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Abstract

In this paper the least-squares mixed finite element is considered for solving second-
order elliptic problems in two dimensional domains. The primary solution u and the flux
o are approximated using finite element spaces consisting of piecewise polynomials of
degree k and r respectively. Based on interpolation operators and an auxiliary projection,
superconvergent H!'-error estimates of both the primary solution approximation wu; and
the flux approximation o are obtained under the standard quasi-uniform assumption on
finite element partition. The superconvergence indicates an accuracy of O(h"*?) for the
least-squares mixed finite element approximation if Raviart-Thomas or Brezzi-Douglas-
Fortin-Marini elements of order r are employed with optimal error estimate of O(h"T!).
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1. Introduction

We are concerned with approximate solutions for the representative second-order elliptic
boundary-value problem:

—div(Agradu) +cu = f in Q, (1.1)

v = 0 on T, (1.2)

where © C IR? is a open bounded domain with boundary I' and A is a positive definite matrix

of coefficients. Introducing the flux o = — Agradu, the problem may be recast as the first order
system

o+ Agradu = 0 in Q, (1.3)

divo +cu = f in Q, (1.4)

u = 0 on I. (1.5)

In many applications such as reservoir simulation, second-order elliptic equations are coupled
with other partial differential equations through the velocity terms. So, The mixed finite element
methods are usually used. The classical mixed method for (1.3)-(1.5) is based on the stationary
principle for a saddle-point problem and is subject to the inf-sup condition on the spaces for
u and o (see Brezzi [1]), This implies certain restrictions on the polynomial degree k and
r for the element bases defining approximations u; and o, respectively. In the least-squares
mixed (LSM) approach a least-squares residual minimization is introduced for the mixed system
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(1.3)-(1.5) of u and o. The finite element approximation yields a symmetric discrete system
for the solution u, € V; and o € Wy, where V, and W, are the respective approximation
subspaces which needn’t to be subject to the consistency requirement. In [16-18], Pehlivanov
et al. presented a least-squares mixed (LSM) finite elements method for second-order elliptic
problems. It have been proved that the LSM method is not subject to the LBB condition and
error estimates for various choices of approximation spaces have been obtained.

The objective of this paper is to investigate superconvergence phenomena for second-order
elliptic problems by using the LSM method. Such a study is important in applications to
mathematical modeling of fluid flow in porous media since the modeling process requires the
determination of a very accurate fluid velocity. Various superconvergence results have been
established for the mixed finite element for elliptic problems [11-12, 14] and, for miscible dis-
placement problems [2-6, 9, 13]. In the 1990s, Lin et al.[14-15] introduced a so-called inter-
polation postprocessing technique into the finite element mthods and obtained the globally
high-accuracy approximation for solution problems. C.M.Chen and Y.Q.Huang [6] presented
an element analysis methods for the high-accuracy theory of the finite element methods.

The paper is organized as follows: In Section 2 we formulate the problem and its LSM
finite element approximation and the coerciveness of the bilinear form in appropriate spaces
are stated. In Section 3 the interpolation operators and an auxiliary projection are defined and
some identity technique results are presented. The superconvergent approximation properties
are derived for the LSM method.

2. Problem Formulation and the LSM Approach

We assume that the matrix of coefficients A = (a;;(z))? x € Q, is positive definite and

ij=1
the coefficients a;;(x) are bounded; i.e. there exist constants a1 and as such that
ai1(T¢ < (TAC < ax (¢, (2.1)
for all vectors ¢ € IR? and all z € Q.
The standard notations for Sobolev spaces H™ () with norm || -||m,0 and seminorms | -|; q,

0 < i < m, are employed throughout. as usual, L?>(Q) = H°(Q) and let (H™(Q2))? be the
corresponding product space. Also, we shall use the spaces H*(T"). Let

V={veH(Q): v=0 on '}
By the Poincaré-Friedrichs inequality
llv]o,0 < Crlvli,e forall veV. (2.2)
Let
= min § inf : 2.
S .

We make the following assumptions with respect to the coefficients of our equation: there
exist constants ag and c; such that

le(z)| <e; forall z€Q, (2.4)
O0<ag<a+ 000127, (25)

where CF is the constant from the Poincaré-Friedrichs inequality above. Hence, the coefficient
c(x) may be negative provided that «; is sufficiently large.
Let 7 = (71, 72) be a smooth vector function and v € H'(£2), we denote that

divr = 0111 + O, gradv = (01v, 02v).
Introducing the following spaces:

W = {r e (L*(0))?, divr € L*(Q)}, (2.6)
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with norm
171 divy = 17 115,0 + [1divr][§ 0. (2.7)
The least-squares functional J(v,T) for the mixed system (1.3)-(1.5) is defined as in [17]
J,7) = (divr +cv— f,divr +cv — floo
+(7 + Agradv, T + Agradv)o q, (2.8)
where (+,+)o,o is the standard inner product in L?(2) or (L*(2))?. Then the least-squares
minimization problem is: find u € V, o € W such that

J(u,o) = inf  J(v,T).
( ) veV,TeW ( )

The corresponding variational statement is: find w € V, & € W such that

a(u,o;v,7) = (f,divr + cv) forall veV, TeW, (2.9)
where
a(u,o;v,7) = (dive + cu, divr + cv)o 0
+(o + Agradu, 7 + Agradv)o q. (2.10)

The coerciveness of the bilinear form a(-;-) and the existence and uniqueness of problem
(2.9) were proved in [16].
Theorem 2.1. There exists a constant C > 0 such that for allv eV, 7€ W,

C (IR g + 171, gy ) < alv,50,7). (2.11)

Theorem 2.2. Let f € L?(2). Then the problem (2.11) has a unique solutionu € V, o € W.
For simplicity, we assume that  is a convex polygonal domain which is partitioned into
rectangular elements. Let 7T, be the quasi-uniform rectangular partition of the domain (2,
where h is the mesh parameter, generally denoting the biggest one of diameters of elements in
partitions 7.
For two integers k > 0,7 > 0, we construct the finite element subspaces: the finite-
dimensional subspaces of V' is the span of piecewise polynomial basis of degree k:

Vi ={vn €C°(Q): vple € Qkle), Ye €T, vo =0 on T}. (2.12)

A choice for the finite-dimensional subspaces of W, C W is the Raviart-Thomas spaces (see
[10], [19]) where the continuity requirement is weaker:

Wyi={the W: Tple € Qry1,r(€) X Qrryi1(e), Vee€ T}, (2.13)
and another for W, is the Brezzi-Douglas-Fortin-Marini (BDFM) mixed elements [1]:
Wy={rh e W: 74|c € Prp1(e)\{y" ™'} x Pry1(e)\{z" '}, Ve€ Tn}, (2.14)

where @ »(e) indicates the space of polynomials of degree no more than m and n in  and y
variables, respectively,

Qm,n(e) = Span{xiyja 0<i<m, 0<j5<m, (a:,y) € 6}, Qm,m = Qm,
P, indicates the space of complete polynomials of degree m,
Pp(e) = span{z'y’, 0<i+j<m, (z,y)€e}.

These spaces possess the following approximation properties:

mf Al —valloe + hllgrad(v —va)lloe} < Ch* Y |ollk41,0; (2.15)
h h
inf |IT—7ulloe < CR™H|7[lrs10 (2.16)
ThEWh
inf ||div(T —7h)lloe < CR™H|7[[120; (2.17)

ThE h
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for any v € H**1(Q)NV and 7 € (H"71(Q))2 N W in the case of R-T mixed elements and in
the case of BDFM mixed elements.
The finite element approximation to (2.9) is: find up, € V3, o € W), such that

a(tp, op;n, Th) = (f, divry + cvp) for all vy, € Vi, Th € Wy, (2.18)

From Theorem 2.1 we conclude that problem (2.18) has a unique solution. Moreover, the
error has the orthogonality property:

a(u — up,0 —op;vp,Th) =0 for all v, € Vi, Tn € W, (2.19)

3. Interpolation Projections

There are two major steps in our superconvergence analysis. First, we compare the finite
element approximation with an appropriately chosen interpolation of the exact solution in
the finite element space. This difference is often far smaller than the global optimal error
estimate. Second, we investigate the relation between the exact solution and its interpolation.
The objective here is to find special points where the interpolant superapproximates the exact
solution. This means that the finite element approximation is super-close to the exact solution
at some special points or lines. The interpolant is usually defined locally so that the second
step is easily carried out.

Now, we define locally the standard L? projection function P,u € Vj, of u:

/(u — Pru)vdzdy = 0, Yo € Vi, e€ Th. (3.1)

e

Next, in the case of R-T mixed elements, let us define the interpolation function Ile € W,
of o:

/(U—Ha)-uvdl = 0, YVveP.(l;), i=1,2,3,4,
!

/(O'—HO')-T = 0, YT E€Qr_1,(e) X Qrr_i(e), e€ Ty,

and in the case of BDFM mixed elements, we also define

/(U—Ha)-uvds = 0, YVveP.(l;), i=1,2,3,4,
L;

/(0' —Tle)-7 = 0, VT E[P_i(e)], e€Th.
Here v = (v1,12) be the outward normal to the boundary T, {/;} are edges of rectangular

element e and Py (I;) denotes the set of polynomials of total degree no more than k. Then, from
approximation theory (see [8]),

|lu = Phullo.e + hllgrad(u — Pau)llog < Ch*ullisa,0, (3.2)
lo —Tolle < Ch™ o0, (3-3)
ldiv(e —To)lloe < Ch™ o ||ri2,0, (3-4)

From Lemma 1.25-1.29 and Theorem 1.4 in [14], using the identity technique, it can be
proved that:
Lemma 3.1. If the finite element partition Ty, is quasi-uniform and o is the interpolation
of o defined above, then there exists a constant C' such that

(o0 — o, Th)o,e < Chr+2||0'||T+2’6||Th||0’6, V1r,beWy, e€Th. (3.5)

Now, we assume that k =r + 1.
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Lemma 3.2. If the finite element partition Ty is quasi-uniform and Ilo is the interpolation of
o defined above, then

Ch™ 2|0 ||rr2.el[v]]1.e (3.6)
Ch*2[|o|lrs2.cllv]]1e; (3.7)

(o — o, gradvy)o,e
(div(e — o), vp)o,e

for Yvp, € Vi, e € Ty.
Proof. We only give the proof in the case of of R-T mixed elements.

For any e = [z, — he, Ze + he] X [Ye — he, Ye + he] € Th, as in [14], we introducing the error
function:

<
<

1
Blz) = 5 (e — 20)? ~ ).
For any vy, € V},, from the Taylor expansion and the fact that gradv, € Qp r41(€) X Qrt1,r(€),

we see that .

1 .
611)h(1',y) = Z ﬁ(m - 1‘6)161+1’0h(1‘6,y)-

i=0

By the definition of the interpolation function Ilo,

|
—

/(0 —TIlo)y .1(56 — @) 01 op (e, y) = 0.

2

(]

I
=)

Using (1.4.12) in [14], there exists H (z

~

€ P._1(z) such that
1 r_ 2rtt r+1 (r+2)
a0 = G (E @) + ).
We also use the definition of the interpolation function Ileo:
/(a —Io)vdy =0, Yov e P(l;), i=2,4.
I;
With the integration by parts, we can get

1
/(O‘ — Ha)lﬁ(x — me)rafﬂvh(we,y)

r+1
= ﬁ / ((B1@)"*2 + H(@)) (0 - W0)10] on (e, )

— _ﬂ /Er+1(x)8{‘+20'18{‘+1’0h(3767y) +0
(27° + 2)' e
< Ch"2||o1|lrt2,e | [vn|1,e-
Thus,
((0 —To)1,010n)0,e < CR" |1 |lrs2,ellvnllie, Vo € Vi, € € T
Similarly,

(0 — To)2, 02vp)0,e < Ch" 2|02 |rv2.ellvnl1,e, Vop, € Vi, e € Th.

Hence, (3.6) has been derived. Using integration by parts we have

(div(e — ), vp)o,e = / (o0 — o) - vupds — /(0' —To) - gradvh} .

Oe e
By the similar argument above, we also can obtain (3.7). Thus, the proof of Lemma 3.2 is
completed.
Set,

Va={vn € L3Q): vl €Qule), VeeTn}. (3.8)
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It is obvious that B
dive € V,, Vo€ Wy, (3.9)

in two cases of R-T elements and BDFM elements.

From the definitions of the interpolation functions P,u € Vj, and Ilo € W, it is clearly to
see that
Lemma 3.3. If the finite element partition Ty, is quasi-uniform. Pyu and o are the interpolant
projections of u and o defined above, then

(’LL — Phu, divTh)oye = 0, Vr,e W, ec€ 771, (310)
(div(e — o), vp)0e = O, Yo, € Vi e € Th. (3.11)

Since A possesses the positive above-below boundness, so we can define an auxiliary projec-
tion Spv € Vi of v € V by

(Agrad(v — Spv), Agradvy ), o + (c(v — Spv), cvp)o,0 =0 for all vy € Vj. (3.12)

From the standard convergence theory of the finite element methods [8], if v € H*¥+1(Q)
then we have the estimate

l|lv — Shvllo.q + hllv — Sholli.a < CA* 1 |v||ka1.0. (3.13)
By the high-accuracy theory of the finite element methods[7, 14-15], we also have
|Shu — Prullr.o < CA* 1 |u|ki2.q- (3.14)

4. Main Results of Superconvergence

Now, let us present the main super-approximation result.
Theorem 4.1. Assume that the finite element partition Ty, are quasi-uniform and (up, o) is
the solution of (2.18) by using rectangular elements of Raviart-Thomas or BDFM of order r.
If the exact solution u and o satisfies

u € H2(Q), o€ [H(Q)P,
let k =r+1, then
lun — Prell @ + llon = ol iy < OHF (lullrsso + llolliso0). (A1)

Proof. From the coercivity of the bilinear form in Theorem 2.1 and (2.19),

C (Ilun = Poullf g + llon = T2 g1

< a(up, — Pyu,op — lo;up — Pyu, oy — o)

= a(u — Pyu,o — lo;up, — Pyu, o, — o)
(div(e — o), div(op, — IIo))o.q + (div(e — o), c(up, — Pru))o,o
+ (c(u — Pyu),div(ey — Io))o,q + (c(u — Pyu), c(up, — Pru))o,a
+ (o — Ilo, Agrad(up, — Pru))o,0 + (Agrad(u — Pru), o — IIo)o o
+ (o0 —lo,on —o)oa + (Agrad(u — Pyu), Agrad(up, — Pru))o,0

=> I (4.2)

From(3.9), it is obvious that

div(ep, — o)) € V.
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By (3.11) in Lemma 3.3, we have

I = (div(e — o), div(ey, — IIo))o,0 = 0. (4.3)

The second term and the fifth term can be handled by splitting the integral and we use
Lemma 3.2 and (3.3)-(3.4),

|| =
<
<
|Is| =
<
<

Z cdiv(e — o) (up, — Pyu)dzdy
e€Ty "¢

Z {/6(0 —¢)div(e — Ilo)(up — Pru)dzdy

e€Th

+/Ediv(a — o) (un — Phu)da:dy]

Chllellie Y /|div(a —Io)| |un — Puu| dedy
e€Tr "€
+COR"*2||o||r42,0llun — Paull10
Ch*2||o||r+2,0llun — Paulli,0, (4.4)
Z {/(A — A)(o — Ilo)grad(uy, — Pyu)dzdy
e€Th ¢

+ /Z(O‘ — o)grad(u, — Phu)d:rdy}

Ch™ || All1,s0llo|lr41,0llun — Prulli 0
+CR?|o|ry2.0llun — Poull1o
Ch™||a||ry2,0|lun — Phull1q, (4.5)

where ¢ and A denote the averages of ¢ and A on the element e, respectively. Similarly, using
Lemma 3.3 and (3.1)-(3.2), we also have

73]
| 14]
6]

ININ N

L el ool [l k1,2l div(on — TTo) o0, (4.6)
OB el 1 collullk+1.2llun = Prullo.g, (4.7)
CHE AT |1 ool [ull 41,0 div(an — o) [|o.0- (4.8)

Now, it follows from Lemma 3.1 that

I; < Ch™?||All ool o |lr41.0lloh — TTor|lo,0- (4.9)

Next, from (3.12) we can see that

Iy

By (3.13)-(3.14),
T

T

= (Agrad(Spu — Pyu), Agrad(up, — Pru))o.0
—(c(uw — Shu), c(up, — Pru))o,o = Th + To. (4.10)

< AT Allo,s0||Shu — Prully ollun — Prull o

< CRMMAT Allo oo llullks2.0llun — Paull o, (4.11)
< 1 fo,0llu = Shullo.allun — Puulloo
< ORI Jo,oolt]lrs2,0llun — Prullo.q- (4.12)
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Since k = r + 1, combine the above estimates of {I;} to get
a(u — Pyu, o0 — Uo;up — Pyu, o, — o)

< O (llollrsz.0 + lullrss.0)

(Il = Poullf g + llon = T2, g0 ) - (4.13)
where C' depends on the C! norms of the coefficient functions A and ¢. Hence, from (4.2)

lun = Paullvo + llon =10y iy, < O (lollrizo + llulliisn).  (414)

The proof of Theorem 4.1 is completed.

References

[1] F. Brezzi, J. Douglas, M. Fortin, and L. Marini, Efficient rectangular mixed finite elements in two
and three spaces variables, RAIRO Model. Math. Anal. Numer., 21 (1987), 581-604.

[2] Y.P. Chen, Superconvergence in the simulation of miscible displacement, J. Sys. Sci. & Math.
Scis., 18:3 (1998), 328-334.

[3] Y.P. Chen, Application of superconvergence to a model for compressible miscible displacement,
Numer. Math. J. Chinese Univ., 7:1 (1998), 25-37.

[4] Y.P. Chen, Superconvergence in a time-discretization procedure of incompressible miscible displace-
ment, Natural Sci. J. Shandong Univ., 32:1 (1997), 1-8.

[5] Y.P. Chen, Y.Q. Huang, Superconvergence of a time-discretization procedure for compressible mis-
cible displacement, Natural Sci. J. Xiangtan Univ., 20:3 (1998), 41-50.

[6] Y.P. Chen, Superconvergence of the full-discrete F.E.M. for compressible miscible displacement:
the full tensor case, Numer. Math. J. Chinese Univ., 9:1 (2000), 71-82.

[7] C.M. Chen, Y.Q. Huang, High Accuracy Theory of Finite Elements, Hunan science Press, 1994.

[8] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, New
York, Oxford, 1978.

[9] J. Douglas,Jr., Superconvergence in the pressure in the simulation of miscible displacement, SIAM
J. Numer. Anal., 22 (1985), 962-969.

[10] J. Douglas,Jr., J.E. Roberts, Global estimates for mixed finite element methods for second order
elliptic equations, Math. Comp., 44:169 (1985), 39-52.

[11] R.E. Ewing, M.M. Liu, J. Wang, Superconvergence of mixed finite element approximations over
quadrilaterals, SIAM J. Numer. Anal., 36:3 (1999), 772-787.

[12] R.E. Ewing, R.D. Lazarov, J. Wang, Superconvergence of the velocity along the Gauss lines in
mixed finite element methods, SIAM J. Numer. Anal., 28:4 (1991), 1015-1029.

[13] R.E. Ewing, J. Shen, J. Wang, Application of superconvergence to problems in the simulation of
miscible displacement, Comput. Methods Appl. Mech. Engrg., 89 (1991), 73-84.

[14] Q. Lin, N.N. Yan, High Efficiency FEM Construction and Analysis, Hebei University Press, 1996.

[15] Q. Lin, Q.D. Zhu, The Preprocessing and Postprocessing for The Finite Element Method, Shanghai
Sci & Tech. Press, 1994.

[16] A.L Pehlivanov, G.F. Carey, Error estimates for least-squares mixed finite elements, RAIRO Math.
Model. and Numer. Anal., 28:5 (1994), 499-516.

[17] A.L Pehlivanov, G.F. Carey, R.D. Lazarov, Least-squares mixed finite elements for second-order
elliptic problems, SIAM J. Numer. Anal., 31:5 (1994), 1368-1377.

[18] A.L Pehlivanov, G.F. Carey, P.S. Vassilevski, Least-squares mixed finite elements for non-selfadjoint
elliptic problem: I. Error estimates, Mathematik, Springer-Verlag 1996, 501-522.

[19] P.A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Math.
Aspects of the Finite Element Method, Lecture Notes in Math. 606(Springer, Berlin, 1977) 292-315.



