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Abstract

Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm
for solving singular system of nonlinear equations F'(x) = 0, where F(z) : R* — R" is
continuously differentiable and F’(z) is Lipschitz continuous. The algorithm is equivalent
to a trust region algorithm in some sense, and the global convergence result is given. The
sequence generated by the algorithm converges to the solution quadratically, if ||F(z)||2
provides a local error bound for the system of nonlinear equations. Numerical results show
that the algorithm performs well.

Key words: Singular nonlinear equations, Levenberg-Marquardt method, Trust region al-
gorithm, Quadratic convergence.

1. Introduction

We consider the problem for solving the system of nonlinear equations
F(z) =0, (1.1)

where F(z) : R® — R™ is continuously differentiable and F'(z) is Lipschitz continuous.
Throughout the paper, we assume that the solution set of (1.1) is nonempty and denoted
by X*. And in all cases || - || refers to the 2-norm.

The Levenberg-Marquardt method (see [2, 3]) for nonlinear equations (1.1) computes the
trial step by

di = —(J(Z’k)TJ(l'k) + NkI)ilj(xk)TF(xk)v (]‘2)

where J(xy) = F'(zy) is the Jocabi, and ug > 0 is a parameter being updated from iteration
to iteration. The Levenberg-Marquardt step (1.2) is a modification of the Newton’s step. The
parameter uy, is introduced to overcome the difficulties caused by singularity or near singularity
of J(zy).

There are various choices of the parameter p in (1.2). Recently, paper [11] shows, if the
parameter is chosen as puy = ||F(zx)||?, and if the initial point is sufficiently close to x*, then,
under a weaker condition than nonsingularity that ||F(z)|| provides a local error bound near
the solution, the Levenberg-Marquardt method has a quadratic rate of convergence. Paper
[1] extends the result in [11], and obtains that the quadratic convergence still holds if the
parameter is chosen as uy = ||F(z1)||- Although the numerical results show that the choice of
wi = ||F(xr)|| performs better than that of g = ||F(xk)||? [1], it does not perform very well
when the sequence is far away from the solution. In this paper, based on the work of papers
[1] and [11], we consider a modified Levenberg-Marquardt method, in which the parameter is
chosen as ug||F(xr)|| with ug being updated by trust region techniques.
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Definition 1.1. Let N be a subset of R™ such that NNX* # 0. We say that ||F(x)|| provides
a local error bound on N for system (1.1), if there exists a positive constant ¢ > 0 such that

[|F(2)]| > edist(z, X*), Vz € N.

Note that, if J(z*) is nonsingular at a solution z* of (1.1), then z* is an isolated solution,
hence ||F'(x)|| provides a local error bound on some neighbourhood of z*. However, the converse
is not necessarily true, see example in [11]. Thus, a local error bound condition is weaker than
nonsingularity.

In the next section, we present the modified algorithm, and show that it is equivalent to
a trust region algorithm. In section 3, global convergence result is proved. The algorithm
converges to a stationary point if a trial step is accepted only when the actual reduction of the
function is at least a fraction of the predicted reduction (the reduction in the approximation
model). In section 4, local convergence analyses are made. It is shown that the algorithm
converges quadratically if ||F(z)|| provides a local error bound condition near the solution.
Finally in section 5, we present the numerical results for some singular systems of nonlinear
equations.

2. Modified Levenberg-Marquardt Algorithm and Trust Region

In this section, we first present the general trust region algorithm, then present our new
Levenberg-Marquardt algorithm. The relationship between these two algorithms is given.

At the beginning of each iteration in a general trust region algorithm for nonlinear equations,
a trial step dj, is computed by solving the subproblem:

A
. F 2 =2
min ||Fy + Jid||* = ox(d)

(2.1)
s t. ||d|| < Ay,

where Fy, = F(xy),J;, = J(xk), and Ag > 0 is the current trust region bound. The actual
reduction and the predicted reduction of the function are defined as follows:

Aredy = [|Fi||” — [|F (zi + di)II?,

and
Predy, = ¢1,(0) — or(d).

The ratio between these two reductions is defined by

_ Aredy,
" Predy’

Tk

which is used to decide whether the trial step is acceptable and to adjust the new parameter py,.
Paper [12] presents a class of trust region algorithms for nonlinear equations in any arbitrary
norm, and gives the global and local convergence results. The general trust region algorithm
for nonlinear equations in 2-norm can be stated as follows :
Algorithm 2.1. (Trust region algorithm for nonlinear equations)
Step 1. Given 1 € R",A1 > 0,6 >0,0<po <p1 <p2<1l,k:=1.
Step 2. If || JI Fy|| < e, then stop;

Solve (2.1) giving dy,.
Step 3. Compute r, = Aredy, [ Predy;
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set
_ )zt dyg, if Tk > po,
Tht1 = { Tp, otherwise. (2:2)
Step 4. Choose Apy1 as
A d
min —k,” k”} if?”k <p,
Apgr = 402 - (2.3)
Ak: Zf T € [p17p2]7
max{4||dy||,2A}, if Tk > pa;

k:=k+1; go to Step 2.

The algorithm above has a strongly global convergence with pg > 0, that is, all accumulation
points are stationary points. However, for pg = 0, it only has a weekly global convergence, that
is, at least one accumulation point is a stationary point.

We now present our Modified Levenberg-Marquardt algorithm.

Algorithm 2.2. (Modified Levenberg-Marquardt algorithm for nonlinear equations)
Step 1. Given 1 € R™,e > 0,1 >m >0,0<py <p1 <py <1, k:=1.
Step 2. If ||JL Fy|| < e, then stop;
Solve (J' T, + px||Fi||I)dy = —JL Fy, giving dy,.
Step 3. Compute r, = Aredy, [ Predy;

set
1_ _ Tk +dk7 if’l”k > Do,
LA otherwise.
Step 4. Choose pip4+1 as
4/’”67 Zf T < D1,
e i € lpupol, (2.4)
max{z,m}, if T > po;

k:=k+1; go to Step 2.
It is easily seen from our new algorithm that

d, = —=(J{ Tk + |||~V T F (2.5)
is the solution of
min [|Fy + Jidl” + il Fi ] d)” 2 e (d). (2.6)
Define
A = |(JE Tk + sl [Fe D)~ T Fl, (2.7)

then it is not difficult to show that the Levenberg-Marquardt step (2.5) ia also a solution to the
problem (2.1). In fact, if we let the trust region radius Ay be given by (2.7) in every iteration,
then our algorithm is essentially a trust region algorithm, and in every iteration, this trust
region method has active constraints. However, the general trust region algorithm updates the
trust region by (2.3) directly, while our algorithm modifies the parameter py in every iteration,
which in turn modifies the value Ay from (2.7) implicitly. Many other papers also consider the
Levenberg-Marquardt method and the trust regionthe method, for more details, see [4, 5, 13, 14],
etc. .
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In Algorithm 2.2, m is a given constant and is the lowerbound of the the parameter uy. It
plays the role to prevent the step from being too large when the sequence is near the solution.

3. Global Convergence

To get the global convergence of the algorithm, we first make the following assumption.
Assumption 3.1. F(z) is continuously differentiable, and both F(z) and its Jacobi J(x) are
Lipschitz continuous, i. e., there exist positive constants L and Lo such that

I(y) = J(@)|| < Lilly —zl|,  V=,y, (3.1)
and

I|1F(y) — F(2)|| < Lo|ly —zl],  Vz,y. (3.2)

Now from the famous result of Powell [8], we obtain the following lemma.
Lemma 3.1. Let di, be computed by (2.5), then the inequality

[1i Fl|

Predy, = ¢i(0) — @i (dx) > ||J; Fi||min{||dy|l, [TT 74|
k

} (3.3)

holds for all k> 1.
Theorem 3.1. Under the conditions of Assumption 3.1, if po > 0, then the sequence generated
by Algorithm 2.2 satisfies

|17 Fi|| = 0. (3.4)

Jim
Proof. If the theorem is not true, then there exist a positive 7 and infinite many k such that
T Fel| > . (3.5)
Let K and T be the sets of all indices that satisfy
S = {k | l7{ Fell > 7/2},

and
T= {k‘ | Tht1 ;éil’k,k' S S}

Then we have from Lemma 3.1 that

AP > 3 (1Fel = 1| Fetal?)
kES R ,
= 2 (1Fell* = [Fes1ll®)
kET
> > poPredy
keT . (3.6)
> 5 poll I Bl minfdell, 126 EElLy
keTpoT - ||Jk Jk||
> > = min{|d|[, 5}
ker 2 L3
The above inequality implies that
> lld]] < +o. (3.7)

keT
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Therefore it follows from (3.2) and (3.7) that

>

keT

17 Fiell = 1751 Fia ]| < o0 (3.8)

Relation (3.8) and the fact that (3.5) holds for infinitely many k indicate that there exists &
such that ||J5Fk|| > 1 and

< g. (3.9)

>

keT, k>

15 Fill = 1531 Fea |

By induction, we see that |[JTFy|| > 7/2 for all k > k. This result and (3.7) imply that
limy,_, oo x exists, which shows that pur — +00. On the other hand, it follows from (3.5), (3.7)
and Lemma 3.1 that

_ Aredy,
ko= Pred,, ) .
_ oy B+ B0l P) + Ol 1)
Predk2 .
o 14 1B 2Ol P) + Ol 510
= T .
17 Fil | min | dy] ], 17 Zilly
ol [T T4
< 14 2Nk
e (AT
— 1.

In view of Algorithm 2.2, we know there exists a positive constant M > m such that
e < M
holds for all large k, which gives a contradiction. Therefore we see that assumption (3.5) can
not be true. The proof is completed.
4. Local Convergence

In this section, we study the local convergence properties of Algorithm 2.2. We assume that
the sequence {zy} converges to a solution z* € X*, and we also make the following assumption.
Assumption 4.1. ||F(z)|| provides a local error bound on N (z*,b) for the system (1.1), i.e.,
there exist two positive constants ¢ > 0 and b < 1 such that

|F(2)]] = cdist(z, X*), Vo e N(z*,b) ={z |||z —z"|| <b}. (4.1)

Under such a condition, we can show that {zj} converges to z* quadratically. In the
following, we denote zj, the vector in X* that satisfies

[l — Zx || = dist(zg, X ).
Suppose rank(J(z*)) = r, and the singular value decomposition (SVD) of J(z*) is
J(Z’*) — U* E*V*T
. . E* V*T
(U17U2)< ! 0><V;*T>

UrsiveT,
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where ¥} = diag(of,--- ,0)) with of > --- > 0% > 0. Suppose the SVD of J(z}) is
J(a:k) = UkszkT
EIc,l Vk;l
= (Uk,1,Uk2,Uk3) g2 Vio (4.2)
0 Vila

T T
Uk Xk Vi g + Uk 22k 2V o,

where X1 = diag(ok 1, -+ ,0k,r) and Xy o = diag(og 41, -, Ok,r+q) satisfying op 1 > --- >
Oy = Okpt1 > 0+ > Ok r+q > 0,9 > 0. In the following, if the context is clear, we write (4.2)
as

T =SV + U,V

To prove the quadratic convergence of the sequence, we first give the following two lemmas.
Lemma 4.1. Under the conditions of Assumption 3.1, we have

(a) ILUY Fill < Ol — @k ll);
(b) |[U2U5 Fel| < O(||lz — 2*|1*);
(¢) [UsUS Fil| < O(llzi — 7] [*).-

Proof. Result (a) follows immediately from (3.2). By the theory of matrix perturbation [10]
and Assumption 3.1, we have

[diag(S1 — £5, 52, 0)[] < [T — J*| < L]l — 2.
The above relation gives
IS0 - Sil € Lilleg — '] and  [[Saf| < L] — 2°]| (4.3)

Let s, = —J,ij, where J,j is the pseudo-inverse of Ji. It is easy to see that si is the least
squares solution of min ||Fy, + Jis||, so we obtain from Assumption 3.1 that

[UsUS Fel| = ||Fx + Jisel| < |F + Ji (@ — z0)]| < O(llaw — @] *)-

Let Jy = U1 £,V and 8, = —J;" Fi. Since 3y, is the least squares solution of min || Fj, +Jgs||,
it follows from (3.1) and (4.3) that
|[(T=US + UsUS) Fiy || || Fx + Ji x|
[[F% + Ji(Zr — @) || .
[[1Fx + Je(@k — 2l + || (T — Ji)(@r — )]
Ly||Ze — )| |2 + ||U2S2 Vi (Zg — 21)]|
O(lJzx — 2*|?).

INIANININ I

Due to the orthogonality of Us and Us, we get result (b).
Lemma 4.2. Under the conditions of Assumption 8.1 and Assumption 4.1, we have

k|l < O(lwr — Zx])- (4.4)



A Modified Levenberg-Marquardt Algorithm for Singular System of Nonlinear Equations 631

Proof. Since dy, is the solution of (2.6), it folows from Assumption 3.1 and (4.1) that

1
l|del? < ——=—vi(Tk — zk)
fk || Fr |
= m(lle+Jk(:Ek—wk)||2+uk||Fk||||a?k—wk||2)
L? T — Tk 4 B
< Lz mmll e

caam||Zy — x|

= O(|7, — zl]?).

Thus we obtain (4.4).

Now we can give our main result in the following.
Theorem 4.1. Under the conditions of Assumption 3.1 and Assumption 4.1, the sequence
{z} generated by Algorithm 2.2 converges to the solution quadratically.

Proof. First we show that for all large k, the predicted reduction satisfies

Predy, > c2||Fr||ldk||, (4.5)

where ¢y is a positive constant. We consider two cases. If ||Z; — zx|| < ||dk||, then it follows
from Assumption 3.1, (4.1) and the definition of dj, that

Fell = [|1Fk + Jedi|| > [|Fel| = [|Frx + Ji(Zr — 21)]|
> ||y — ]| + O(||Tk — il|?) (4.6)
> el|Zk — zel]-

On the other case ||Zx — zx|| > ||dk]|, we have

d _
[Fe|l = 1[Fy + Jrdi|| > ||Fk||—||1[’k+7_|| dl I (@ — )|
Tp — Tk
I I

||d]| _
> ——(|Fel| = ||Fp + (T — @

k _ - 2
———(ei1||Zr — z|| + O(||Z — zp
Ty (€117 = 2l + Oz = i)

> ¢r|dl]-

Inequalities (4.6), (4.7) and (4.4), together with Lemma 4.2 show that
Predy, U1Fell + [ Fe + Jedi|) (|| Fell = [[Fr + Jrdl])

R Ex || = |1F% + Trdil])

Co [ F[[] | di|

VIV

holds for some constant ¢z > 0. Thus, it follows from (3.2), (4.1), (4.5) and Lemma 4.2 that

I Aredy,
B Pred;,
- 14 O(llde 1)1 Fx. + Trdy]| + O(||dk ")
, Predy, A (4.8)
< 14 QUlde]PNF:| + OCllde ")
- 1 E% [l d |
= 14 O(||del])
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The inequality above implies that there exists a constant M > m such that
pe < M (4.9)

holds for all large k.
We now show that the sequence has quadratic convergence. By the SVD of J, we know
the step at the current iterate is

dy = —Vi(E7 + pe||[Fe| 1) T 20U Fre — Va (53 + || Fe||1) ' S2Uy F. (4.10)

So we have

Fi + Jpd, = Fk—UlZl(Z%+,uk||Fk||I)*121U1TFk
0,53+ | Bl SULE
=kl [FRl|UL(ET + || Fu|| ) UL Ey
|| F | U (23 + pl |[F || 1) " US Fy, + UsUS F.

(4.11)

Since {xj} converges to z*, without loss of generality, we assume that Li||zy — z*|| < 0)/2
holds for all large k. Thus we abtain from (4.3) that

- _ 1 4
13T + el [F LD T < 1577 < <

o — Ly||lzp — z*|)2 o2’
(o I I ;

It then follows from (3.2),(4.9) and Lemma 4.1 that
1Fe + Jrdill < O(llzr — 2*]]?). (4.12)
Therefore, we have

[ (2, + di)|

|1 Fx + Jedi|| + O(lldi|?)

O(||lz. — z*[7) (4.13)
O(||dx %)

O(llzx — ziP?)-

cllerrr — e ||

VAN VANIVANIVAN

It now follows from
lze — Zell < [ldel + ||Tr+1 — Tpga]|

that
|z — Tx|| < 2||d]|

holds for all large k. Thus we see from (4.13) and Lemma 4.2 that ||dii1|] = O(]|dk|?)-
Therefore {x} converges to the solution quadratically, namely,

lzkt1 — 2*|| < O(|lzx — z*|?).
This completes our proof.

5. Numerical Results

We tested our modified Levenberg-Marquardt Algorithm 2.2 on some singular problems,
and compared it with the general trust region Algorithm 2.1.
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The test problems were created by modifying those described in Moré, Garbow and Hill-
strom [6] for general nonsingular system of nonliner equation except Problem 2(Powell singular
function), where n = 4 and rank(J(z*)) = 2. And they have the same form as given in [9]

F(z) = F(z) — J(a*)A(AT A) "L AT (z — z*), (5.1)

where F(z) is the standard nonsingular test function, z* is its root, and A € R"** has full

A

column rank with 1 < k <n. Obviously, F'(z*) = 0 and
J(x*) = J(z*)(I — A(AT A)=1 AT)

has rank n — k. A disadvantage of these problems is that ﬁ'(a:) may have roots that are not
roots of F(x). We created two sets of singular problems, with J(z*) having rank n — 1 and
n — 2, by using

Ae R, AT =(1,1,---,1)

2 (1 1 1 1 - 1
A€ R, A‘<1—11—1 S

and

respectively. Meanwhile, we made a slight alteration on the variable dimension problem, which
has n + 2 equations in n unknowns; we eliminate the n — 1th and nth equations. (The first n
equations in the standard problem are linear.)

We used pg = 0.0001,p; = 0.25 and p» = 0.75, which are popular for tests in trust region
method. And the choices of m is m = 1078, We applied Algorithm 2.6 in [7] to solve the trust
region subproblem (2.1) in Algorithm 2.1. And the initial trust region radius is chosen as

Ay = [T+ ml|[R|D A (5.2)

That is, the first trial steps of the two algorithms are the same.

Table 1. Results on Powell singular problem

LM TR
Problem | n zo | NF | NJ | ns.z*? | NF | NJ | ns.z™?
2 4 1 10 10 N 10 10 N
10 13 13 N 13 13 N
100 16 16 N 16 16 N

We test several choices of initial p; for Algorithm 2.1 and Algorithm 2.2. Algorithm 2.1
performs little better than Algorithm 2.2 for the choice of py = 1072, while it performs little
worse than Algorithm 2.2 for pu; = 107%. We only listed the results for y; = 10~*. The
algorithm is terminated when the norm of J! Fj, e.g.,the derivative of 1||F(z)|]*> at the k-th
iteration, is less than e = 1075, or when the number of the iterations exceeds 100(n + 1). The
results for the Powell singular problem are listed in Table 1; those for the first set problems of
rank n—1 are listed in Table 2, and the second set of rank n —2 in Table 3. The third column of
the table indicates that the starting point is x1, 10z, and 100z, where z; is suggested by Moré,
Garbow and Hillstrom in [6]; “NF” and “NJ” represent the numbers of function calculations
and Jacobi calculations, respectively; and “n.s.z*?” gives a Y(yes) if the method converges to
the same solution as the corresponding nonsingular problem, a N(no) otherwise. If the method
failed to find the solution in 100(n + 1) iterations, we denoted it by the sign “~”. And if the
iterations have underflows or overflows, we denoted it by OF.
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From the results, we observe that for Powell singular problem, our Algorithm 2.2 performs
the same as the general trust region Algorithm 2.1.

For the first singular set problems with rank(F'(z*)) = n — 1, results are excluded for
Problem 3 on 100z case and for Problem 6 on 10z and 100z, case, because both the algorithms
failed to find the solution in 100(n + 1) iterations. For five problems, our algorithm outperforms
the general trust region algorithm, while for the other three, Algorithm 2.1 outperforms ours.

Table 2. Results on first singular test set with rank(F'(z*)) =n — 1

LM TR
Problem | n zo | NF | NJ | ns.z*? | NF | NJ | ns.z*?

1 2 1 15 15 Y 15 15 Y
10 17 17 Y 17 17 Y

100 21 21 Y 21 21 Y

3 2 1 — 28 27 Y
10 | 294 | 181 Y — — -

4 4 1 16 16 Y 16 16 Y
10 19 19 Y 19 19 Y

100 22 22 Y 22 22 Y

5 3 1 8 8 N 8 8 N
10 8 8 N 8 8 N

100 8 8 N 8 8 N

6 31 1| 43 23 N - - -
8 10 1 8 8 Y 9 9 Y
10 23 23 Y 23 23 Y
100 OF OF

9 10 1 4 4 N 4 4 N
10 7 7 N 8 8 N

100 9 9 N 10 10 N

10 30 1 5 5 Y 6 6 Y
10 7 7 Y 9 9 Y

100 | 10 10 N 10 10 N

11 30 1 15 8 Y 9 7 Y
10 [ 30 16 Y 20 14 Y

100 | 95 80 N* 156 | 121 N*

12 10 1 14 14 Y 14 14 Y
10 16 16 Y 16 16 Y

100 | 19 19 Y 19 19 Y

13 30 1 23 10 Y 11 10 Y
10 28 15 Y 17 15 Y

100 | 31 18 Y 19 19 Y

14 30 1 11 11 Y 11 11 Y
10 17 17 Y 17 17 Y

100 22 22 Y 23 23 Y




A Modified Levenberg-Marquardt Algorithm for Singular System of Nonlinear Equations

Table 3. Results on second singular test set with rank(F’'(z*)) =n — 2

LM TR
Problem | n zo | NF | NJ | ns.2®? | NF | NJ | ns.x*?

1 2 1 11 11 N 24 24 N
10 13 13 N 31 31 N

100 | 17 | 17 N 38 38 N

3 2 1] 35 25 N 59 51 N
10 | 59 | 54 N 16 16 N

100 25 18 N 44 43 N

4 4 1] 14 14 N - - -
10 17 17 N — — —

100 | 20 | 20 N - - -

5 3 1 13 13 Y 13 13 Y
10 | 14 14 Y 14 14 Y

100 24 18 Y 66 44 Y

6 31 1] 93 | 67 N - - -
8 10 1 8 8 Y 329 | 329 Y
10 23 23 Y OF
100 OF OF

9 10 1 9 4 N 6 4 N
10 | 16 9 N 10 8 N

100 10 10 N 10 10 N

10 30 1 12 8 Y 12 8 N
10 15 10 N 23 16 N

100 | 10 10 N 10 10 N

11 30 1 14 9 N 25 17 N
10 28 15 Y 24 17 Y

100 | 58 | 46 N* 89 65 N*

12 10 1 14 14 Y — — —
10 16 16 N — — —

100 | 19 19 N - - -

13 30 1 22 9 Y 11 10 Y
10 27 14 Y 15 14 Y

100 | 31 19 Y 21 18 Y

14 30 1 11 11 Y 11 11 Y
10 17 17 Y 17 17 Y

100 22 22 Y 23 23 Y

635

For the second singular set problems with rank(F”’(z*)) = n — 2, we can see that Algorithm
2.2 usually performs better than Algorithm 2.1. Hence, our algorithm seems to be more efficient
for problems with higher rank deficiency of J(z*), and with smaller initial uy, that is, the larger

initial trust region radius.

Finally, it is worth pointing out that on the 100zo case for Problem 11, both methods

converge to a stationary point of min,eg» ||F'(z)]|, instead of that of F'(z) = 0.
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