+l § :Eizl’p
i=1

and
Zi’p = ([Zi’p]la'[zi’p]Qa ) [Zi’p]n)Ta
; Ed I ifi € J(p),
i,p — -
[=71k { [2P]k, otherwise, k=1,2n,
where
( k=1 '
0, if v LV(E - [0)
=1
[29P]; = Fw[M 25+ qlp > mpg 25 P,
k= k=1 . w
2O+ G ST (W] = [(B7)) = (M) gl
j=1
otherwise,

\

and v and w(# 0) are a relazation and an acceleration factors, respectively.

When J(p) = {1,2,---,a} and s;(p) = p hold for all p € Ny and all i € {1,2,---,a},
Method 2.2 becomes the multisplitting AOR method for the LCP(M,q) in [4]. If we choose
the parameter pair (vy,w) to be (w,w), (1,1) and (0,1), respectively, Method 2.2 gives the
asynchronous multisplitting successive overrelaxation (SOR), Gauss-Seidel and Jacobi methods,
correspondingly, for the LCP(M,q). Hence, an extensive sequence of asynchronous parallel
multisplitting relaxation methods can be obtained, which is quite practical and efficient for
solving the large sparse linear complementarity problems on MIMD multiprocessor systems.
Moreover, suitable adjustments of the relaxation parameters (y,w) can substantially improve
the convergence properties of the asynchronous multisplitting AOR method.

3. Preliminaries

First of all, we briefly review some necessary notations and concepts in [4] and [27]. A
matrix A = (ax;) € R"*" is called a monotone matrix if it is nonsingular and satisfies A= > 0;

an M-matrix if it is a monotone matrix and satisfies ar; < 0 for k # j, k,7 =1,2,---,n; an H-
matrix if its comparison matrix (A) is an M-matrix, where (A) = ((ax;)) € R™" is defined by
(akk) = lagg| for k =1,2,--- n, and (ag;) = —|ak;| for k # j, k,j =1,2,---,n; an H_-matrix

if it is an H-matrix having positive diagonal elements; and a Q-matrix if the LCP(A b) has a
solution for any b € R™. A sufficient condition for A € R™*" to be a Q-matrix is that either A
is an Hi-matrix [5] or A is a strictly copositive matrix [15]. In the former case, the LCP(A,b)
always has a unique solution for every b € R". For a given matrix A € R"*", let F,G € R™*"
be such that A = F + G and F is nonsingular. Then (F,G) is called a splitting of the matrix A.
The splitting (F, G) is called a convergent splitting if the spectral radius of the matrix (F~1Q)
is less than one, i.e., p(F~'G) < 1. Tt is called an M-splitting if F' is an M-matrix and G < 0;
an H-splitting if (F) — |G| is an M-matrix; an H-compatible splitting if (4) = (F) — |G|; and a
Q-splitting if F' is a Q-matrix. In particular, the splitting (F,G) is called an H-splitting and
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H_ -compatible splitting if it is an H-splitting and H-compatible splitting, respectively, with F’
an H,-matrix.

The H-matrix concept plays a key role in the convergence analyses of asynchronous parallel
iterative methods (see [11] Section 6.3). From [32] we know that A € R™*" being an H-matrix
is actually equivalent to A € R™*" being a generalized diagonal dominant matrix subject to
positive diagonal scaling.

The following lemma, proved in [21], will be frequently used in the rest of this paper.

Lemma 1. [21] Let A € R™™" be an H-matriz, D = diag(A), and A= D — B. Then:
(a) A is nonsingular;
(b) [A=1] < (A)~; and
(¢) |D| is nonsingular and p(|D|7'|B|) < 1

For all p € No, let Z, = Y E; and P, = T,(Z,)*, where E;(i = 1,2,---,a) are the
i€ J(p)
weighting matrices, and (Z,)" denotes the Moore-Penrose generalized inverse of the matrix Z,.
Then the following useful relations are straightforward.

Lemma 2. For Vp € Ny, the following conclusions hold:
(1)0<Z, <P, < I" (fpp)2 = Pp;
(2) PpZ, =L, Pp =1Ip;
(3) (I - 7’)p—I(I Pp) =
(4) (I =Pp)(I —Ip) = (I - I)(I Pp) =1—-"Pp.

Here, we remark that for Vp € Ny, Z, and P, are nonnegative diagonal matrices. In
particular, the diagonal elements of P, are either 0 or 1, and they are equal to 0 if and only if
the corresponding entries of 7, are equal to 0.

Define a positive integer sequence {m:}ten, by induction according to the following rule:

mg = 0, and for t =0,1,2,---, myy; is the least positive integer such that
U J(p) ={1,2,---,a}.
m <s(p) <p<mit1

Then in light of the definitions of the subset sequence {J(p)}pen, and the nonnegative integer
sequence {s(p)}pen,, the positive integer sequence {m;}¢en, is well-defined and possesses the
following properties:

Lemma 3. For Vt € Ny, it holds that

mt+171
(1) Q: = Z Pp is a positive diagonal matriz;
p=my¢
meqp1—1
2)S= [ U-P)=
p=my¢

Proof. Evidently, for Vt,p € Ny, Oy, St, Z, and P, are nonnegative diagonal matrices, and
the diagonal elements of P, are either 0 or 1. Denote

I, = diag([Zpli1, [Zplo2, -, [Lplun),
Q: = diag([Qt]i1,[Qtl22, - [Qtlnn),
Sy = diag([St]i1, [St]a2, - - [St]nn)a
Py, = diag([Ppli1, [Pplaz,- -, [Pplan)-
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Now, we first verify (1). Suppose that for some kg € {1,2,---,n} and some ty € Ny it holds that

Mmig41—1
[Qtolkoke = Z [Pplioke = 0. Then we have [Ppligk, = 0, p = My, My + 1, ,myy1 — 1.
p=myiy
Hence, [Zplkoko, = 0, p = My, My, + 1, -+ ,myy41 — 1, or in other words, Z egjo) =0,p=
i€J(p)
My, My, +1, -+, mg 11— 1. These equalities and the definition of the integer sequence {m¢}+en,

(e
straightforwardly imply that egfo) =0,t=12,---,q,ie., Z e,(c? = 0. However, this obviously
i=1

(0%
contradicts to ZE’ = I. Therefore, (1) is valid.
i=1
To verify (2), we notice that P,(I —Pp) = 0 holds for Vp € Ny. Then, by direct calculations
we immediately obtain

me41—1 me41—1
s - () (o)
p=m p=m;
miy1—1
= > | PI-Pp) I (1-»)| =o0.
p=my my <qg<mi41,9#P

From (1) we see that Q; is a nonsingular diagonal matrix. Therefore, S; = 0.

4. Convergence Theories

In this section, we will discuss the convergence of Method 2.1 and Method 2.2 for the
nonsymmetric linear complementarity problems, respectively. First of all, we establish the
convergence theorem for Method 2.1.

Theorem 1. Let M € R™ " be an H, -matriz, D = diag(M) and B = M — D. Assume that
for each p € Ny and i € {1,2,---,a}, M = B, p, + C;,, is an Hy-compatible splitting satisfying
diag(B; p) = diag(M). Then the sequence {zP}pen, generated by Method 2.1 converges to the
unique solution of the LCP(M,q), provided the relaxation parameter (3 satisfies

2

0< < .
P < T amB)

Proof. Because M € R"™" is an H,-matrix, the LCP(M,q) has a unique solution z* € R".
Hence, it holds that

2*>0, Mz*+¢>0, (T (Mz* +q) =0.

Since for each i € J(p) and each p € No, M = B, , + C;,, is an Hy-compatible splitting, we
know that B;, is an H-matrix, and therefore, the LCP(B; ,, ¢i,) has a unique solution z%?,
where ¢;, = C;,2%®) 4 ¢. That is to say, it holds that

2% >0,  BipEP4q, >0,  (ZP)(Bipz"? + qip) = 0.
Now, we claim that the following estimate holds:
B0 = 2% < (Bip) t|Cipll2" ) —2*|, Vi€ J(p), VpeNo. (3)

In fact, by denoting D; , = diag(B; ) and B;, = B;, — D; ,, we can verify (3) in four cases.
First, when the k-th element of 2*, [2*], is positive and [B; ,2"? +¢; »]x = 0, it clearly holds
that
Bip(E7 = 2%) + Cip(z5) = ")) = 0,
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or

[Dip(Z? = 2k = [~Bip(Z"? = 2) = Ci (") = 2*)].
Therefore,

[Dip|2 = 2k < [BipllZ? = 2*| + |Cipll2®) = 2*[J1,
and

[(Bip) 277 = 2"l <[|Cipll2®) — z*[]s. (4)
Second, when [2*], > 0 and [B; ;2% + q; ] > 0, it holds that [2"P]; = 0 and
{ [Bip2"? + Cipz%® + gl > 0,

[ELPZ* + C’i7p2’* + q]k = _[Di,pz*]k-
Subtracting these two inequalities we obtain
[Bip(Z"7 — 2°) + Ci (2P — 2)]i > [Dipz* i
Therefore,
[Dipl2"? = 2*[lk = [Dipz"lk <|[Bip(E"? —2") + Cip(z*® — 2"yl
< IBipllE™? = 2| + [Cipllz* @ — 2 I,
and hence, (4) also holds.
Third, when [2*];, = 0 and [2%P]; > 0, (4) can be demonstrated analogously to the second
case.
Fourth, when [2*]x = 0 and [2%?];, = 0, (4) holds automatically.
Therefore, we can conclude that (4) holds for all £ € {1,2,---,n}, all i € J(p) and all
pE N().
Since B; p(i =1,2,---,a,p € Np) are H;-matrices, we immediately know that (3) is valid.
From (1) and (2) we have

ZEi(Zi’p —2")| < ZEAZ“’ — 2
=1 =1
< Y E|BET+ A=) P =2+ > Bl -2

|Zp+1 _ Z*| _

ieJ(p) i¢J(p)
< Z Ei[B|Z5P — 2% + |1 = B]2%® — 2*|] + Z E;|2P — z7|.
ieJ(p) i¢J(p)

Substituting (3) into the above inequality yields

2P =2 <Y EiH, |2 — 2+ > Ei|lP — 27, pe N, (5)
i€J(p) i¢J(p)
where
H;p = B(Bi,) *|Cip| +|1 - B, i=1,2-,a, pENp (6)

are nonnegative matrices. Because M € R"™" is an H,-matrix, from Lemma 1 we have
p(D71B|) < 1. By the continuity of the spectral radius of a matrix (see [32]), it holds that
p- = p(D7YB| + geel) < 1 for a sufficiently small ¢ > 0, where e = (1,1,---,1)7 € R™.
Hence, in accordance with the Perron-Frobenius theorem (see [32]), there exists a positive
vector ue = ([uc]i, [ue]2, -+, [ue]n)T € R™ such that J.u. = p.u., where J. = (D7!|B| + cee”)
is a positive matrix. Noticing that the region of the relaxation parameter 3 implies that
|1— 8|+ Bp(D~|B|) < 1. Again, by the continuity of the spectral radius we can let ¢ be small
enough such that 6. = |1 — 8| + Bp- < 1.
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Since M = B; ,+C; ,(i =1,2,---,a,p € Np) are H,-compatible splittings, that is, it holds
that
<M>:<Bi,p>_|ci,p|a 7::1,2,"‘,04, pENO,

we have

H; pu. B(Bip) 1|Czp|+|1_ﬁ|1] Ue

[
[6(B B;p) — (M) + |1 - B|I] u.

= B+ |1—ﬂ|)ue — B(Bip) (D ~ | B|)u.
< B+ 1= Bluc — B(Bip)~ ID( Je)ue
= (B+11—-BNue —B(Bip)~ 1D(1 — pe)u.
< (11 =81+ Bpe)ue,

where the last inequality is got from
(Bip) *D>I,  i=12,--,a, p€ Ny,
which is valid because B; ,(i = 1,2,---,a,p € Ny) are Hy-matrices and
diag(Bip) =D, i=1,2---,a, p€Np

implies
(Bivp><D7 i=1,2,---,a, p€ Np.

Thus,
Hi,pus Sasusa i:172)"')a) pENU) (7)

where 6. € [0,1) and u. € R™ is the positive vector defined above.

Now, let § > 0 be such that |2°—2*| < du.. By applying (5), (6) and (7) we can directly verify
the validity of the inequalities |2P — z*| < du., p = 0,1,2, - - -, through induction. Moreover, we
can assert that it has

|2P — 2*| < T*6ue, Vp >my, Vte€ No, (8)
where
F=1-(1-6:)emin, emin:min{e,(j)>0|k:1,2,---,n, i=1,2,---,a}, 9)
and e(z) is the k-th diagonal element of the weighting matrix F;.

In fact, (8) and (9) is trivial when ¢ = 0. Suppose that (8) and (9) is true for some t > 1,
we now prove that it is also true for ¢ + 1. From s;(p) < p(i = 1,2, -+, «) and the induction
hypothesis we easily know that |2%() — 2*| < T*du.(i = 1,2,---,a). Therefore, by making use

of (5) and (7) we obtain
Z Eif.T"6u. + Z E;|2P — 27|
i€J(p) i¢J(p) (10)
= Z0:.T%u. + (I — I,)|2P — z*|.

27+ - 27|

IN

For Vp > myy1, from (10) and Lemma 2 we have

(I - Pp)|zp+1 -2 < (I-Pp) [Ipasrt‘sus + (I =Zp)[2P = 27|] (11)
= (I =Pyl — 2"
and
Pple?tt —2*| < Py [LpfeToue + (I — I,) |27 — 2]
= Z,0.Tu. + (P, — I,)|2P — 2*| (12)
< (Pp -(1- es)Ip)Ft‘SUe:
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where the last inequality is obtained by the induction hypothesis, again.
(11) and (12) immediately lead to

|ZP+1 — Z*| = Pp|zp+1 _ Z*| + (I _ fpp)|zp+1 _ Z*|
< (Pp— (1= 0L du. + (I = Pp)|e - 2°).

Since for Vp € Ny, P, = 0 if and only if Z, = 0, by using Lemma 2(1)-(2) we see that
(P, — (1=6.)I,) <TP, (Vp € Ny). Therefore,

|2PF — 2% < P, T Gu. + (I — Pp)|2P — 2*, Vp > miy. (13)

Let p, = max{q | [Pylex = 1,4 = my¢,msq1,---,p}. Because [Q¢]xr is a positive integer by
Lemma 3(1), we know that the positive integer p,, is well-defined. Recalling that [Pp]xr € {0,1}
(k=1,2,---,n, p € Ny), based on (13) we have

127 e — 2 Tel < [Pp, Ja T 1000l + (1= [Py, ) |17k — [Tl = D10 uc]i

forall k € {1,2,---,n} and all p > myy; — 1. This shows that (8) and (9) is also valid for ¢+ 1.
By induction, we have confirmed (8) and (9).

Because I € [0,1), by (8) and (9) we finally get |2? — z*| < ['*6u. — 0(p — o0), or in other
words, zP — z*(p — 00). This completes the proof of this theorem.

We now give the convergence analysis of Method 2.2.

Theorem 2. Let M € R™™" be an H-matriz, D = diag(M) and B = M — D. Assume that
for every p € Np,

|Liﬁp|+|Win|:|B|) i:172)"')a) pENO-
Then the sequence {zP},en, generated by Method 2.2 converges to the unique solution of the
LCP(M,q), provided the relazation parameters vy and w satisfy

2

0<~< 0 —_—.
R TP A1)

Proof. Because, for each i € {1,2,---,a} and each p € Ny,

<Bi,p> = %(D _'7|Li,p|) = Bip, N
ICipl < ST =w|D+ (W =Lip| +w|Wip|l := Cip,

we see that ELP is an M-matrix and CAi,p a nonnegative matrix. Moreover, it holds that

= ~ 1

Bip=Cip = —[1=[1-w)D —w(|Lip| + [Wip|)]
1 —
= —[(1-[1-w)D —w|B|| = .

Since p(D~'|B|) < 1 when M € R"*™ is an H,-matrix, we can easily verify that M € R™*" is
also an H;-matrix. Analogously to the proof of Theorem 1, we can demonstrate that {z”},en,
converges to z*, the unique solution of the LCP(M,q).

5. Block and Multi-Parameter Variants

For the convenience of practical computation, in this section, we further generalize the
asynchronous multisplitting AOR Method 2.2 and define its block and multi-parameter vari-
ants. For this purpose, we separate the number set {1,2,---,n} into a nonempty subsets
Ji(i = 1,2,---,a) such that U, J; = {1,2,---,n}. Corresponding to this separation, for
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i € {1,2,---,a} we introduce matrices
: ; 5P for k,j € J; and k > j
L; _ ,C(Z.’p) c Rnxn, E(lfp) — ki »J i e
» (L) ki 0, otherwise,
: : ) for k,j € J; and k < j
U; — Z,[(Z.’p) c ]Rnxn, Z,[(Z.’p) — ukj ) or k,J € J; an J
P ™) ki 0, otherwise,
b = OVEP) R WD = 0, ~ fork=j,
Wiy W) € > W w,(jj’p), otherwise,
; : el) >0, forkel;
B = di (4) RXn (2) — e, 20U, lor k€.
! tag(e,”) € o 0, otherwise.
Evidently, for Vp € Ny, L; ,(i = 1,2,---, ) are strictly lower triangular matrices, U; ,(i =
1,2,---,a) are strictly upper triangular matrices, W; ,(i = 1,2,---,a) are zero-diagonal ma-
trices, and E;(i = 1,2,---,«) are nonnegative diagonal matrices. For the system matrix

M € R™" of the LCP(M,q), let D = diag(M) be nonsingular, B = M — D, and the ma-
trices L p, Ui p and Wy p, 1 =1,2,---,a, p € Np, satisfy

M:D-l-Li’p-l-Ui’p-l-Wi’p, 1=1,2,---,a, pENo.

Then, we can establish the following block and multi-parameter variant of Method 2.2.

Method 5.1. Given an initial vector 2° = ([2°]1, [2]2,- - -, [2°].)T € R™. Suppose that we have
obtained approzimate solutions z',2%, - 2P of the LCP(M,q). Then the next approzimate
solution 2Pt = ([2PH]y, [2PTY)s, -+, [2P11]0)T of the LCP(M,q) is computed according to the
formulas:

1 , —
Zp+ Zek p]k: k_1>27"')n7

and [Ai ] ) "
D Yy
L), = LY if i € J(p), B N
[ = { (2", otherwise, k=1,2,---,n,
where for k € J;,
0, Zf Y2 Z u(lyp) _ [El’p]])
o = | el
’ (l,p) i,p1 .\ _ wa —i,
Ptk Z“ ~ [E7))) = (M3 + gl
\ otherwzse
( k=1 '
07 Zf ’yl Z l](cljvp)([gl,p]] _ [Zsl(p)].])
[Ei7p]k — +w1[MZs-(P) + q]k > mkk[zsi(p)]k,
, o » w N
2O 5 Zl PUEY - (27— o (M g,
Mk
\ \ Otherwzse

Here, vv;,j = 1,2, are relazation factors, and w;(# 0), j = 1,2, are acceleration factors.

In Method 5.1, two relaxation sweeps are introduced within each iteration, and each sweep
possibly includes its own pair of relaxation parameters. Therefore, this new method covers all
the known and generates a lot of novel practical and efficient relaxed asynchronous multisplitting
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block methods following different choices of the relaxation parameters. For details, one can refer
to case (c) in the next section. Moreover, suitable adjustments of the relaxation parameters
can greatly improve the convergence properties of these new asynchronous multisplitting block
multi-parameter relaxation methods. We have the following convergence theorems for these
new methods.

Theorem 3. Let M € R™*" be an H, -matriz, D = diag(M) and B = M — D. Assume that
for every p € Ny,
|Lipl + |Uipl + Wiyl =B,  i=12,---,a, p€ No. (14)

Then the sequence {zP}pen, generated by Method 5.1 converges to the unique solution of the
LCP(M,q), provided the relazation parameters y; and wj, j = 1,2, satisfy

2
0<~v: <w; 0 L — =1,2. 15
_’Y]—w]’ <w]<1+p(D,1|B|)7 .] ) ( )
Proof. By introducing matrices

Bip(n,w1) = -(D+mLip), (16)

Cip(y,w1) = ﬁ((wl —1)D + (w1 =) Lip +wi1(Uip + Wip)),

and

{ Bj,(y2,w2) = =(D+7Uip), (17)

Cip(w2) = =((wa =)D+ (ws = 12)Uip +wa(Lip + Wip));

analogously to the derivation of (3) in the proof of Theorem 1, we can obtain

77— 2% < (Bip(n,w0) |Cip(rwn)[|25® — 2|,
] * ' — ' =i * i€J ’ EN;
{I?’”—ZI < (B! (2, wm)) YL (2, wa) [[F — 27, (), pe€No

where z* € R" is the unique solution of the LCP(M,q). Therefore, the iteration sequence {27}
produced by Method 5.1 obeys

2P — 2| < Z E;H; (71,013 72, w2)| 25 P — 27| + Z E;|2? = 2*|, p€ No,
icJ(p) i¢J (p)

where for i = 1,2,---,a and p € Ny,
Hip (71,015 72,w2) = (B 5 (v2,02)) T C5 (72, w2) (Bip (2, w2)) ~HCip (2, w2). (18)

Again, from the proof of Theorem 1, we know that to prove the convergence of Method 5.1,
under the conditions of Theorem 3 we only need to demonstrate that

Hi,p(')/l,wl;’)/z,wz)zo, i:172)"')a) pENU) (19)
and there exist a real constant f. € [0,1) and a positive vector . € R™ such that
Hi7p(717w1;72)w2)ﬂs Sasﬂsa 1=1,2,---,a, pE€ No. (20)

Because for each ¢ € {1,2,---,a} and each p € Ny,

(Bip(71,w1)) 5 (D =mlLiy|) = B:z (71, w1)

<B§,p(72’w2) = sz(D 72|U,p|) B; (72, w2) R (21)
ICip(y,wi)| = w%”‘*’l = 1D + (w1 — 71)|Lip| + wi(|Uip| + [Wipl)] := (i (71,w1)
ICi,(v2,w2)] = [lws = 1D + (wa = 72)|Uip| +wa (| Lip| + [Wipl)] := Cj ,(72,ws),
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we see that gi,p(yl, wy) and B\;’p(’)Q ,ws) are M-matrices, and C:-,p (y1,w1) and @’p (72, w2) are non-

negative matrices, respectively. Hence, B\i,p(yl,wl)’l >0, ggyp(yg,wg)*l >0, and H;p(y1,wn;
V2, w2) is nonnegative. Moreover, it follows from (14) that

Bip(m,w) =Cipn,w) = (1= [1=wi)D =B := M(m,w1),
Bi p(12,w2) = Cip(v2,02) = 5[(1 = [1 = w2|)D — ws|BJ] := M(32,w2),
where
— 1
M(y,w) = ~[(1 — 1 ~w)D - w|B. (22)
Therefore,

B (23)
Bé,p(727w2)7lcz",p(’y2)w2) = I_B;,p(727w2)71M(727w2)'

Since M € R™ " is an H,-matrix, from Lemma 1 we have p(D~!|B|) < 1. Therefore, there
exists a positive vector T. € R™ such that

Ju, = Pelc, (24)

{ lii,p(’hawl)*lc:i,p(%,wl) —B'p(%,wl)*l/‘Z(%,wl),

where
J. = (D7 B|4+¢eee”), 0<eeR', e=(1,1,---, )T €R™ p.=p(D7'|B|+cee’) < 1.
Furthermore, by (22) we can immediately get

LD -1 —w)I —wl.]u.

—

M(v,w)

>
= . 25
= D1 -1 —w|—wp:)te. (25)
Noticing that
PN 1 PN 1
Bip(y1,w1) < w_lD’ B; ,(72,ws) < w—2D,
we have
1 _ = 1
—DB;y(n,w1) t > 1, —DBj ,(y2,w2) "t > 1. (26)
w1 w2

Now, by applying (24)-(26) to the first identity in (23), considering that (15) implies |1 — w;| +
wijp(D7YB|) < 1(j = 1,2), and restricting e small enough such that |1—w;|+w;p. < 1(j = 1,2),
we obtain

-~

Bi (1, w1) Cip(y1,w1)Te

(I - gi,p(7lawl)71/\7(7lawl)) U

(1= Bip(n, o) [2D(A =1 = wr] —wip)] )7 (27)
(1= (1= [1—wi|—wip.)T
(1 — wi] + w1 pe)U: := Ve (w1)Te,

A IA

where ¥, (w) = |1 — w| + wp.. Similarly, by applying (24)-(26) to the second identity in (23) we
obtain
B (72, 02) 7€ (72, 02T < Ve ()T (28)
Define 0. = 9. (w1)V-(w2). Then it is clear that . € [0,1). After substituting (21) into (18),
and using (27) and (28), we immediately know that
Hi,p(’)/l;wl; Y2, WZ)HE S Ee (w2)55 (wl )Hs = aeﬂs-

Up to now, we have shown that under the conditions of Theorem 3, there exist a real
constant #. € [0,1) and a positive vector . € R™ such that (20) holds. This completes our
proof.
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Theorem 4. If the conditions of Theorem 8 are satisfied, then we have

(a) the asynchronous multisplitting symmetric block AOR method, given by the choices of
relaxzation parameters 71 = w1 = w and v2 = wy = 0 in Method 5.1, converges to the
unique solution of the LCP(M,q), provided the relazation parameters v and w satisfy
OS’)/SLU and0<w<m;

(b) the asynchronous multisplitting unsymmetric block SOR method, given by the choices of
relazation parameters y1 = w1 = v and 2 = w2 = w in Method 5.1, converges to the
unique solution of the LCP(M,q), provided the relazation parameters v and w satisfy
0 < 7w < mmemmy

(c) the asynchronous multisplitting symmetric block SOR method, given by the choices of re-
lazation parameters v = w; = v2 = wy = w n Method 5.1, converges to the unique solu-
tion of the LCP(M,q), provided the relazation parameter w satisfies 0 < w <

2 .
1+p(D1[B])’
and

(d) the asynchronous multisplitting symmetric block Gauss-Seidel method, given by the choices
of relazation parameters v, = w; = v = we = 1 in Method 5.1, converges to the unique
solution of the LCP(M,q).

6. Numerical Experiments

We consider the linear complementarity problem LCP(M,q) with the following system matrix
M € R™" corresponding to the Laplacian 5-point finite difference operator and given vector

qg € R™
R -I 1
-I R I -1
M: .-- .-. .‘. E]Rnxn, q
I R I (
-1 R (="

Il
Mm
=
o3

respectively, where R = tridiag(—1,4,—1) € R™" I € R" " is the identity matrix, and
n = n2. This problem may arise from finite difference discretization at equidistant grid of a
free boundary value problem about the flow of water through a porous dam (see [19]). Note
that M € R™*" is an H-matrix. Therefore, the LCP(M,q) has a unique solution.

The tested methods in our numerical experiments are as follows:

(a) the sequential relaxation methods in [14], [16] and [28]:

Method | 71 | w1 | 72 | wo Description
SOR w | w | 0| 0 | the successive overrelaxation method
SSOR | w | w | w | w the symmetric SOR method
USOR | v | v | w | w the unsymmetric SOR method
AOR v | w | 0| O | the accelerated overrelaxation method
SAOR | v | w | 7 | w the symmetric AOR method
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(b) the synchronous multisplitting relaxation methods in [4] and [27]:

Method | v1 | w1 | 72 | w2 Description

MSOR | w | w | O] O the multisplitting SOR method
MSSOR | w | w | w | w | the multisplitting SSOR method
MUSOR | v | v | w | w | the multisplitting USOR method
MAOR | v | w | 0 | 0 | the multisplitting AOR method
MSAOR | v | w | v | w | the multisplitting SAOR method

(c) the new asynchronous multisplitting block relaxation methods:

Method Y| w1 | 2 | we Description

AMSOR | w | w | O | O the asynchronous MSOR method
AMSSOR | w | w | w | w | the asynchronous MSSOR method
AMUSOR | v | v | w | w | the asynchronous MUSOR, method
AMAOR | v | w | 0 | O | the asynchronous MAOR method
AMSAOR | v | w | v | w | the asynchronous MSAOR method

We run our programs as PVM applications on an SGI Power Challenge multiprocessor
computer. It consists of four 75 MHz TFP 64-bit RISC processors. These CMOS processors
each delivers a peak theoretical performance of 0.3 GFLOPS. The data cache size is 16 Kbytes.
The code is written by C*t'-language, and uses neither an explicit compiler directive, nor a
automatic compiler parallelization.

In our experiments, we take

Ji={miamn+ 1,4 +2,- -, A0}, i=1,2,--,a,

where ; = Int (ai—_fl),izl,Q,---,a, and

‘ _ (i.p) nxn (i,p) _ myj, fork,j€ Jyandk > j,
Lip = ('ij ) € R™, Ly - { 0, otherwise,
. _ (i,p) nxn (i,p) _ myj, fork,j€ Jyandk <j,
Up = (ukj ) € R, Uy - { 0, otherwise,
. . 0, for k = j,
Wi,p — (WIEA?‘D)) c ]Rnxn’ W]5§7P) — 0, for k’] c Ji:
myj, otherwise,

1, forl1<k<mmn, i=1,
. L () nxXn () _ 0.5, form_1m+1<k<mn2<i<a
E: diag(ey’) € R™, e 05, formm+1<k<muml<i<a-—1
1, forman+1<k<n, i=a.
These splittings allow that the i-th processor of the multiprocessor system solves only the
variables located in J;. Hence, the computation of a single iteraton takes on one processor

about (34((;f12))2 Tseq) time, where T, represents the sequential time of computing the iteration.

Furthermore, since the communication overheads add to the execution time, SP.,, = 34((0; 112))2
represents an upper bound for the expected speed-up of the implementations (see [7]). When
a = 3, we have SP.;, = 2.4. Here, we have neglected the sparsity of the system matrix
M € R™", and assumed that the related sequential, synchronous and asynchronous parallel
relaxation methods have the same convergence speed.

The LCP(M,q) of various sizes are tested with the processor numbers being 2, 3 and 4,
respectively. All our computations are started from an initial vector having all components
equal to 40.0, and terminated once the current iteration z? obey

)T (M 4 q)
T g <
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Table 1: CPUs and SPs for the SOR-like methods

w 0.6 0.7 0.9 1.1 1.3 1.5
SOR CPU | 91.92 | 73.14 | 48.09 | 32.51 | 21.38 | 13.23
SSOR CPU | 45.98 | 37.03 | 24.27 | 16.26 | 10.72 0o
CPU | 48.12 | 37.70 | 24.92 | 16.82 | 11.10 | 6.97
MSOR SP 1.91 | 1.94" 1.93 1.93 1.93 1.90
CPU | 23.23 | 19.06 | 12.55 | 8.47 5.62 0o
MSSOR Sp 1.98" 1.94 1.93 1.92 1.91 -
CPU | 4241 | 33.59 | 22.09 | 14.99 | 10.04 | 6.34
AMSOR SP 2.17 | 2.18" | 2.18" 2.17 213 2.09
CPU | 21.30 | 16.80 | 11.26 | 7.70 5.12 0o
AMSSOR SP 2.16 | 2.20" | 2.16 211 2.09 -

This stopping criterion is reasonable because the constructions of the above-described methods
ensure that 2P > 0 and MzP + ¢ > 0 (Vp € Ny) are satisfied at least approximately.

From the numerical computations we see that in the sense of CPU time and parallel effi-
ciency, asynchronous multisplitting relaxation methods are superior to the corresponding syn-
chronous multisplitting relaxation methods, the multisplitting accelerated overrelaxation meth-
ods are superior to the corresponding multisplitting successive overrelaxation methods, and the
multisplitting symmetric relaxation methods are superior to the corresponding multisplitting
relaxation methods. In particular, the advantages of the AMAOR and AMSAOR methods
over the AMSOR, AMSSOR and AMUSOR methods, respectively, are, roughly speaking, that
(i) when the latter ones diverge, the former ones can still converge; (ii) when the latter ones
converge, the former ones converge faster with higher parallel efficiency; and (iii) the former
ones are less sensitive to the relaxation parameters and they have larger convergence domains
than the latter ones. Therefore, we can conclude that the new asynchronous multisplitting re-
laxation methods have better numerical properties than both their corresponding synchronous
and sequential alternatives.

Because the experiments about different problem sizes and different processor numbers show
a very analogous numerical behaviour, as a representative, only for the case that n = 4900 and
a = 3, some of the numerical results are listed in Tables 1-2. Here, we use CPU to denote the
CPU time required for an iteration to reach the above stopping criterion, co to denote that an
iteration does not satisfy the stopping criterion after 5000 iterations, SP to denote the speed-up
of a parallel execution, which is defined to be the ratio of the CPU times of the sequential to
the corresponding parallel methods, and * to denote that the corresponding data is the largest
in that row. Again, we point out that for this case, SP.,, = 2.4.

We note from Tables 1-2 that the best speed-ups attained by the synchronous multisplitting
relaxation methods are less than 1.98, while those attained by the asynchronous multisplit-
ting relaxation methods are greater than 2.17. Even if this, it seems that the asynchronous
version improves not too much on the synchronous version. The reason is that asynchronous
computation is quite helpful in the case of poor load balancing, however, the regular structure
of the system matrix M € R™*" in our experiment allows for good load balancing on the pro-
cessors. Moreover, this makes the asynchronous multisplitting relaxation method has similar
convergence property to the corresponding synchronous one.
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Table 2: CPUs and SPs for t
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he AOR-like methods

y 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7 1.8 1.9
w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.2 1.2
AOR CPU | 63.03 | 54.90 | 47.08 | 35.65 | 28.53 | 21.42 | 13.06 | 9.79 | 6.50 | 3.03
SAOR CPU | 29.69 | 26.03 | 22.97 | 17.79 | 14.87 | 1142 | 7.21 | 5.59 | 3.91 | 2.04
USOR CPU | 39.31 | 31.74 | 25.37 | 18.41 | 13.94 | 9.93 0o 00 0o 0o
MAOR CPU | 33.17 | 28.74 | 24.52 | 18.59 | 15.00 | 11.35 | 7.04 | 5.43 | 3.68 | 2.00
SP 1.90 1.91 | 1.92" | 1.92" 1.90 1.89 1.86 | 1.80 | 1.77 | 1.52
MSAOR CPU | 15.14 | 13.59 | 11.97 | 9.48 7.31 6.16 4.01 | 3.12 | 2.21 | 1.29
SP 1.96 1.92 1.92 1.88 | 2.03" 1.85 1.80 | 1.79 | 1.77 | 1.58

CPU | 20.45 | 16.53 | 13.19 | 9.76 7.46 5.25 00 00 oo oo

MUSOR SP 1.92% | 1.92" | 1.92% 1.89 1.87 1.89 - - - -
AMAOR CPU | 28.80 | 25.16 | 21.91 | 16.53 | 13.35 | 10.25 | 6.30 | 4.84 | 3.30 | 1.82
SP 2.19" | 2.18 2.15 2.16 2.14 2.09 2.07 | 202 | 1.97 | 1.66
CPU | 13.64 | 12.14 | 10.72 | 8.40 6.86 5.47 3.52 | 272 | 196 | 1.19
AMSAOR SP 218" | 2.14 2.14 2.12 2.17 2.09 2.08 | 206 | 1.99 | 1.71
CPU | 18.15 | 14.67 | 11.78 | 8.73 6.63 4.76 00 00 oo oo

AMUSOR SP 2177 | 2.16 2.15 211 2.10 2.09 - - - -

AMAOR, Three-Processor Case

@ &
g &

CPU time (seconds)
3 8

oo

Figure 1: The behaviour of AMAOR
method for the problem with n 4900.
The divergent points are represented in the
graph by CPU time being 30. The op-
timal relaxation parameters are approxi-
mately given by v = 1.9 and w = 1.2.

AMSAOR, Three-Processor Case

CPU time (seconds)
N s @
8 5 3

oo

r-axis

Figure 2: The behaviour of AMSAOR
method for the problem with n = 4900.
The divergent points are represented in the
graph by CPU time being 40. The op-
timal relaxation parameters are approxi-
mately given by v = 1.9 and w = 1.2.

The above observations are further confirmed by Figures 1-3, which give the behaviours of
the asynchronous multisplitting relaxation methods, namely, AMAOR, AMSAOR and AMU-
SOR, respectively. The r and w axes in each figure correspond to the v and w axes, respectively.
It is clearly demonstrated that all these methods have good convergence properties over a wide

range of the relaxation parameters.
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