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Abstract
In this paper, we investigate the optimality conditions of a class of special nonsmooth
m
programming min F(z) = Y |maz{fi(z),c;}| which arises from L;-norm optimization,
i=1

where ¢; € R is constant and f; € C',i = 1,2,---,m. These conditions can easily be
tested by computer.
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mooth programming.

1. Introduction

Consider a class of special nonsmooth programming

in F(x) = (), ¢ 1.1
i F@) =3 (i), i} (L1)
where constant ¢; € R, f; € C',i = 1,2,---,m, and in general there is at least one ¢; < 0.

The problem (1.1) arises from the L; norm optimization. For example, the discrete Ly linear
approximation[2], the Ly solution of an overdetermined linear systems[3], the censored discrete
linear L; approximation[7,8]

m
. _ L T )
Jnip F@) = 3 Iy~ max{af . ) (1.2)

and from the L; penalty function model of constrained programming[5,6]

min F(z) = f(z) + )\Zmax{gi(m),()} (1.3)

TER™

where A > 0 is a penalty coefficient.

The aim of this paper is to investigate the optimality conditions of the problem(1.1). It
is well known that for the general nonsmooth function F(z),i.e., F(z) is locally Lipschitz
continuous at any z, the necessary condition of a local minimizer z* of F(z) is 0 € 0F(z*).
This condition is not easily tested by computer. For the special problem (1.1), we can obtain
the necessary conditions and sufficient conditions of a local minimizer z* of F(z), which can
easily be tested by computer.
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In the next section, we consider the differential properties of F'(z) and establish a charac-
terization of the generalized gradient 0F (). In section 3, we discuss the descent direction of
F(z) based on the gradient of f;(z),i =1,2,---,m. Then we provide necessary conditions and
sufficient conditions for a (strict) local minimizer of F'(z). In the last section, we provide the
optimality conditions of problem(1.2) and (1.3).

2. Differential Properties

The nonlinear and nonconvex function F(z) defined by (1.1) can be written as the sum of
smooth functions and nonsmooth functions. To do this, for any given z € R", define the index
sets [';(z),j =1,---,5, by

Di(z) ={ie[l:m]|fi(x) >c; >0 or fi(z) >ci,c;i <0 and fi(x) # 0},

Da(z) = {i € 1 : m]|fi(x) < e},  Ta(z) ={i €[l:m]|fi(z) =c; >0},
Ty(z) ={i € [1:m]|fi(z) =¢; <0}, Ts(xz)={ie[l:m]|fi(z) =0 and ¢; <0}.
The sets {T';(z),j = 1,---,5} form a disjoint partition of {1,2,---,m}, that is
5
U Ti(z) ={1,2,---,m}, VzeR",
j=1
z)(\Tj(x) = ¢, Vi#j Vo€ R"

For the simplicity, let ;5 = ['j(x) UTj(z) UTk(z), we have

= Z |max{f;(z),c;}| + Z |max{f;(z), c;}| (2.1)

i€l12 i€l345

For i € I'y the component function |max{f;(z),c;}| = sign(fi(z))fi(x), which is smooth in
a neighborhood of z with gradient sign(f;(z))Vf;(x). For i € I'y the component function
| max{ fi(x),c;}| = |ci|, which is constant and hence smooth in a neighborhood of #. Thus the
gradient of the smooth part of F(z) is

=V ( Z | max{f;(z cl}|> Z sign(f;(z))V fi(x) (2.2)

i€lM12 i€l

A definition of the generalized gradient 0 f(z) [4] of a piecewise smooth function at a point
T is
Of(z) = co{v € R"|3 a sequence {z;} such that
xp = x,Vf(zg) exists V k and Vf(zg) = v as k — 400} (2.3)

where co denotes the convex hull. Furthermore, 0f(z) is a nonempty compact convex set in
R™.

Now, for i € I'345 the corresponding component functions are piecewise smooth. According
to (2.3) the generalized gradients are given by

co{0,Vfi(x)} ={v e R*"v=\Vfi(z),0 <\ <1},i € I's;
0| max{fi(z),c;}| =< co{0,-Vfi(z )}—{UER”|U—/\Vf,( ),—1 < A; <0}, €Ty;
cof V fi(a), ~V fi(2)} = {0 € RMo = \i¥ fi(z), ~1 < \; < 1},7 € T,
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Let

Gx)={veR"v=g(@)+ > N\NVfi(z (2.4)

1€l345

where \; € [0,1] for i € T'3, \; € [-1,0] for i € Ty, and A\; € [-1,1] for i € T'5. Then
G(z) is a nonempty compact and convex polytope. On the other hand, as generalized gradient
satisfies O(f1(x) + f2(z)) C Of1(x) + Of2(x), one has OF (x) C G(z). Because F(z) may not be
convex, the inclusion 0F (z) C G(z) can be strict in general. The following result ensures the
coincidence of the sets 0F(z) and G(z).
B Let)\ —OorlforzEFg,A ——lorOforz€F4,and)\ = —lorlfori e I's. Let
A=\ ie I'345) be a vector. Then it is obvious that every vertex of set G(x) corresponds to
a given vector A. Define the set X (\) by

,

fz(y) > ¢; for ¢ € I's with Xz =1, W
fily) < ¢; for i € I's with X, =0;
X(X) —{yeRr" fz(y) > ¢; for i € 'y with 5’ =-1,
fily) <¢; for i € Ty with \; = 0;
fily) > 0 for i € Ty with X; = 1
L fily) <0for i €5 with \; = -1

and set A(z) = {\, X corresponding to vertex of G(z)}.

Theorem 2.1. 0F(z) = G( ) at x € R"™ if and only if int X( ) # ¢ for every e A(z).
Proof. Assume int X (X) is nonempty for every A € A(z). Since dF (z) C G(z), it is suffices

to show G(z) C OF (z). As both G(z) and OF (z) are convex and nonempty, we only need to

prove that any vertex of G(x) belongs to F(x). Now, suppose that

)+ > NVfi(z) (2.5)

i€l 345

is a vertex of G(z), which corresponds a vector A € A(z). Note that the given z € X (X) for
all X € A(z). Then there exists a sequence {z;} C intX () such that {z;} converges to z. As
xy is an interior point, the function | max{f;(x),c;}|,i € 345, is differentiable at z.Therefore
VF(zy,) exists for all k and VF(x) — v as k — +o00. By the definition of generalized gradient,
one has u € OF ().

Conversely, if F(z) = G(z) then every XA € A(z) corresponds to a vertex u of G(z) (see
(2.5)), and hence OF(z), by the definition of generalized gradient there exists a sequence {zy}
such that z, — z, VF(xy) exists for all ¥ and VF(z) — w as k — oo. Note that every
differentiable point zj, is an interior point, and OF () is convex nonempty, so for k sufficiently
large {z} must belong to X(\) by the definition of X (), that is int X(X) # ¢.

It is not easy to verify int X ( ) # ¢ for all e A(z). However, in usual applied problems we
havec; > 0,i =1,2,---,m,i.e., 4 U5 = ¢. In the following, we shall give sufficient conditions
to ensure 0F (z) = G(x).

The function f(z) is said to be locally convex at z if there exists a neighborhood U of z
such that f(z) is convex on U.

Theorem 2.2. If¢; > 0,i=1,2,---,m and fi(x) is locally convex at x for i € T1 UT3. Then
OF (z) = G(x).

Proof. Because | max{f;(z),c;}| = max{fi(z),¢;} is locally convex at x for i € I'133 and

Ty5 = ¢, F(x) is locally convex at x. According as the Corollary 3 of Proposition 2.3.3 and

Proposition 2.3.6(b) in [4], we have OF (z) = f: 0| max{ fi(z),c;i}| = G(x).
i=1
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3. Optimality Conditions

A key tool in the discussion of optimality conditions in nonsmooth optimization is the
directional derivative F'(z,s) defined by

F'(z,s) = lim [F(x +ts) — F(x)]/t, x,s€ R",s#0
t—0+
In this paper, since F' is a piecewise continuously differentiable, F'(x,s) exists. Let Fj(z) =
| max{fi(x),ci}|-
Theorem 3.1. For any x,s € R",s 20
Fi(a,s) =g@)7s+ % max{0,Vfi(z)"s)

i€l's
=S max{0, V(@) s} + X Vi) (3.1
i€l i€ls
uhere g(z) = 32 sign(,(2)) V(o)

Proof. Since
VF(z) = { Sign(fi(%),)vfi(l'), ieh
we have Z F'i(x,s) = g(z)Ts. Fori € T3, as fi(z) = ¢; > 0, F;(z) = max{fi(x),c;}. Due to
fiecCt, llirllsz well known that

lim+[Fi(:n +ts) — Fi(x)]/t = tl_i)r(§1+[max{fi(m +ts),¢} — i/t

-0
[ Viix)Ts, if Vfi(x)Ts>0
- 0, if Vfi(z)Ts<0
Then
Fi(z,5) = max{0, Vfi(z)"s}, i €T3
Similarly

Fl(z,s) = —max{0,Vfi(z)Ts}, i€Ty
Fl(z,s) = |Vfi(z)Ts|, i€Ts.
The proof is completed.
The inclusion 0F(xz) C G(z) implies that the well known necessary condition 0 € dF(x*),
for z* to be a local minimizer of F', carry through to 0 € G(z*). However, it does not ensure

that * is a local minimizer of F'if 0 € G(z*), but we can obtain a sequence {x} } approximated
to a minimizer x*. For convenience, let

a; =Vfi(x), i=12---,m

A= A(:U) = [ai,i € F53]

Theorem 3.2. Let x be a point such that 0 € G(z) and rank (A) < n. Then F'(x,s) <0 for
all s satisfying
ATs =0 (3.2)
Furthermore, if there is j € T'y such that a;ER(A), the range of A, then there exists s such that
F'(2,3) <0 and AT5=0.
Proof. Due to (2.4)and 0 € G(x), there exist multipliers {A;,i € I's45} such that

g(:r) + Z Na; =0

i€l 345
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where \; € [0,1] for ¢ € '3, A\; € [-1,0] for i € I'y and A; € [-1,1] for ¢ € ['s. Thus it follows
from (3.1) and (3.2)

F'(z,s) =g(x)Ts— > max{0,als}
i€Ty
= — Y [max{0,als} + \;als] <0
i€l

since A\;[—1,0] for ¢ € T'y and

(1+X)al's>0, if al's>0

max{0,a] s} + \;aj s = { XaTs >0 if al's<0
1Yy - ?

Furthermore, if there is j € I'y such that a;ER(A), then as rank (A) < n there exists 5 € R”
such that
AT5=0 but a;‘-r’E #0
Therefore
F'(z,3) =— 3 [max{0,al5} + \;al3]
i€T4
< —[max{0,a] 5} + \ja] 5]
[ —(1+X)afs, if aéE >0
a —)\ja}?, if ajs<0
Now, if A\; € [-1,0) and 3 is chosen such that ajTE < 0 then F'(z,3) < 0. Alternatively, if
Aj = 0 and 5 is chosen such that ajTE > 0 then F'(z,5) < 0. Completing the proof.
For the simplicity of notation, in the following we shall denote A* = A(z*), ¢* = g(z*),[%; =
[5(z*) UT3(2*) and so on, but a; = V fi(z*),Vi € I'y,5.
Suppose z* is a point such that g* € R(A*) and a; € R(A") for all j € I';. Then there exist
multipliers {\;} and {u]} satisfying

g* = Z Aia;, aj = Z ugai,Vj ely
ieli, €T,
The multipliers {/\i},{ug } are not unique in general. Without loss of generality, let
F;:{172)"')L}) ng{L+17)L+T};

{a1,---, a1} is a basis of R(ay,---,ar),
{ar, -, a,ap1, -, ar+e) is a basis of R(A*) (3.3)

Clearly I +t < n and L +T < m. Then there exist the unique multipliers {\;}, {a;}, {873,
{67}, {p!}, {u]} and {v]} satisfying

l L+t
Q*ZZ/\iai+ Z Q;a;
i=1 i=L+1
l .
0 =Y Blai, j=1+1,L, (3-4)
i=1
l ) L+t ]
aj =Y 6lai+ > plai, j=L+t+1,--- L+T, (3.5)

i=1 i=L+1
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L+t

Zuaz—k Z vaz, vy eTly.

i=L+1

Theorem 3.3. If x* is a local minimizer of F' and R(A*) has a basis (3.3), then there exist
multipliers {\;}, {a;}, {87}, {67}, {pl}, {ul} and {v]} satisfying

L+t L+t
(i) g" = Z)\ a; + Z o;aq, Zu a; + Z v} a;, Vj ey (3.6)
i=L+1 t=L+1
L . L+T ' '
(ii) oA +1+ Z |B7] + Z max{0,0d] } — Z max{0,0ul} >0, i=1,---,1 (3.7)
j=l+1 j=L+t+1 jers
L+T . _
oa; + max{0,0} + Z max{0,0p!} — Z max{0,0v}} >0, i=L+1,---,L+t (3.8)
j=L+t+1 jer:

where 0 = 1 or —1. Moreover if the point x* is a strictly local minimizer of F', then the following
condition also holds
(iii) The inequalities in (ii) are all strict,and I +t = n.

Proof. Suppose z* is a local minimizer of F'. Then 0 € 0F (z*) C G(z*), and it follows from
(2.4) that there exist multipliers {\;} such that

Z Xiai, or g = Z (_Xi)ai

IS i€ly

345 345

As a descent direction does not exist at z*,Theorem 3.2 implies a; € R(A") for all j € I';. Thus it
follows from (3.3) that there exist multipliers {A;}, {a;}, {uJ}and {U]} satisfying (3.6) uniquely.
Futhermore ,there exist multipliers {ﬁj} {6J}and {pl} such that (3.4) and (3.5) are satisfied.

Now suppose that there exists an index k € {1,---,[,L+1,---, L + t} such that

L L4T
o +14+ > B+ D max{0,06]} — > max{0,0ul} <0, if ke{l,---,1}
j=lt1 j=Ltt+1 jer:
or
L4T ' '
oay + max{0,0} + Z max{0,0p,} — Z max{0,0v;} <0, if ke {L+1,---,L+t}
j=Ltt+1 jer;

where 0 =1 or —1. Let s be a solution of the following linear equations

aks—a
als=0, i=1,---,l,L+1,---L+t, i#k
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Then in view of (3.1) and (3.6), we obtain

! L+t L+t
Fl(z*,s) =Y Nals+ Y aals+ Z lal's| + E | Z als|+ Y. max{0,als}
i=1 = L+1 j=l+1 i=1 t=L+1
L+T L+ L4t
+ Y max{0, 25 > plaTs} — 3 max{0, Eu Ts+ S wvlals)
j=L+t+1 i=L+1 JGF* i=L+1
. L+T . .
oA + 14+ Z 1B+ Y. max{0,0d.} — > max{0,0ul},
j=l+1 j=Lttt1 jers

it ke{l,- }

ooy + max{0,0} + E max{0, apk} — Y max{0, ka},
j=L+t+1 ]€F4

L if ke{L+1,---,L+1t}

<0

This contradicts the fact that z*is a local minimizer of F, hence (3.7) and (3.8) hold.

Finally suppose z* is a strictly local minimizer of F'. Then exactly as above we can establish
conditions (3.6)-(3.8). Suppose that the condition (iii) does not hold,that is (a): I +¢ < n, or
(b): one of the inequalities (3.7) or (3.8) is equality.For case(a),one can choose any nonzero
s € R(A*)L. for case (b), there exists an index k € {1,---,[,L+1,---,L 4+ t} which satisfies
(3.7) or (3.8) with equality, and a nonzero s such that

als=o
als=0 i=1,-- ,L+1,--L+t, i#k

where 0 = 1 or —1. Then following the proof above, we can find a direction s from (a) or (b)
such that F'(z*,s) = 0, contradicting the fact that x* is a strictly local minimizer of F. The
proof is completed.

Theorem 3.4. Suppose R(A*) has a basis (3.8) at a point x*. Then x* is a local minimizer

of F if there exist unique multipliers {\; } {a;}, {87}, {67}, {pl} {ul} and {v?} satisfying
L+t

(Z)g_zAaz E a;ag, Eﬂzaz: J=l+1,--,L,
i=1

i=L+1

[ L+t .
aj =) 6la;+ 3 piai, j=L+t+1,---,L+T,
i=1 L+1

l . L+t .
=>ula;+ Y vla, VjeTj.
i=1 i=L+1
(ii)
L o LyT ,
oXi+14+ Y ofl+ > 08— Y max{0,oul} >0, i=1,---,1 (3.9)
J=1+1 L¥t+1 JET:
L4T , .
oca; +max{0,0} + > opl — 3 max{0,0v/} >0, i=L+1,---,L+t (3.10)
j=LFt+1 jer;

where o = 1 or —1. Moreover, the point x* is a strictly local minimizer of F if the following
condition also holds.
(i) the inequalities (3.9) and (3.10) are all strict, and | +t = n.

Proof. Tt is obvious that z* is a local minimizer of F if and only if F'(z*,s) > 0 for all
s € R". Furthermore, z* is a strictly local minimizer of F' if and only if F’'(z*,s) > 0 for all
s # 0. Now using the simple fact that for any a,b € R,max{0,a} > a and max{0,a + b} <
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max{0, a} + max{0, b}, as well as condition (i) and (3.1), we have

F'(z*,s)
=gTs+ Y |als| + Y max{0,als} — > max{O,a]Ts}
i€l i€el} Jjer;
! L+t ! Ll Lt
— Y hals+ S aals+ X Jalsl+ 5 | Y Flalsl+ S max{0,als}
i=1 i=L+1 i=1 J=l+1 i=1 i=L41
L4T L L+t L Ltt
+ Y max{0,Y &lal's+ Y plals}— Y max{0,> ulals+ Y. vlals}
i=L4t+1 i=1 i=L+1 jET; i=1 i=L+1
! L+t ! L 1 Lt
>> Nals+ Y aal's+ Y |als|+ Y. Y Blals+ Y. max{0,als}
i=1 i=L+1 i=1 I=I+1 i=1 i=L41
L+T 1 Ltt ! , L+t ,
¢ S (S dars+ S pafs)— ¥ (3 max{0,ulafsh+ S0 max{0,vfals)]
i=L4t+1 i=1 i=L+1 jET; i=1 i=L+1
! L L+T ,
= Y [Asign(al's) + 1 +sign(al's)( S B+ > 6))— > max{0,sign(al s)u’}]
i=1 j=l+1 j=L4t+1 i€Ts
L4t L+T
JaTsl+ S5 [ossign(al's) + max{0, sign(a¥s)} + sign(als) > g
t=L+1 ) t=L+t+1
— 3 max{0,sign(a] s)v] }]|a s|
jery
! Lt
=Y &lal's|+ Y. nilals| >0, VseR"
i=1 i=L+1
where from condition(ii)
1, if al's=0,
L LT .
Ni+1+ > g1+ Y 6 — > max{0,ul} >0, if al's>0,
& = j=l+1 j=LFt+1 jETE
L L+T .
“Xi+1=Y B/ - > & -3 max{0,-ul} >0, if als<0,
j=i+1 j=LAt+1 jeTs
i=1,,10
and
0, if asz =0,
L+T :
ai+1+ > pl— 3 max{0,v/} >0, if als>0,
ni = j=Lt+1 JETE
L+T . .
—a;— Y pl— Y max{0,—v/} >0, if als<0,
j=Lrt+1 j€ry

i=L+1,--, L+t

Thus z* is a local minimizer of F. Moreover if condition (iii) also holds then A* is nonsingular
and A*T's # 0 for any s # 0. Therefore there exists an index i such that als # 0 and & > 0 or
n; > 0, and hence F'(z*,s) > 0 for any s # 0, which implies z* to be a strictly local minimizer
of F. The proof is completed.

4. Corollary and Application

In this section, we shall introduce the regularity to nonsmooth function F(z), and then give
the sufficient and necessary conditions at a local minimizer z* of F' for two special problem.
Definition 4.1. F' is said to be reqular at z if the vectors a; = V fi(z),i € I's5, are linearly
independent.
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The following results are only a corollary of Theorem 3.3 and Theorem 3.4.
Corollary 4.1. If F is regular at * then x* is a local minimizer of F if and only if there exist
unique multipliers {\;}, {a;}, {u} and {v!} satisfying
(i) g = > Niai + > aja;, a; = Y ula;+ Y vlai, Vjery,

i€T: i€T: i€T: i€l
oXi +1— Y max{0,0ul} >0, Vie I}
(i) Jer ; .
oa; + max{0,0} — > max{0,0v]} >0, VieTl}
jer;

where 0 =1 or —1. Moreover, z* is a strictly local minimizer of F if and only if the following
condition also holds.
(i)l + t = n and inequalities in (ii) are strict.

Proof. As F is regular at «*, one has | = L and ¢t = T. The conclusion is trivial from
Theorem 3.3 and Theorem 3.4.
Corollary 4.2. If F is reqular at x* and ¢; > 0,i = 1,---,m. Then x* is a local minimizer of
F if and only if there exist unique multipliers {co;} satisfying
(1) 9" = 3. aai,

i€l

(i) a; € [-1,0], VieTl}.

Moreover, the point x* is a strictly local minimizer of F if and only if the following condition
also holds
(iii) a; # 0,Vi € T'5, and rank(A*) =n.

Proof. Asc; > 0,i=1,---,m, it implies I'y5 = ¢ for any z € R"™, and F(z) = ) max{f;(z),
i=1

¢i}. Moreover, F is regular at z*, one has t = T'. Thus the result is a corollary of Theorem 3.3
and Theorem 3.4.
Now consider the censored discrete linear Ly approximation problem [§]

min F(z) = Z ly; — max{z;,al }| (4.1)

i=1

where y;,2; € R and a; € R",i = 1,---,m. It is obvious that (4.1) is a special case of (1.1)
under conditions of f;(z) = alTa: —y; and ¢; = z; — y; for all i. That is to say the conclusions
in [8] are only the corollaries of this paper.

For the constrained optimization problem

min f(z)
s.t. gi(x) <0 j=1,2,---,m (4.2)
Where f,g; € C*,j =1,---,m, the well-known exact penalty function is
m
min F(z) = f(z) + A Z max{g;(z),0} (4.3)
j=1

where A > 0 is a penalty parameter. Clearly, for the fixed A the optimality conditions of (4.3)
are only the special cases of Theorem 3.3, Theorem 3.4 and Corollary 4.2.
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