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Abstract

Some nonlinear approximants, i.e., exponential-sum interpolation with equal distance
or at origin, (0,1)-type, (0,2)-type and (1,2)-type fraction-sum approximations, for matrix-
valued functions are introduced. All these approximation problems lead to a same form
system of nonlinear equations. Solving methods for the nonlinear system are discussed.
Conclusions on uniqueness and convergence of the approximants for certain class of func-
tions are given.
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1. Introduction

For scalar functions, Baker-Gammel approximation was developed in a series of papers
[1, 2, 3, 7] (see [7] for more references) as a method for producing nonlinear approximation
with good convergence properties. The main features of these methods can be described as
follows: 1. Use a generating function for the function to be approximated to derive a nonlinear
approximant by agreement condition between the function and the approximant. 2. Draw
on the relations between the nonlinear approximants and Padé approximants. 3. Establish
convergence results from this relation and the convergence results of Padé approximation.

In the present paper, we make efforts to generalize these ideas to matrix-valued functions.
A few concrete nonlinear approximations, such as exponential sum interpolation at origin and
Padé-like approximation, are discussed. Since the multiplications of matrices are not commut-
ing, this generalization is not straightforward. The first problem is how to do partial fraction
for a matrix rational function. In the aspect of existence and uniqueness of the nonlinear ap-
proximants, there also exist some problems that unlike their scalar counterpart. We shall give
solutions to these problems in this paper under certain conditions.

The remaining of the paper is organized as follows: We first introduce the definitions of
the nonlinear approximation problems in §2. All these problems lead to a same form system
of nonlinear equations. Then we solve this system in §3 using the matrix Padé approximation
method and the theory of matrix polynomials. In §4, we establish the relationship between these
approximants defined in §2, and then we discuss the uniqueness problem in §5. Finally, utilizing
the convergence results of the Padé approximation for the matrix-valued Stieltjes function, we
give the convergence conclusion of the nonlinear approximants. Some terminologies and basic
facts in the matrix polynomial theory used in this paper are provided in Appendix.

2. Definition of the Approximants

Now we define our nonlinear approximants for matrix-valued functions.
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a. Exponential-sum interpolation with equal distance.
Let f(z) € C**™[z] be a given matrix-valued function. Construct a function in the form

l
F(z) = Z Ajediz
j=1

where A;, s; € C"*" are parameters to be determined for j =1,--- [, such that
F@GT)=f(iT), i=0,1,---,21 -1, (2.1)

where T is a given constant. Put ¢; = f(iT),S; = e%? for j = 1,---,1, then (2.1) can be
written as

1
Y ASi=e¢, i=0,1,---,20—1. (2.2)
j=1

Therefore, if the solutions of equation(2.2) are found for the unknowns A; and S;,j=1,---,1,

then s; can be determined by
1

TlogSj, =121l

S5 =

b. Exponential-sum interpolation at the origin.

For a given power series f(z) = Z c—?z’ € C"*"[z], find
il
i=0
Jop
E(z)=)" 72 +) " AjeSi (2.3)
i=0 j=1
such that
d'E
G L iz01 24 T> -1 (2.4)
dz z=0

It follows from (2.3) and (2.4) that

l
Bi+Y A;jSi=ci, i=0,1,---,1],
;7 (2.5)
> A8 =, i=J+1, - 20+ J.
j=1

If J = —1, the system of equations (2.5) is the same as (2.2).
c. (0,1)-type fraction-sum approximation.
o0
Let f(z) = Zcizi be a given power series with ¢; € C**". The problem of (0,1)-type

i=0
fraction-sum approximation is to find a function in the form

J l
P(z)=> Biz'+ Y Aj(I-28)7", J>-1 (2.6)

such that
f(z) = P(z) = 0>, 2 0. (2.7)
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Since

(I —-=zS;) Z Slz’ as z — 0, (2.8)
i=0
from (2.6) and (2.7) we arrive at equations (2.5) again.
Since the multiplications of S;(j = 1,2,---,1) are not commuting in general, P(z) can not

be written in a rational function form
—1

m l
= Z aizi (Z bizi> , a;,b; € crxm (2.9)
=0 =0

directly by reducing the function (2.6) to a common denominator. But we shall show in the
later that under some conditions P(z) is a right Padé approximant in the following sense:
Determine the parameters a;, b; € C**™ in the rational function (2.9) such that
{ f(2) = R(z) = O(z™*1), 2 =0,

2.10
bo = 1. ( )

An alternative approach to (0,1)-type fraction-sum approximation is to find a function in
the form

i=0 j=1
such that
f(z) = P(z) = O(z*"*7+Y), 20, (2.11)
Hence
Bi:ci; i:0>]—7"'7=]7
!
A ST =, =T 41,204 (2.12)
j=1
d. (0,2)-type fraction-sum approximation.
For a given series expansion in Chebyshev polynomials of the second kind f(z Z ciUi(z) €
C*™z], find
J 1
=Y " BiUi(2) + Y A;(I —225;+ ;)7 (2.13)
i=0 j=1

such that the series expansion of U(z) in Chebyshev polynomials of the second kind agrees with
that of f(z) for the first 2] + J + 1 terms. Since

— 2xt+t2 ZU , e (=1,1), [t < 1.

(I-2:5+8)1=> Uiz ze (-1,1), |Al <1,VAea(S) (2.14)
=0

substitute (2.14) into (2.13), we arrive at (2.5) again.

e. (1,2)-type fraction-sum approximation.
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o0
For a given series expansion in Chebyshev polynomials of the first kind f(z) = Z ciTi(z) €
i=0

Cr*™z], find
J !
T(z) =Y BiTi(z) + Y A;j(I - 28;)(I — 228; + S3) 7" (2.15)
=0 j=1
such that the expansion of T'(z) in Chebyshev polynomials of the first kind agrees with that of
f(z) for the first 21 + .J + 1 terms. Since

1—2zu i
o ST _ <
1-2zutw & Ti(z)u', ze[-1,1], |u| <1,
_ -5 E Ty(2)S" € [-L1], [N <1L,VAea(S) (2.16)
I—225+S2_i:0 e o o o |

Substituting (2.16) into (2.15), we arrive at the (2.5) once more.
Another source of system(2.2) is the establishment of Gauss-type integral formula

b l
[ t@ota) =3 4 (s, (2.17)

where o(z) is a matrix Stieltjes measure (see [9]) on (a,b). We want to determine matrices A;
and S; such that (2.17) are equalities for f(z) = 1,z,--- ,2*~'. These equalities, by letting

c; = f; zld o(x) for i =0,1,---,2] — 1, are the same as equation (2.2).

3. The Solutions of the Problems Proposed

We note firstly that equation (2.2) is a special case of equations (2.5) with J = —1. Thus
we need only to consider the solution of the nonlinear equations (2.5) for the unknowns 4;, B;
and S;. The difficult part in solving the system is to find S; in (2.5). Once S; are determined,
finding A;, B; becomes a linear problem. These S; are defined as left solvents of a matrix
polynomial L(z). Hence system (2.5) is solved in the following steps:

1. Determine the matriz polynomial L(z) = Ei:o L;z%, L; € Cv*m,

2. Compute the left solvents S; of L(z).

3. Compute A;, B;.

Now we detail each of these steps. Some theoretical results are introduced therein.

Step 1. Let L; € C™", i = 0,1,---,1 be defined so that Y'_,crisri1li = 0, k =
0,1,---,1—1, L;=1. That is, Lo, -+, L;—1 satisfy the following equation

Lo Clt-J+1
L, Clt-J+2
H(J +1,1,1) . =— . (3.1)
Llfl Col+J
with
Ci Ci+1 " Cit+j—1
H(i k)= | ©Fr G O

Citk—1 Citk " Citjt+k—2



Some Nonlinear Approximations for Matrix-valued Functions 805

Obviously, equation of system (3.1) is solvable if and only if

rank H(J +1,1,1) = rank H(J + 1,1+ 1,1). (3.2)

L
Suppose equation (3.1) has solutions and assume that the matrix polynomial L(z) = > L;z"
0

has a complete set of left solvents Sy,---,S;. If J > 0, we further assume that Sy, -- -Z, S; are
nonsingular. This assumption is equivalent to 0 ¢ o(L) (see [6], p.524). Here o(L) denotes
the set of latent roots of L(z). The proposition in the following gives necessary and sufficient
condition for 0 ¢ o(L).
Proposition 3.1. Suppose H(J + 1,1,1) is nonsingular, Lo, -- ,L; are the solution of (3.1),
then 0 ¢ o(L) if and only if H(J + 2,1,1) is nonsingular also.

Proof. Since 0 ¢ o(L) if and only if Lo is nonsingular, it is necessary to show that Lg is
nonsingular if and only if H(J + 2,1,1) is nonsingular.

Suppose H(J +2,1,1) is nonsingular, we show that Lg is nonsingular also. If rank Ly < n,
then there exists an invertible matrix P such that LoP has at least one zero column, say,
the i-th column of LoP is zero. Since L;P is nonsingular, the i-th column C; of the matrix

[(LoP)T (L P)T --- (LlP)T]T is nonzero. However,
H(J+1,1+1,1)C; = H(J+2,1,1)C; = 0.
This is impossible for H(J+2,1,1) is nonsingular. Hence rank Ly = n. Conversely, if rank Lo =

n, then by
1

n
LiLy*
H(J+1,14+1,]) ) =0,
LiLy*

we have rank H(J+1,1+1,]) = rank H(J+2,1,1). Hence by the non-singularity of H(J+1,1,1)
we know that H(J + 2,1,1) is nonsingular.

Step 2. Now we consider the problem of finding a complete set of left solvents Si,---,S; of
L(z). Let (X, J) be a Jordan pair of LT (z). Then (see [6], p.500) the nl x nl matrix
Q=[x (xn)T ... (xJH7" (3.3)
is nonsingular and
LIXJ' 4+ 4+ LTXJT+ LIXx =0. (3.4)

Denote the degrees of the elementary divisors of L7 (z) (which are also the elementary divisors
of \I =Cpz) by ki,--- ,kp. Then > 1" | k; = nl. Suppose {k;}, can be divided into [ subsets
such that the sum of each subset is n. Then we can arrange J by rows and columns exchange

such that J = diag[Jy,--- ,Ji], where J; € C"*™, i =1,--- 1, are also block diagonal matrices
with Jordan blocks as their diagonal elements. Form the partition X = [X; --- X;], where
Xi,--,X; are n x n matrices, then for r = 0,1,---, we have XJ" = [X1J] XpJ] .-+ Xy J[].

Thus equation (3.4) implies that

l

S LIX;Ji=0, j=1,---,L (3.5)
i=0
Now we assume that Xj,---, X, are nonsingular. Then (3.5) implies

l
SOLIX; X =0, j=1,---,L
=0
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Let Si = (X;JiX;1)7 for j = 1,---,1. Then Y2, _(SiL; = 0 and Q diag[X;", -, X '] =
VT is nonsingular, since both @ and diag[Xfl, e ,Xfl] are nonsingular. Therefore, if the
required partition of X and J exists and X, --- , X; are invertible, then the complete set of left
solvents exists.

In order to get a succeed partition, we should make a good choice among the following two
degrees of freedom:

a. J is not unique by considering the order of the diagonal Jordan block.

b. For a fixed J, X is not unique. Note that for any nonsingular matrix Y € C**" that
commute with J, (XY, J) is also a Jordan pair.

Here we shall mention a theorem for the conditions of Y that commute with .J.
Theorem 3.1. ([6], p.418) Let J = diag[J1,--- , Jm] be a Jordan canonical form and k; be the
size of the Jordan block J; corresponding to an eigenvalue ;. LetY = [Yu]l4_, be the partition
of Y consistent with the partition of J into Jordan blocks. Then Y commutes with J if and
only if

a. Yo =0, for As # A,

b. Y is an upper-triangular Toeplitz matriz for ks = k: and Ay = X,

c. Yo =100,Y%,] for ks <kt and Ay = Ay,

d Y = { Yg)“ },ks>kt and s = A,
where Yy, and Yy, are upper-triangular Toeplitz matrices of order ks and kg, respectively.

The discussion above gives us the necessary part of the following theorem:

Theorem 3.2. L(2) has a complete set of left solvents if and only if there exists a Jordan pair

(X,J) of LT (2) and a partition X = [X1 --- X, J = diag[Ji,--- ,Ji] such that X; € C**"
are invertible for j =1,--- 1.
Proof. We need only to prove the sufficiency part of the theorem. Let Si,---,5; be a

complete set of left solvents of L(z). Let
SJT = X]'Jiji17 .] = 1727 T 7l7
where J; is the Jordan canonical form of S]T for j =1,2,---,1. Then the equalities

l l
0= LI(SH =Y LIX;six:", j=12-1
i=0 i=0

implies that

! !
0=> LI[xug - XuJj1=> LTXT,
i=0 i=0
where X =[X; .-+ X;], J= diag[Ji, -+, Ji]. On the other hand,
X7 (xn)T o (xJYHT)T diag{x7", -, X7 = VT
Then [XT (XJ)T ... (XJl_l)T]T is an invertible matrix. Therefore, (X, J) is a standard

pair of LT(2) (see [6], p. 495). Since Cp» VT = VT diag[Sy,---,S] (ie., diag[Si,---,S] is
similar to Cpr), J is similar to Cpr. Hence, (X,.J) is a Jordan pair of LT (z).

Step 3. Now the parameters Ay,-- -, 4; in (2.5) can be determined by the following equations
! .
D ASi=ci, i=J+1,- T+l J> -1 (3.6)
j=1

Since the coefficient matrix of system (3.6) is nonsingular, the system has solution uniquely.
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Once A4;, Sj(j =1,---,1) are determined, parameters B; in (2.5) are obtained by
l
Bi :Ci—ZAjS;:, iZO,l,--- ,J.
j=1

The parameters B;, A; and S; given above form a solution of (2.5). In fact, the first J +1+ 1
equations for i = 0,1,--- ,J,J+1,--- ,J+1 hold obviously. Fori = J+1+1,---,2l+ J, from
(3.1) and induction, we have

l

-1 -1
Cj = - Z ci—l—i—ij = — Z Z AkS£7l+ij
j=0

J=0 k=1
l -1 l .
Y ST s = Y At
k=1 7=0 k=1
Therefore, the system of equations (2.5) is satisfied.
k
Example 3.1. Let n =2,1 =2, J=—-1,¢; = 2 k+2

2 1 ’

k=0,1,---. We want to find
the solution of system (2.5). Firstly, we find that the solution of (3.1) is

a b —l—a -0 10
Lo L1 L] = [ 8 ‘ ] )
[ 0 2 0 -2 01
where a and b are free parameters. Compute the eigenvalues of C;r, we have
5 5 5—Vb
)\1:1, )\220,, )\3: +\/_, )\4: \/_
4 4
Then by computing the eigenvectors of Cpr we get Cpr = SJS~! with
2 1 0 O 10 0 O
|1y 1 1 |10 a 0 O
§= 2 a 0 0 [’ T = 0 0 X3 0 |’
1 ay )\3 )\4 0 0 0 )\4
a(t —b)+b

where y = — , and a # 1. Since the matrix { (1) (1) } is singular, we exchange

(a — )\3)(& — )\4)
the column in S and J and get two succeed partitions as follows:
2 0 10
11 y 1|’
J = diag[Ji, o] = diagH 10 } ,[ a0 H ,
3

X = [Xl,Xg] = {
(3.7)

and

1

. . 1 0 0
J = diag[J1, J2] = dlagHO )\4},[8 s H

For partition (3.7) we get

2 0 1 0
vemr=[1] 3¢

1 2(1-=X3)

Sy = (X1 X7 = [ 0 A3

From (3.6) we find

21— 2_ 0 22—
_ Ai—X3 — X1— A3
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The following result is a corollary of Theorem 3.2.
Theorem 3.3. If L(z) has only linear elementary divisors, then L(z) has a complete set of left
solvents.

Proof. Let (X,J) be a Jordan pair of L(z). Then @ defined by (3.3) is nonsingular and

J = diag[A\1,- -+, A\ny] is a diagonal matrix. If we expand det @ by its last n rows, then by
Laplace’s theorem, there exists at least one n X n minor of det Q):
0 nll—1)+1, n(l-1)+2, -, nl
j17 j27 Tty .]TL
such that both this minor and its complementary minor are non-zero. By exchanging the
columns of @), we may assume j; =¢, ¢t =1,2,--- ,n. Then

X =[X, X], J= diag[lh, J], Xi,J; €CV"

and -
Xy X
Xin XJ
Q=) 7
X, g7t Xt
. - L . T
with X;J. " and Q = [XT (XNHT - (XJ"HT|  being nonsingular. By induction, we

can get that XiJffi e C" for i = 1,---,1 and XiJffi are invertible. Hence Xy, ---,X;
are invertible. Therefore, we have achieve a partition (by exchanging the column of @) of
X =[X1 -+ Xjy] and J = diag[Jy,- -, Ji] such that X;,---,X; are nonsingular. Then the
theorem follows from Theorem 3.2.

4. Relation between P(z) and R(z)

For the scalar case, the (0,1)-type fraction-sum can be written as a rational function. Hence
the problem of (0,1)-type fraction-sum approximation and the problem of Padé approximation
are equivalent. However, for the matrix case, the relationship between the two approximations
are complicated. This section illustrates this complexity.

Let P(z) be a solution of problem (2.7). Then the parameters A;, B; and S; in (2.6) satisfy
equations (2.5). Suppose

I S - Si_l I S - 5{
rank PR PR .. :rank PN PN PN PN R (4_1)
I s - St I s - S
Then there exist Lo, Ly, ---,L;_1 such that
I s - st Lo st
I S - s Ly St

Let L(z) = Zi’:o L;z" with L; = I. Then the left value L(S;) = Zi:o SiL; of L(z) is a

zero matrix. Therefore, there exists a monic matrix polynomial g;(z) of degree [ — 1 for each
j=1,2,--- 1, such that L(z) = (2I — Sj)g;j(z) (see [6], page 252). Let z =t~ and

Lty =t'L(t™Y),  qt) =t g (t7h).

Then ~ -
L(t) = (I = 8;t)g;(t), or (I —S;t)™" =q;(t)L(t)"

in the neighborhood of the origin. It follows from (2.6) that P(z) can be expressed as P(z) =
(Z;]:Jrol bizi) L(z)~"'. Therefore, P(z) is a right matrix Padé approximant under condition (4.1).
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Now we should mention that (4.1) is always true in the scalar case. However, in the matrix
case, (4.1) may not be true. Hence the problem of (0,1)-type fraction-sum approximation and
that of Padé approximation are not the same. Condition (4.1) is sufficient for P(z) = R(z). A
further conclusion is the follow1n§ theorem.

Theorem 4.1. Let P(z o Biz* + Z LA (I = 28;)7" be a (0,1)-type fraction-sum
approzimant of f(z). Then it is a Pade apprommant of f(z) if and only if
A STt ApSSt L 48T I s - St
rank A 872 A, SJ+2 Alsi]+2
- I s - Sll—l (4.2)
A ST A s-’“ A SJ“ r s - S ‘
= rank A, 8]+? ASJ+2 A5J+2
IS . S
Proof. Let P(z) =Y ;2 ¢z". Then by the definition of P(z) and (2.8) we have
G = ¢, 1 =0,1,---,2[ + J,
(4.3)

G=> ASh i=J+1,J+2,-.

It follows from (4.2) and the equalities above that (3.2) holds and therefore R(z) exists (see
[10], Theorem 2.1). Since (4 2) could be written as H(J + 1,1,00) = rank H(J + 1,1+ 1,00),
then there exists Lo, L1, -+, L; (with Lo = I), such that

L §J+z+1
H(J+1,l,00) | : | =—]| “++2 || (4.4)
Ly :
Let B
bo L
=H(-LI+1,J+1+1)| : |,
bt Lo

where we assume ¢; = 0 if ¢ < 0. Then R(z) := (Z;]:()l bizi) (22:0 [N/izi)il is a right
matrix Padé approximant and (4.4) implies that the power series expansion of R(z) is the
same as that of P(z). This complete the proof of the sufficient part of the theorem. If
P(z) = (Z;jjol bizi) L(2)~', then by P(2)L(z) = ZJH b;z" and (4.3) we can get (4.2).

It is obvious that (4.1) implies (4.2). However, the inverse conclusion is not valid. The
reason to mention condition (4.1) is not only that we know a method how to transform P(z)

to R(z) under condition (4.1), but also that condition (4.1) is easier to use than (4.2), which
relates to the ranks of infinite matrices.

k
Example 4.1. Let n =2, [ =2, ¢ = 2 k+02

u 14 w2k
1 1 1 0
Sl_{o 1]’52—{0 2]'
2
rank{‘r 51 I 5 51}24.

I S IS, S2

Hence equality (4.1) does not hold. Let f(z) = Y oo, ciz’. Then it is easy to check that for
J=—-1,P(z) = —25) '+ A(I — 252) ! is a (0,1)-type fraction-sum approximant of f(z),

], k=0,1,---, where u, v and w are

parameters. Let

Then
] =3, rank [
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where A = { 111 Z} ] In fact, P(z) and f(z) have the same power series expansion. On the

other hand, by computing the rank of the related matrices, we have

1. If w =0, then (4.2) is true.

2. fu#0,w#0;0ru#0,w=0,2v(u+1)+u =0, the relation

rank{ € c1 e } = rank{ 1 ] (4.5)
cCi C2 C3 C1 C2

does not hold.
3. Foru#0,w=0,v=0, (4.2) is true.

4. Foru #0, w =0, 2v(u+1)+u # 0, v # 0, (4.2) does not hold, but (4.5) holds. The
discussions above are summarized in the Fig 4.1.

C_I)—C )~

Fig 4.1: The relations between P(z) and R(z) for Example 4.1

This example shows that these two problems considered are very different.
Although P(z) = R(z) in certain cases, we do not know how to get R(z) from P(z) and
vice versa. For example, for v =0, w =1,

R(z) = N(z)L~1(z) = <[ . } +z[ e e D .

(18 2]+ s )

where a and b are free parameters. It seems difficult to get this form from P(z). On the other
hand, if we let L(t) = t>L(t~!). Then the left values of L(t) at S; and S are
= 0 —-05 = 0 0.5

respectively. That is, S; and Sy are not left solvents of L(t). This implies that S; and Sy can
not be found by the methods given in §3.

Let w = 2, v = 1, w = 0. Then by Example 3.1, we get another solution of (0,1)-type
fraction-sum interpolation problem as follows

Pl(Z) = Al(I - 251)71 + A2(I - 2’52)71,
where A, A, S; and Sy are given in (3.8)—(3.9). Since (4.1) holds in this case, P;(z) is also

the solution of Padé problem. But % # &Z(z) for k =4,5,---, since
z=0 2=0
k k k k k
TRE)| |2 12X ) PO f 2 k2
0z |,_o 2 1 0z |, 2 1
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5. Uniqueness

We consider the uniqueness of the approximants defined in §2 in the following sense:

a. For any solution F(z) of (2.1), F(iT') is uniquely defined for any i = 0,1, --.

b. For any solution of (2.4) or (2.7) or (2.13) or (2.15), its series expansion is unique.

It follows from the definition of uniqueness that the uniqueness of the approximants defined
in §2 is equivalent to

1
Z AjS;: are uniquely defined for ¢ > 2] + J (5.1)
j=1

and for any solution of system (2.5). Since (2.5) is a system of nonlinear equations, it may
have many solutions. We have noticed in Example 4.1 that, if u =2, v = 1 and w = 0, the
(0,1)-type fraction-sum approximation problem has at least two different solutions P(z) and
Py (z). But the solution of Padé problem (2.10), which is P;(z), is unique since condition (5.2)
holds. What we have achieved now about the uniqueness is that we can establish uniqueness
conclusion about these solutions of (2.5) which make P(z) to be a solution of the Padé problem.
Theorem 5.1. Suppose that system (2.5) is solvable. Then its solution, which makes (4.2)
valid, is unique in the sense of (5.1) if and only if

rank H(J +1,1,1) = rank H(J + 1,1,1 +1). (5.2)

Proof. Let f(z) =Y. ¢;z" and ¢; be given in each problem proposed in §2. Then it follows
from the validity of (4.2) that the right matrix Padé approximant of f(z) exists. It is unique
(see [10]) if and only if (5.2) holds. The uniqueness of Padé approximant and (4.2) is equivalent
to (5.1).

Corollary 5.1. The solution of (2.5) obtained from section 3 is unique if and only if (5.2)
holds.

Proof. Since the solution given in §3 always satisfy relation (4.1), and (4.1) implies (4.2),
the corollary follows from the theorem.

6. The Convergence of Baker-Gammel Approximants

We establish now a convergence conclusion about K;(z) = 22:1 Ajk(z,S;) defined in §2
(J = —1) for a special class of functions. The conclusion is established based on the convergence
results about matrix Padé approximants for Stieltjes functions.
Lemma 6.1. (see [4]) Let f(z) = Y 1o, ciz', ¢; € R™" be symmetric matriz. Suppose

H(0,1,1) and H(1,1,1) are positive defined for all . (6.1)

Let N(z)L~'(z) be the right (I — 1,1) type matriz Padé approzimants of f(z). Then

(i) The zeros of det(z'L(z~")) are real and positive.

(ii) All the elementary divisors of z'L(z~") are linear.
Lemma 6.2. (see [8]) Let o(x) be a bounded, real symmetric and increasing matriz-valued
function. Then if o(x) is constant for z > 1

V1—2z-1]
limsup || R (2) — f(2)||Z < |7,

where Ry(2) is the right (I — 1,1) type matriz Padé approxzimant of f(z) and f(z) is defined by

z ¢ [1,4+00),

1) = [ =dete (62)
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||| stands for the Frobenius norm for matriz and /~ denotes the principal branch of the square
r0o0t.

From these lemmas, we can get our theorem about the convergence of K;(z).
Theorem 6.1. Let o(z) be a measure defined as in Lemma 6.2. Assume o(z) is constant for

x> 1 and (6.1) holds for ¢; = fol rido(x), i =0,1,---. Let

g(z) = /000 k(z,x)do(x) = /Olkr (z,x)do(x ch i(

where k(z,u) is an analytic function of u at least within a dzstance A > 0 from [0, 400) for all
z € D, a compact region in the z—plane Furthermore let

k(z
/| |w| d <M<, z€D,

where I' is a contour at distance A from [0,+00). Then

(i). there exist A;, Si(i = 1,--+,1) such that ({.1) holds, Ki(z) = 22:1 Aik(z,S;5) is a
solution of problem (2.16) and the solution which make (4.2) holds is unique.

(i1). for Ki(z), a solution of (2.16) with Si,---,S; satisfy (4.1), we have

. 1 |\/1— - —1]
limsup || K;(z) — 2 <m
moup 1i(2) ~ g ()1 < ma Yr =

Proof. (i). Under the assumption of the theorem, the right (I — 1,1) type matrix Padé
approximant R;(z) = N(z)L~!(z) exists for f(z) defined by (6.2). It follows from Lemma
6.1 and Theorem 3.2 that L(z) = 2!L~'(2~!) has a complete set of left solvents Sy,---,S;.
Therefore, problem (2.16) is solvable. Furthermore, since (4.1) and (5.2) hold, K;(z) is unique
for those Si,- - ,S;, which satisfy (4.1).

(ii). Since Ué’:1 o(S;) = (L) (see [6], p.-524), we have by Lemma 6.1 that the eigenvalues
of S; are real and positive. Then we have (see [6], p.332)

!
ZAk:zS —QLZ: / NwI = 8;) " dw

1 k(z,w) d o cigyt, 1 [k(zw) —1
__,/F > Ay (- w7hs;) = ./F—Pl(w )

z€eD. (6.3)

KZ(Z)

2mi w 2mi w
Jj=1
1 k
= —/ MRl(ufl)dw.
2m Jp w

The last equality follows from Theorem 4.1.
On the other hand, by Cauchy formulas

0= (5] 1 B2 ) doto)

where I'y is a circular contour with center x and radius A. It follows from the analyticity of
k(z,w) that

00 = g [P ([T o)) o= o [ pa

27 w 1—zw! 2w Jr  w

Hence

lo(2) - Ku()l| = ‘

1 k(z,w) 1y _ B (w1 dw
o 2 e ~ R d

211 w

k
o maxllfo™) - i) [

I /\
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Therefore,

M
limsup lg() — Ki(2)) < 2L tim sup max || f(w ) — Ri(w )|
l—o0 2w 00 wED
and (6.3) follows from Lemma 6.2.
Since |[v/1 — 2z —1|/|v/1 —z+ 1] =1 if and only if z is real and z > 1, we have

V1—w1-1]
max —————— =
wel |1 —w=1 +1]

r<l1.

Therefore, we have
Corollary 6.1. Under the conditions of Theorem 6.1. K;(z) converge uniformly to g(z) on D
as | — oo.

7. Appendix: Some Terminologies and Facts

In this appendix, we introduce some used terminologies and basic facts in the matrix poly-
nomial theory, more related details could be found in [6].
Matrix Polynomial. A matriz polynomial L(z) is matrix whose elements are polynomials in
z. An n X n matrix polynomial L(z) of degree [ over the complex field C could be written as

L(z)=Lo+2zL1 +---+ 2L, LeC™n

where [ is the degree of L(z). If L; = I, L(z) is called monic.
Solvent. Let S € C**". The left value of L(z) at S is defined as

L(S)=Lo+SLy +---+ S'L,.

If L(S) =0, then S is referred to as a left solvent of L(z). L(z) is divisible on the left by 2I — .S
with zero remainder if and only if S is a left solvent of L(z). A set of left solvents Sy,---,S; of
L(z) is complete if the corresponding Vandermonde matrix

I S - s
V= e e
I s - S
is nonsingular (see [6], p.524).
Latent Roots. Let L(\) be an n X n matrix polynomial, the zeros of det L(\) are said to be
latent roots of L(\).
Elemntary Divisors. Suppose that the n xn matrix polynomial L(\) over C has rank r and let
d;(A) be the greatest common divisor of all minors of L(\) of order j, j =1,--- ,r. If we define
d0(>\) = 1, then dj ()\) is divisible by dj_1(>\), ] = 1, e, T The quotients l]()\) = dj ()\)/d]_l(k)
are called invariant polynomials of L(\). Let A, A2, -+, As be the distinct latent roots of L(\)
with multiplicities my, ms,--- ,m,. Then there are integers a;z, 1 < j <rand 1 <k <'s, such
that

ijA) = A= A)WHA = A)%% - (A= Ag) e, j =107 (7.1)

and 0 < aip < asp < -0 < app < mg, Yo, ajr = my for k = 1,---,s. Each factor
(A — A\g)%* appearing in the factorizations (7.15 with o > 0 is called an elementary divisor
of L(\). An elementary divisor for which a;; =1 is said to be linear, otherwise it is nonlinear.
Companion Matrix. Let L(z) be an n x n monic matrix polynomial of degree I. Then

0 I 0 .. 0
Co=1 4 0 0o .- I
—-Ly —-Ly —Ly, --- —L;j,
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is said to be the first companion matriz for L(z). It is known that all of the elementary divisors
of L(z) and zI — Cp, coincide.

Jordan Pair. Let L(z) be an n X n monic matrix polynomial of degree I. (X,J) is a Jordan
pair of L(z) if J is the Jordan canonical form of Cy, (i.e., Cr, = SJS™!), and X € C**™ consists
of the first n rows of S, here C, is the first companion matrix for L(z). Let (X, .J) be a Jordan
pair for L(z). Then (see [6], p.500) the nl x nl matrix Q@ = [XT (XJ)T - (XJl_l)T]T is
nonsingular.

Matrix Value of Scalar Function. For a scalar function g(z) € C[z], the matrix value g(A)
in terms of matrix A € C**™ and function g is defined as g(A) := p(A), where p(z) is any
polynomial that assume the same values as g(z) on the spectrum o(A4) = {A,--- ,As}. One
computation method for g(A), that uses the Jordan canonical form of A, can be found in [6],
p.311. Another approach for computing g(A) is to use the spectral resolution of g(A) (see [6],
p.314). An explicit formula for g(A) that do not use the spectrum of A can be found in [5].
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