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Abstract
Iterative techniques for solving optimal control systems governed by parabolic varia-
tional inequalities are presented. The techniques we use are based on linear finite elements
method to approximate the state equations and nonlinear conjugate gradient methods to
solve the discrete optimal control problem. Convergence results and numerical experiments
are presented.
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1. Introduction

In the theory of variational inequalities and their approximation by finite elements methods
the dam problem models hold a particular place (see for example [3], [14], and references
therein). Such models are of a great practical interest in the development and management
of water resources. Knowledge of the amount of seepage is essential for water conservation
practice. The main goal of the present paper is to study numerical approximations for the
following optimal control problem (CP):

Find  qmin € Usq C L2(0,T) such that

. ) (1.1)
‘]J(szn) = MvgeU,q ‘]J(q)7 )= ]-7 2> —ey m,
subjected to )
H;_1(t)+aH;—1(t) =q(t), j=1,2,...,m. (1.2)
The cost functionals are defined by
1 dy2 N [t 2 .
Jilq) == 3 [wj(q) — wi]” do dt + 5 [q]*dt, j=1,2,...m, (1.3)
Q 0

where N is a nonnegative real. Let us denote by ¢(t) the control variable, by U, a closed convex
subset in L?(0,T) and by wé(z,t) a given functions in L?(Q;). Also this problem subjected to
the following parabolic system of variational inequalities ( Problem (P)):

w;(t) >0 a.e.,w; € L*(0,T; H*(Dy)), % € L*(0,T; H'(D;)), (thenw; € C°(Q;)),
ow;
v (3—7;,%‘ —w;(t))r2(p;) + a(w;(t), v; —w;(t)) > —(1,v; —w;(t))r2(p;),
V’Uj € LZ(DJ'), a.e., U)j(tjfl) = Qf)jfl, ’LUj(t) S Kj(t), Vj >0 j5=12,..m,
where

K;(t)={v; € HY(D;) :v; =Gj on Ty, j = 1,2, ...,m},
G; are any functions in H%(Q;) such that the value of G on the boundary Ty;, gj, is assumed
to have a zero derivative and G; = g; on 'y, x]t;—1,T[ such that g; >0, j =1,2,...,m,

t<
J 1
gilaj,y,t;) = / [Hj_1 (1) — (y + t; —7)]Tdr + Sl(Hj-1 (1) —y = ),
tj—1
i 1
gi(bj,y,t;) == [Hj(T) = (y + t; — )] Tdr + S [(H;(t7) —y = )1,
tj—1
m¥ = (Jm| +m)
2 b
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gj(z,ej,t;) =0,




816 N.H. SWEILAM AND L.F. ABD-ELAL

and a(u,v) := (Vu, Vv)r2(p,) is the bilinear, coercive form in H'(Dj).

Physically, the above model describes (see [27]) the optimal control evolution system of earth
dams where we consider an unsteady flow, say water, moving through m homogeneous porous
rectangular earth dams. The dams have the following domains D; := {(z,y)|0 < a; < = <
bj, 0 <y <ej, j=1,2,...,m}, respectively, with vertical walls z = a], xr=b;, j=12,...,m.
We suppose that the water levels Hy(t), H,, (t) are given real numbers, Hy(t) > Hp(t) >0 and
H;(t) are the intermediate water levels between jth and (5 + 1)th dams, j =1,2,....,m — 1(
see Figure 1), w;(g) are the weak solutions of the evolution dams problem when the initial data
follows from the stationary dam problem (see [6],[10],[28]) and @;_1 are the solutions of the
stationary dams problem (see [3]). The constant v > 0 is called the retentivity cofficient, the
case v = 0 is related to an incompressible fluid. We will denote by ¢; € [0,7],0 < T' < +o0 the
time intervals during which we want to study the filtration dams, j = 1,2,...,m, t, = 0. Let
Qj:DjX(] 1,t ).7_]-2

Ly = {(=, y) aJ <z <bjy=0}, T[g :=T;—-Ty;.

where I'; are the smooth boundary of D;. Optimal control problems in connection with vari-
ational inequalities contain many difficulties, e.g., [4], [5], [12], [16], [17], [18] and [19] or more
recently [1], [7] and the references therein. The control problem (1.1) — (1.3) is in general a
non-convex and non-differentiable optimization problem, see [18]. It has been proved in ([27])
that by controlling the amount of fluid that may go out of each dam the free boundary in each
dam can be controlled. Also in ([27]) regularizing the problem necessary optimality conditions
were exhibited and obtained convergence results when the regularization parameter tends to
zero. One justification to use these methods for solving variational inequalities numerically
is the fact that inequalities are replaced by equations (see for example [23] and [26] ). For
simplicity we will write w; instead of w;(g). Also we write

gj( )':g]'(a’jayvt')a \V/yEDj,t'E[O T] j:1727---7m (14)
which is continuous functions. This under the assumptions [H;(t)| < C1,j =1,3,5,...,m, we
have |g;] < Cs on the sides z = = b; where C; and Cs are posstive constant. In the sequel
we do not care about the existence of an optimal solution of (1.1)-(1.3): one can refer to [27],
where the above formulations and the following theorems in this section can be found.

Problem (P?). Consider the e-approzimating problem for (P) as follows:
Ve >0, Yo €V;  find the functionswj(q;) such that,

V<68: >+a<w U)—ki(ﬁ(wwi}) :<1,v> a.e, te0,T],

wi(tj—1) =051, wilgj)l,, =9;5(a),

where V; = {v € H'(D;) : v =0 on Fdj}, 95(q) is a regularized function for g;(q), see [17]
for example we can choose gj(q), as an exterior penalized function in H*(D; x (0,T)). We can
prove (iteratively) that this problem has a unique solution in L*(0,T,V;) N H'(0,T,V}) (see
Barbu [{] pp. 160) where V is the dual of Vj. To emphasize the penalization method, therefore
for any v € H'(0,T;V) the metric projection is given by ( see R. Scholz [23])

P(v) :=v—vt, (1.5)
therefore we introduce a penalty function B(v),
B(v) :=v— P(v) =vt, (1.6)
! _ da r
gy = {5 O TEO IO F0 (v0,50) = 557 180Ny 0D

Lemma 1. Let wj be the solutions of (P%), e >0, j=1,2,....,m. Then the estimates
18(w5)lL2(q;) < Ce, B(w;)|lL2(0, 1,11 (D)) < Cez, (1.8)

wE
lwllLee0,7,L2(D;)) + w5l L2(0,7,v) + || ||L2(0TV') <Cllg* ]||L2 07,5} (1))
; i

are hold and C' is independent of €.
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Theorem A. Let wj,w; be the solutions of (P), (P:) respectively. Then the estimate

£ £ 1
llw; —w5llL2(0,7,L2(0;)) + lwj — w5 llL2(0,7,v) < Cez, (1.9)
hold and C' is independent of €. Moreover, for any small 6 > 0 the directional derivative 25 of

wj; are the solutions of

J . . e o 1 ,
V(azj,wj) —I—a(zj,wj) + B (ﬂ'(wj)zj,w]) =0, Vi; € HY(Dj), a.a. t €[0,T], (1.10)

g5 (as) — g5 (a) .
% — 2 on Tg;. (1.11)

Proof. See [27].
Problem (CP?). Find q. € Uyq such that J-(ge) = minysev,,J:(q) , subjected to the problem
(P?) and (1.2), where

1= 1 £ N
J5(q) = §||wj(Q) —wil2(q,) + §||Q||2L2(0,T) : (1.12)

Theorem B. If q. is a solution of (CP.) and w; = wj(q:), then there exists an adjoint state

(t) € L*°(0,T; H*(D;)NHA (D)) for every t € [0 T, such that the triple (g, w5, p3) satisfies
\V/E >0, Yv €Vj the following optzmalzty system

ws e L*(0,T,V;) nH'(0,T,V}) c C°([0,T], L*(D;)),
V(w5 ) +afuf,v) + %(ﬂ(wi),v) = —(1,0), (1.13)
w; =gj(¢:) on Ty

0 1
—I/apj + Ap; — —(ﬂ'(we p;) = (w5 — w;l) a.e. in the regions where wj >0,

p] z,t) =0 a.e in the regions where wj =0, p;(x,T) =0, in Q;
/ / \V4 g] q:) 6 (U t)dodt + Ng. > 0 Vqe € U,

(1.14)
where n is the unit outward normal at the boundary I'y;.
Proof. See [27].

There are many works on parabolic equations discretization process (see for example [22]).
The full discrete approximations for our parabolic control problem and for the necessary opti-
mality condition are given in section 2. In section 3 numerical approximations of this problem
were obtained. In section 4 numerical experiments are presented, and finially end in section 5
with conclusions.

2. Discretization of the State Equations

In the following, a finite difference scheme is used for the discretization of the time variables.
For the computational work, let M be a positive integer. Consider the uniform partition of
[0, T defined by

to=0<t1 <toa<..<ty =T,
T
try = kAt, (k=0,1,...,M), where At= i

For any time-dependent function Z we define
1 (Zk:+1 _ Zk—l)

=2 At
A piecewise linear finite elements method in space (see [10]) is used for the discretization of the

time vatiables. To define the approximating spaces, let 7, be a family of triangulations of D;
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with h € (0, 1], corresponding to the mesh size. The triangulation 7, is assumed to be regular
(see [9]). Let Vjj be closed convex finite dimensional subspaces of H'(D;) defined by

Vin := {vjn € L*(0,T, (H'(D;) N C°(D;)) | vjpis linear over any K € ;1 }. (2.1)
We can introduce the discrete penalty problem to the problem (P¢) as follows:
Problem (Pj,). Find v, € Vjn:

v (W5p,vin)L2(D;) + a(wiy(g5),vin) + %(5(“%(%)) vjn) = —(Lvjn)  Vvjn € Vi, (2.2)
win(qj) = Gin(g;) on Ta wip(tj—1) = 0(;_1p,
where g5, (q;) is the discrete boundary conditions.
Theorem 1. Let w5 € L*(0,T,H"(D;)) and w5, € Vjn be the solutions of (P°) and (P7,)
respectively. Then the estimate
w5 = wipllezom,m(py) + 21B(w;) = Bwip)llizie, < Clh+e2h%),  (23)
is hold, where C' is independent of €, h.
Before proving Theorem 1 we prove first the following Corollary which show us the relation
between the penalty parameter ¢ and the discretization parameter h.
Corollary 1. Let w;, w§ € L*(0,T, H'(Dj)) be solutions of problem (P), (P*) respectively and
let w3, € Vjn, be the solution of problem (Pj,). Then the estimate
lwj — wip 20,711 (D;)) < 3Ch, (2.4)
holds for e = h?.
Proof. According to Theorem A, for every ¢ € (0 T), e = h? we claim that
lw; —wipllzz0,1,01 (D)) < llwj — w5 ||L20,7,11 (D)) + 1W; — W5pllL20,7,01 (D;)) < 3Ch.
Proof of Theorem 1. Let wi, € V]h be a solutlon of (PE”), we have (see [23]) from the

properties which are characteristic for linear finite elements spaces with respect to regular
triangulations of D; with mesh size h

e = vnllzs () < CH e zgyy k= 0,1 (25)
< Ch*7F Yoy, € Vjp.
Let Pj; denotes the L?— projection onto Vj, and ¢°;n, € Vjn. By the monotonicity of 3
and the coercivity as well as the continuity of af(.,.) we get:

v 0 1 2
2 6t H'(D;) + g”ﬂ(;”;) - ( )H L2(Dj)
< v(wj — Wiy, w; — wjh) + a(w§ — wiy, w; —wi,) + = (B(w;) — B(wj,), w; —wjy)
< V(sz - w;h)wj - ¢;h) + a(wj - ’LUEjh,’LU]E' - (b;h) + g(ﬁ(w;) - ﬁ(wjh)aw; - ¢;h))
If especially ¢ ;;, := Pj, w3, is chosen, we have

llw§ = winl® 1o ) + 05 — wipll®

. . . 10
(sz' - U’]E'h:w; - ¢;h) = (U’j - QS]h: phl]h) ) 8_”11’ - w]h||2 2(D;)
then we have
v o € € 12 € € 112 1 € € 2
5&”“@' _wjh“ L2(Dy) +||wj _wth H'(Dj) +E||ﬂ(wg) _ﬁ(wjh)H L2(Dy)
2 2 2
< V&ijs - ; || L2(Dj) + ||U)§ - ;h” H'(Dj) + g”’u}; - ¢€jh|| L*(Dj)

Using (2.2) we get (2.3) by integrating the result from the last equation with respect to the
time £.
To construct an approximation to the regularized control problem based on the discretization
of the variational inequalities. Assume that problem (C P¢) is approximated by problem (C’Pfh) ,
where ¢ € (0,1) is an arbitrary parameter and h > 0. We introduce the following discrete space
U]d of Uyq in Vjj, endowed with the norm in L?(0, T). The discrete control problem (CPg,) can
be written as follows .
Find ¢ € U, gg such that
€ (gf) = i H
Jh(q ) v;relgﬁh JJh(Q) )

ad

(2.6)
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subjected to (Fj;) and (1.2), where the discrete cost function, in the interval I} = (t?_l, th), n =
1,2, ... M,5=1,2,...,m is given by

1L N
wn(a) = Z(At) lwhjn — ;lh”%%Dj) Ty Z(At)j(qn)Q
n 1 n=1

and w;-ih € Vj,, is an approximation of w]-, such that limj_,q ||w;-1h - w}iHLz(Qj) =0. .
Theorem 2. Lete > 0, h be fized, then problem (C’Pjgh) admits an optimal solution ¢¢ € Ugg .
Proof. The aim is to show that the functional JI* is weakly Ls.c. on U",. Let {q,} € U",

be any sequence such that ¢, — ¢ weakly in U” oy as n — oo. Then for every time step the
sequence w3 (qn) is bounded in H '(Dj) by a constant independent on n satisfying (2.2) (see
Barbu ([4]), p. 169). Moreover the map from ¢, — w5, (gn) is continuous (weak) from Uh to
L*(0,T; H(Dj)). Consequently, the functional J is weakly l.s.c. and therefore the existence
of optimal control for ((CP)") is proved.

Theorem 3. The mapping from the control and the discrete state observation is Lipschitz
continuous.

Proof. Corresponding to the perturbed data at the levels Hy; and Hp,. We can assume
that the corresponding amount of water from each dam is ¢i; and ¢i,, respectively. We can
choose the test function v = w5, (q1,) or v =wj,(q1,), from equation (2.2) we have in the
discrete form:

(5n@a).66) = (w0 6) + [ (6] Fwinto) o + 2 (05020,

- (-16).
(a0, 66) = (w0 6) + [ () Fwinton) nde + 2 (005010,
- (-16).

fjg :wjh(qlg) _w;‘h(‘hl), )
wip(q1;) = g5n(q;) onTyy, i=1,2,

By subtracting the two equations, we get
g € € € 1 e
V€ 1s850) = (€50, 0) = 23w ane) = Blaulana): G = = [ GG

By the monotonicity of 4 and Young’s inequality we derive

v o Q@ 1

5 16l + 10 oy <5 [ lePdr+ 50 [ 19 Gl
where « is positive constant. Integratmg with res;])ect to t and notirjlg that on the boundary
w3, (q) = 95,(q), we get

lwip (q12) — wip(qr1)llze=(0 TH1(D ) < llaie — quillp=o,7) - (2.7)

Remark 1. Let [ be a function such that ¢° = ¢¢ + 6l € U" for any § > 0. Then the map
¢ — J5,(¢°) is differentiable:

c( a0\ _ TE(AE € (69 — wE, (6¢
BV [T ) gy + N D0

where

o [ 5winld) - Wi @)deds + N @ Disor
where 2%, is defined in Theorem A.
Corollary 2. As a consequence of Theorem A the estimates

|J(q) = Jo(@)| < Ch,  |J(q") = Jh(@)| < Ch, |J5(¢°) — J(@)| < Ch (2.8)
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hold for all j =1,2,...,m, where C is independent of € .

Proof. From Theorem A we have by coupling the penalty parameter £ and the discretization
parameter h by £ = h2,

(@) = Jr(@)] < | J(a) = (@) + |T7 () = Ja(a)],
but using Theorem A we derive
17%(q) = Ji (@)] < Cullwsy (a) = w5 (@) |20 (0y)) < Ch,

where C is a constant independent of €, then we get the first inequality. By the same idea we
can derive the others.

Let us define the discrete adjoint state as the solution of the following problem (see [16]
chapter 3):
Problem (AP;,).

. 1 ) .
VP, + Apj, — g(ﬁ'(wj-h)pjh) = (wj), — w;lh) a.e. in the regions w5, (z,t) >0,
Pin(z,t) =0 a.e in the regions where w3, (z,t) =0,
with the discrete mazimum principle

/ / v 95n(q 8n (0 t)dodt + N¢° >0 Yq© € Ugg, (2.9)
ti—1

where n is the outward umt normal at the boundary I'; and t; is the discrete time, i = 1,2, -
<, M.

)

3. Method of Solution

In what follows, we present an algorithm to solve the discrete approximation of the control
problem (CP]?h). This algorithm consists of four parts. In part two we used a combined approach
of a linear finite elements method for the space variable, finite difference discretization to
the time variable and the projected successive over-relaxation method for solving the linear
complementarity problem. In part three the technique of nonlinear conjugate gradient methods
is applied to minimize the effect of zigzagging. The conjugate gradient method is the conjugate
direction method that is obtained by selecting the successive direction vectors as a conjugate
version of the successive gradients obtained as the method progresses, see [13],[14], [15]. We
introduce a nonlinear conjugate-gradient algorithm with exact line searches to solve the control
problem for two reasons. One is that their storage needs are low. The other is that the work
required to compute a search direction is also low. This algorithm based on Armijo’s rule in the
unconstrained optimization theory (see [11], [20]). For more details on the global convergence
properties of nonlinear conjugate gradient methods see [13]. convergence properties of nonlinear
conjugate gradient methods see [13].

Algorithm.

1. Initialization: Let e, h > 0 be fixed, let 7 denote the iteration index, 6 € (0.5,1),

€ (0,1), ¢° := ¢, wj = w5, and g; := g5, . Take w, be any continuous functions. Set
i = 0,7 =1, choose the initial functions Héo), Hr(,?), such that Héo) > Hr(,?) for all t > 0.

2. Optimality system computations:

Step 0. Compute the distance between the dams l; = aj4+1—b;, j =1,2,...,m—1. By solving

(1.2) find q](-i), then find the intermediate water level H]@ 7" L between j° th and (4 + 1)th
dams. .
Step 1.  Compute w} by solving the parabolic problem (Pfh); Step 2. Compute pgl) by
solving the the parabolic adjoint equation ((AP)3,);

Step 3. Forn =1,2,...,M compute dij( " = —(N q,J (vg],p”(”)) D E
3.Nonlinear conjugate gradient technique: ’
Step 4. If 27]5[:1 (At); ||d(" lL2(p;) = 0, stop; otherwise continue;

”dij ||L2(DJ-)

Step 5. Set d=Y =0; a(® =0 and for n > 0 set a(®) = e
||dij ||L2(Dj)
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Step 6.  Set d : d( ) 4 ) dEJ),
Step 7. set A1 =1
4. Update and stopplng critgria: '
Step 8. Compute ¢§ := J,i(qj(-z) + Aldg-l)) — J,i(qj(-l)) + ZnM:1 (At); ||dg;-l)||L2(Dj) ;
Step 9. If 6 <0 go to step 10, otherwise A; =6 x Ay, go to step 8;
Step 10. We define ¢"t1) from ¢ using the relation: ¢(+1) = ¢ + A4, (dxl))
Step 11.  We define H](”l) from H]@ using the relation: Hj(iH) = H](i) + A (dgj")) ;
Step 12.  Set i := 4+ 1 and return to the step 1 untill the stopping rules ( see section 4) are
satisfied.
Step 13. Set j := j + 1 and return to the step 0.
Convergence of the Algorithm
To prove the convergence of this algorithm in the framwork of the general theory in Céa([8],

chapter 3). For any q € Ugg C L?*(0,T), the gradient G(q) of the functional J; (¢;) := J(g;) is
defined as .

(7'(a)0) = (G(a),)) V1€V, (3.1)
where J'(g,1) is the Gateaux derivative of J for every j = 1,2, ...,m. From Theorem B we have
G(q) = Eanl (Ng" +(vg5,p})r)x"(t) where x"(¢) is the characteristic function of the interval

I = ("1 t"), n = 1,2,... M. We will show that the gradient G(q) satisfies the Lipschitz
condition on every bounded subset B C L?(0,T), i.e. there exist a constant Cz > 0 such that

IGj(q1) — Gj(a2)ll20,7) < CBllar — @2llz20,1) - (3:2)
Remark 2. As a result of Proposition 1, we have
p; = p;  weakly star in L(0,T, Hy(D;)),
P50 (wj(g-)) is bounded in (L*(Q;))".
Proof. (The proof idea is similar to the proof of Lemma 6.2 in [4], p. 235.) We take the
scalar product of the first equation in (1.14) with p5 we get
~E £ £ £ 1 € £ £ € £ M
V(pj)pj) + (Apjvpj) - _((ﬁl( ')pjapj)) = ((wj - U’;'l,Pj)) in Dy, (3.3)
Taking into account that (w$ — w¢) is bounded, (3'(w$) > 0,
a(z,2) + all2llzz(p,) > wlizllinp,, Vz€ H'(D;),
where o and w are constant. Integrate on [t;_1,t;] we derive:

t; 8
vIpillzz(p;) +/ 5l e (p;) < Cs V“aP;H%,?(O,T,H*l(Dj)) <C.
ti—1

We claim that p is weakly compact in L*(0,7, H'(D;)) and weak star in L>(0,T, L*(D;))

Remark 3. { i1 is bounded in L>(0,T,H§(Dj)) Yv e H*(D).
Proof. From ?1 14) and by Green’s formula we have

. Op; .
V(p§7 pJ? / - + w])psjav) = (wj —w;l,v) m D]

8 = (w5~ w,0) + (8 () §5,v) + alp-,0) < Cllollpp,) Vo € HA(D)).

Then by the trace theorem we get the desired result.

Remark 4. [|Gj(q1) — Gj(g2)|lz20,7) < CBlla1 — @2llp2(0,1) V41,02 € Uaa -
Proof. By using the above remarks we can derive

IG(q1) — Gj(Q2)||L2(0,T) =|INq1 + (Vgs(m),Pn)rdj —Ng2 + (V!f(fh)apn)rdj ||L2(0,T)-
<Nl — @2llz20,1m) + C IV (a1) — V97 (@2)llL2(0,17)-
The last inequality is due to Remark 3. By noting that ¢g° is a continuous function we get the
desired result.

By Ceéa([8], chapter 3) and the above remarks we can prove the following convergence
theorem
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Theorem 4. The sequence constructed in the algorithm, {q}, is either a finite sequence, or it

converges to some element ¢* € L*(0,T) such that for q*, the necessary condition is satisfied.
Moreover, the iteration steps number 7 — 9 can be done in finitely many steps.

4. Numerical Experiments

The algorithm presented above was tested with different examples. The numerical example
given here shows in some detail selected results when the initial height of the flow level and the
function wfh are periodic functions in time. To find the approximate solutions of the control

problem (2.6) we note that the control problem has in general no unique solution. The stopping
rules for the program are (I) For physical reasons, the height of the seepage surface is equal to

0.255 for each dam. (IT) SN (At); dM|p2py) < T x 1074, j=1,2,...,m.

Example. Consider an evolution system of eart dams consists of three homogeneous porous
rectangular dams. Let

Xt

R ™
wd, = wo;n (14 0.01 cos(m)), 0<t<T, T=0.05 At=.005,

where wy;p, is the discrete solution of the stationary dam problem corresponding to the initial
height of water HJ. In tables la, 1b and 1c¢ we illustrate the computional results in the fourth,
seventh and tenth time steps by using the above algorithm with the initial iteration function
HY(t) = 1.3 4+ 0.1 cos(5Z%). The stopping rule as (I),(IT). The reduction are computed by

2xT
. _ Initial value — Final value
Reduction = Toitinl valie x 100%.

We have the following results (see figure 1), where we assume that
N:1.6—2, 96(05,1), 0:0.51,d:0.2,ll:a/2_b1:1:a3_b2:l2,

- after 4 instants of time, the initial function is Héo) = 1.374, then qgo) = 1.271. By applying the
above algorithm we have, after 7 iteration steps the stopping rule for the first dam is satisfied
and the level of water when J is minimum is at height 1.172 and the corresponding amount of

water is 1.070. Then the first intermediate water level is Hl(O) is 1.271 (see step 0),

Table la
Initial value | Final value | Reduction
S Atlld |2,y | 8.247E-6 6.243E-6 24.298 %
lwk(q) — w[’;niz(%) 2.007 0.969 51.699%
J(q) 1.844 0.799 56.643%

- after 7 instants of time, the initial height of water for the second dam is H:(lo) = 1.271, then

qéo) = 1.010. By applying the above algorithm we have, after 17 iteration steps the stopping
rule is satisfied for the second dam and the level of water when J is minimum is at height equal

0.917, and the corresponding amount of water is 0.650,

Table 1b
Initial value | Final value | Reduction
zﬁ;:lAt||d’;||g2(Fj) 1.676E-5 6.6119E-6 | 63.497 %
[lwe(q) —wy ||L2(Q7,) 7.000 0.892 87.260%
Jsh(q) 4.994 0.868 82.624%

- after 10 instants of time, the initial height for the third dam is H(zo) = 1.010, then qéo) = 0.577.
By applying the above algorithm we have, after 13 iteration steps the stopping rule is satisfied
and the level of water when J is minimum is at height = 0.934, and the corresponding amount
of water is 0.465
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Table 1c
Initial value | Final value | Reduction
Son Atlld |2,y | 2.002E-5 6.127E-6 69.696 %
lwk(q) — wf;||§2(QJ_> 15.834 1.801 88.627%
J(q) 8.833 1.762 80.058%

In figure 1 we report on the discrete free boundary representation for each dam with the data
a1b1 = 1, aje; = 1.5, a2b2 = 075, 262 = 1.125, a3b3 = 050, ases = 0.75. The picture is
the representation of the free boundary in different time steps where the retentivity cofficient
v =1, ( see [10], [25]) and we started from the stationary situation for each dam.

Y

=0.0
t=.15
=.30
t=.45
=.60 ~]
=75 ALY
£=.90 =411
t=1.05 _|

Figure 1: The Evolution System of Earth Dams

5. Conclusions

In this article we presented a full discrete approximations for a pratical control problem
governed by a system of parabolic variational inequalities. The nonlinear conjugate gradient
method investigated here is found to be highly stable and always converges even with large
sized problems, compare with the usual gradient type methods (see [26]) which are the most
convenient in such problems. The material in this paper can be generalized to three dimensions
models.
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