Journal of Computational Mathematics, Vol.21, No.5, 2003, 657—-670.

COMPUTING EIGENVECTORS OF NORMAL MATRICES WITH
SIMPLE INVERSE ITERATION *V

Zhen-yue Zhang Tiang-wei Ouyang
(Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou 310027, China)

Abstract

It is well-known that if we have an approximate eigenvalue A of a normal matrix A
of order n, a good approximation to the corresponding eigenvector u can be computed
by one inverse iteration provided the position, say kmax, of the largest component of w is
known. In this paper we give a detailed theoretical analysis to show relations between the
eigenvector v and vector zy, k = 1,---,n, obtained by simple inverse iteration, i.e., the
solution to the system (A — ;\I)m = ey with e; the kth column of the identity matrix I.
We prove that under some weak conditions, the index kmax is of some optimal properties
related to the smallest residual and smallest approximation error to u in spectral norm and
Frobenius norm. We also prove that the normalized absolute vector v = |u|/||u||loc of u
can be approximated by the normalized vector of (||z1||z,- - -, ||zx|l2)”. We also give some
upper bounds of |u(k)| for those “optimal” indexes such as Fernando’s heuristic for kmax
without any assumptions. A stable double orthogonal factorization method and a simpler
but may less stable approach are proposed for locating the largest component of w.
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1. Introduction

Let A be a normal matrix of order n. Assume that we have a good approximation A to an
eigenvalue A of A, the inverse iteration method

(A=ADy; =z,  zj+1 = yj/|lyjlleo

is commonly used for computing an eigenvector u of A corresponding A approximately. In
general, the starting vector zg = b is chosen at random or to be the vector of all one’s and the
iteration process converges in several steps [1]. However, there are no practical ways to choose a
starting vector b that ensures the rapid convergence, though it is true in theory that one can get
an accurate eigenvector to working precision by a single inverse iteration if the right vector b is
reasonably chosen [7]. In [12], Wilkinson pointed out that for symmetric traditional matrix A, a
solution to the homogenous system (A—;\I)a: = 0, discarding one of the n equations, say the kth
one, will be a good approximation to the eigenvector u provided the kth component u(k) of u is
not small. Equivalently, such an approximation, say zj, can be obtained by one step of inverse
iteration (A — AI)x = e, for a properly chosen index k, for example k = kmax corresponding
to the largest component u(kmax) of v in absolute value. Actually if u(k) is the largest one in
absolute value or above average in magnitude, the normalized output z, /||z|| of a single inverse
iteration will yield a residual which archives the optimal accuracy in magnitude. (See Corollary
4.1 for details.) It means that the simple inverse iteration, a single inverse iteration with right
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vector b = ey, will give an acceptable approximate eigenvector if the index k is chosen well.
Therefore there are two related problems that need to be considered: 1) how to locate the largest
component u(kmax) of the eigenvector v and, 2) if an index k is approximately estimated to
kmax, how large the component u(k) is or how close it is to u(kmax) in absolute value. In [3], an
index corresponding to the largest diagonal entry of the inverse of matrix A — M was suggested
as an heuristic for choosing the ”optimal” index kmax. (The index determined by the heuristic
will be denoted as kg in this paper.) Parlett and Dhillon [9] shown that k4 is asymptotically
equal to kpax as A tends to the eigenvalue A. In this paper, we will furthermore discuss such
problems for a real symmetric or more generally, normal matrix A by a detailed componentwise
analysis of the output x = x. As shown later, under some weak conditions the index kmax
is of some optimal properties such that among all normalized vectors zj, z}  achieves the
minimum of residuals both in 2-norm and in co-norm. In general, for indexes with some optimal
properties, for example k = kg4, the corresponding component u(k) is the largest one of u with
a factor tightly close to one. For those indexes k corresponding to small components |u(k)|,
the normalized vector 7, may be not a good approximation to u, but the position of its largest
component in absolute value also implies the position of large component of u, provided |u(k)|
is not small enough. On the other hand, the normalized absolute-valued vector |u|/||u]|s can
also be approximated by the normalized vector of the norm vector (||z||,- -, ||z.|)7.

Fernando’s approach for determining the index kg4 is an application of double factorization (a
combination of LDU and UDL factorizations) of the nearly singular tridiagonal matrix A — A
(Cf. 9] for careful discussions of the relation between the double triangular factorization and the
related eigenvector algorithms.) However double factorization is unstable and the slight danger
of overflow and/or underflow still exits. We will propose an orthogonal double factorization
based upon QR and QL decompositions to determine ky stably.

This paper is organized as follows: In Section 2, we first review some error bounds of the

residual ||Az — Az||; and the error ||z — u||y of the approximate eigenvector 2 computed by a
single inverse iteration with respect to the right vector b. As a deduction, error bounds for
x), obtained by simple inverse iteration are also given. In Section 3 we discuss some optimal
properties of x,_ . that implies information of locating the largest component of u. A lower
bound in terms of u(kmax) for the component u(ky) will be given in Section 4, which shows
that u(kq) is always the largest component of v with a factor tightly close to one. We also
shown a simpler way to locating largest component of u. The double orthogonal factorization
for determining k4 is proposed in Section 5.
Notations. We define by {);} the set of eigenvalues of matrix A and by {u;} the corresponding
eigenvectors with |[uj]l = 1. The eigenvalue \; satisfying |A; — A = min; |Aj — Al will be
simply denoted as A. Generally, we always assume that A is uniquely determined, i.e., if
Aj # A, then |A; — A] > |A — Al. Vi denotes the eigenspace spanned by the eigenvectors
u; corresponding to A; = A. (The eigenvalue A may be multiple.) Specially, if A is a single
eigenvalue, V) = spann{u}, where u = w;. It is also assumed that )\ is not an exact eigenvalue
of A. z means the conjugate transpose of z and, as we have used, (k) is the k-th component
of vector z.

2. A Review on Inverse Iteration

We focus on a single inverse iteration, i.e., an inverse iteration is viewed as a “direct”
method for computing approximately eigenvectors rather than an iteration approach. The
nature problem is thus that how good the approximation gotten by one iteration

(A—X)z=b (2.1)

is for a certain right vector b chosen in practical. To that end, let us first review a well-known
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result for the “optimal” residuals of approximate vectors when the approximate eigenvalue ) is
fixed.

Theorem 2.1. Let A be a normal matriz of order n, and {\;} its eigenvalues. Then for a
given A,

min ||Az — Az||> = min [A; — Al
llzlla=1 i

Proof. Theorem 4.5.1 of [10] gives the lower bound of the residual || Az—Az|]> > min; |A;—A|.
The bound is achieved at the eigenvector u corresponding to the eigenvalue A satisfying |A— 5\| =
min; |A; — A|, completing the proof.

Theorem 2.1 implies what we can expect on approximating an eigenvector v € V). In
practical, an optimal approximation of u is a vector with residual norm |\ — 5\| in magnitude,
though a smaller approximation error ||z —u||2 is also possible. The following theorem [7] shows
that the optimal approximate magnitude can be achieved by a single inverse iteration if the
right vector b is chosen well.

Theorem 2.2. Let |\ — A| = min; |\; — \|, and let z* = x/||z||> be the normalized vector of x
computed by a single inverse iteration (2.1) with ||b||> = 1. Then

A=A < 4z = Sl < 22

= Jeos(n 111 .

where (b, V) is the angle between vector b and subspace V.

Proof. The left inequality of (2.2) holds obviously. To show the right one, we write vector
b in the form
b = cos{b, V\)u + Z (7 uj)uj,
Aj#A

where cos(b, V\)u is an orthogonal projection of b in the subspace V) with a normal vector
u € V. It follows that

1/2
2 > |COS<b,V>\>| )

o cos? (b, V; b u;
el = (A = Any~pjfy = | Sy 5 P s

A=A I -

Therefore we have with [|Az — Az*||; = ||b||> = 1 that

1 A=Al
llzll2 = [cos®(b, Va)I”

|Az* — Az*||, = (2.3)

completing the proof.
Furthermore we have a upper bound of the approximation err of * to an eigenvector u € V.

Theorem 2.3. Denote gap = miny,xy |Aj — A. Then under the assumption of Theorem 2.2
we have

|z — sul|2 < |>\g%p>\| tan(b, V), (2.4)

where s satisfying |s| = 1 is a properly chosen constant determined by (2.8).
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Proof. As done in the proof of Theorem 2.2, we write

b bHu;
x = Mu + Z L/ uj. (2.5)
A=A AjFEN )\J -

Taking squares of spectrum norms on two sides of (2.5) gives

bH

cos(b, V\ 2 Uj
ey = | DIV o (2.6
N
cos(b, V) |? N 1 — | cos(b, Vi) |?
Tl A=A gap® '

Then we multiply by [A — A|? the two sides of the equation above and take square roots. It
yields that

. _ )2
A=Azl < \/| cos(b, V))|2 + u (1 — | cos(b, V>\>|2) (2.7)
- gap?

A= AP
= |cos(b, V>\>|\/1 + |ga7p2| tan2(b, V3).

On the other hand, by (2.5) we have that

H,
RSO (RCCUA VI WS B T
(A =Ml [zl Aj— A

Aj#EA

Taking spectrum norms again and writing

cos(b, IA/A> _ cos(b V) 2.5)
A=A A=A
with |s| =1 gives
b,V; ’
2% — sull2 _costh, V) _ ‘ }: (2.9)
A = N)||]] HllzhéA A
2
| cos(b, V\)| _1 all2 - cos(b, V) 2
A= Mzl HMQ ? A— A
_ (1 _ Jeos(b.13)] ) _
A=Al |l
Therefore substituting (2.7) into the last equality above we have
. A= AP -3
o —sul2 < 2 <1-— (1-+| gap2| tan2<b,v3>) ) (2.10)

(|/\gap)\| tan(b, V>\>)2.
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Hence the inequality (2.4) holds.

Clearly if the eigenvector u € V) is defined above, then (b, V\) = (b,u). For simplicity, we
always assume that A is simple, i.e., V) = spann{u}. Similar results are also true for multiple
A
Remark. Since |sin{z*,u)| < ||z* — su/|2, it follows from Theorem 2.3 that

A=A
gap

| sin{z*, u)| < | tan(b, u)|.

This estimation also follows from the traditional convergence analysis of power method applying
(A—XI)"1 [6, p.404], or Davis and Kahan’ estimation [2] for | sin(y,u)| in terms of the residual
|Ay — Ay||> and Theorem 2.2.

Theorems 2.2 and 2.3 clearly show that a good approximation to the eigenvector u can be
obtained by one step of inverse iteration if cos(b, u) is not small enough. However there are no
practical ways to chose such vector b, although a randomly chosen vector or b = e with unit
components are commonly used [1, 8]. Note that if A is symmetric tridiagonal matrix with
positive off diagonals and A is the (single) extreme eigenvalue (the largest or smallest one) of
A, the corresponding eigenvector u is positive or negative [13]. It yields immediately that

km@mHZ§? ltan(e, u)| < Vi =1,

because for positive reals t1,---,t, satisfying 37i_ #7 = 1, we have 3 i, t; = 1. Therefore a
single inverse iteration with b = e can give a good approximation provided A is closer to the
largest or smallest eigenvalue than to others. For general cases, Wilkinson suggested b = PLe,
where L is th unit lower triangular matrix of the LU decomposition A —AI = PLU with partial
column pivoting. Obviously, the vector z solving (2.3) also satisfies Uz = e which can be solved
easily by a back-substitution. However it is possible that cos(b,u) is relatively small for such
chosen b.

Simple Inverse Iteration. A simpler way is to chose b = ey, the kth column of the identity
matrix I. Using b = e, has the benefit for tridiagonal matrix A = [Br_1, ak, O] that the
tridiagonal system

(A= Az = ey (2.11)

can be easily solved by following down and upper recursion process [5]: First set #(1) = 1 and
determine Z(2) from the first equation of (2.11), and determine #(3) from the second equation
and so on, until #(k) is computed when the (k — 1)th equation is used. Similarly form the
last n — k equations, we can determine, step by step, Z(n — 1), ---, &(k), by setting Z(n) = 1.
Choosing constant ¢ such that #(k) = ¢z(k) and setting

me = Bi(k — 1) + (e — Na(k) + Brprci(k + 1)

gives the solution

This approach may give an approximate eigenvector with higher relative accuracy in components
if k is certainly chosen. Below is such an example.

Example. Let n = 200. The off-diagonals of symmetric tridiagonal matrix A are set to be 1/2
while the diagonal entries read

a(j) =1=5()s(G+1) =s(G = Ds(i)/4, j=1---,n
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Figure 1: Component-wise relative errors of computed eigenvectors.

with s(0) = s(n+1) =0 and s(j) = £1 for j =1,---,n. It can be easily verified that A =1 is
an ezact eigenvalue and the corresponding unnormalized eigenvector u is given by

s(7)27,

j=1,---

u(j) = n
Clearly u has its largest component u(n) in abstract value, i.e., knax = n. Now we set A=
1+ 1077 and k = n. All the relative errors of components of the computed approximate vector
x =y, are less than 1078 when u and 2 are normalized. Note that the eigenvector # computed
by MATLAB function schur has quite large relative errors in the most of components. Fig
1.1 plots the component-wise relative errors of the approximations computed by the down and
upper recursion (solid line) and MATLAB function schur (dashdot line), respectively.

New let’s return to the discussion about vectors zj; for normal matrix A. Note that
| cos{er,u)| = |u(k)|. Upper bounds for the x}’s residuals and the approximation errors can be
easily obtained by simply applying Theorems 2.2 and 2.3 with b = ey.

Corollary 2.1. Let A be a normal matriz and xj the solution of (2.11) with normalized
xp = zi/||zk||2- Then for a suitable constant s, satisfying |si| =1

* N |A - A|
Axy — Axple < —— 2.12
|| Ty mk”z = |’U,(k)| ’ ( )
. A=Al V1= Tu(®)P
— Sg < . 2.1
||mk slvu”2 = gap |’U,(k)| ( 3)

Naturally, an index achieving the minimums of the upper bounds indicates the largest
component of u. We denote such an index by kyax (though it may be not unique),

[ (kmax)| = max [u(k)] = [[u/|oo- (2.14)

Obviously, ||u||co > 1/4/n. The following upper bounds are directly obtained by Corollary 2.1.

N A=A .
Axy — Az}, 2§| |§\/E)\—)\, 2.15
e e [l
A=A VTl A=A
1% mar — Skmaxtll2 < | | el <vVn- A=A (2.16)
e gap |l gap
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In the following section, we will show that the index kyax is of some optimal properties.
3. Optimal Properties of k.
We denote by Kpax the set of all the indexes kmax satisfying (2.14),
Kmax = { k| Ju(k)| = |lulls },

and by K€, the set of all remainder indices. Recalling that ||Az; — Az = 1, the residual
of z} reads ||Az} — )\xk||2 = 1/||zk||2. Therefore the smallest residual miny || Az} — )\xk||2 is
achieved at k = k,p¢ which is defined by

Theopt ||2 = m]?“X ||.’17k||2,

ie.,
||A1‘k - X1:16”2 — ||Amkopt - AmkoptHQ (3 1)
k |zl 1% ko 2
So does it for the co-norm,
[ Azr = Aeplloo _ [[AZr. = Aope lloo (3.2)
k [E79[R lokllo

where k., is defined by
[[kec oo = max|z|oo-

In this section, we will show that under some weak conditions, the vector zj_ . for kmax € Kmax
also achieve the minimum of residuals both in 2-norm and in co-norm. To this end, let us first
consider the co-norm of xj,, starting at comparing the sizes of vectors z;. We denote by

A=Al A=}
gap A ;éA |)\ — )\|

<1 (3.3)

Theorem 3.1. For each k=1,--- n, if

14+ /1 —|lull%
VI, 54

w(k)| < ||ul|leo — )
then
llzkloo < ]emKliXHI'J”oo (3.5)
Proof. We write
u(k) u; (k) 1
T = ~u + —U; = —(u(k)u + vg). 3.6
e A Phwes Ui e (CCLERY (3.6)

It is easy to show that

llvkllz = Z X (Byugl| <n [ Jui®)? =nyv/1—Juk)]. (3.7)
X7 N AN
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Taking co-norms on the two sides of (3.6) yields that

1

m(|u(k)|||u||oo + &)

12k |loe =

with
1€kl < /1 = |u(k)[?.

It follows that for each k € K€, and kmax € Kmax,

1Tk a lloo = l|Zkllo0 > ﬁ ((|u(kmax)| — lu(E)D))|wlloco + Ekpar — fk)
= I\ i Al ((”“”oo — Ju(k))|ulloo —n(1+ /1 — ||“||?>o))
> 0.

The last inequality above follows from the condition (3.4). Therefore (3.5) holds, completing

the proof.
A similar result for 2-norm is also true.

Theorem 3.2. If ju(k)|*> < ||ul|’%, —n?, then

l7kllz < min lz;]l2.

From Theorems 3.1 and 3.2 we obtain the following important results.

Theorem 3.3. If n < ||u||o, then

L+ V1= lufl3

1 < Ju(koo)| < fltloo-
llulloo

VulZe =% < Ju(kops)| < [lulloo-

Corollary 3.1. Denote by ~y the second largest component of u,

[[floo =

v = kmax |u(k)|.

max

L+ V1 = [Jull3

If v < Julleo—
[lufloo
If v < Vil —n*  then |u(kopt)| = ||uloo-

It can be verified that if n < ||u||, then

1++/1— 2
+—”u”°0n§ NullZ = n2.

[[/loo

n,  then  |u(koo)| = [[te]|oo-

llfloo =

L+/1-|[ull%,

llufleo

It is more interesting that if v < ||u||co — 7, then

[u(koo)| = |u(kopt)| = [u(kmax)|,

which implies that
koo - kopt - kmax

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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if kmax is unique. In that case,

[k lloo = max|lerlloo and ||zgp,,.[l2 = max||zx |-

or equivalently, kmax minimizes the residuals in 2-norm and oco-norm. The following theorem
further shows that knax maximizes the components of xy too,

max )

[Tk (Fimax)| = max |2, . (k)]

Theorem 3.4. Let v be defined in Corollary 3.1. If

2y/1 — JJull3 (3.15)

<llu —

then for k € K¢

max

and kmax € Kmax
|Zkmax (B)| < % kmar (Kmax)|- (3.16)

Proof. By (3.6) we get that for each k

1
Tlmar (K) = —— (u(kmax)u (k) + vt (k)
A=A
Especially, for k& = kpax € Knax
1
Thpay (Fmax) = T (u(kmax)® + Vkmax (Emax)) -
It follows that for k € K<, and kpax € Kmax
1
|Z ke (Fimas) | = [T (B)| 2 PESY (Ulloo = Meellos = (Vk e Fmax) | + [Vka ()])
1
> ———((JJullse = Mlellos — V2lvk,,l2)-
P ((Nlelloo =)l [0k e 2)

By (3.7) we have
1

A=A
completing the proof.

((llloo = Mllulleo = v20v/1 = Jlull%,) >0

4. Approximately Choice of k.,

To locate the largest component of u, or equivalently determine the index kmax, Fernando
[3] used the index maximizing the diagonal entries of the inverse of matrix A — AI as a heuristic
for kmax. We denote by k4 such index, i.e.,

g (o)) = x| (A = A1)~ (b, )] = maux s ()] (4.1)

This is a reasonable choice because be the discussion in the last section, if kyax is unique and

the inequality
1+/1- IIUII’éo?7

7 <llufloo =
- [[/loo
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holds, then k,ax also maximizes {|zx(k)|}, i-e., k4 = kmax. In this section we will further show
some lower bounds for |u(kq)| in terms of ||ul| without any assumption. Those bounds will

make sure that zj  always achieves the optimal bounds shown in (2.15) and (2.16).

Theorem 4.1. Let n be defined in (3.3). Then

k) 2 [uFmal? = T2 (1= [l )

Proof. Using the expression (3.6) of z;, we have

L (u®P + ), 1G] <0 - Ju)P).

|z (k)| = 3

Hence, applying the equality with k& = knax and k& = kg yields that

0 < |mkd (kd)| - |kaax(kmax)|

= o (kP G ot~ o)

< g () = s+ (2 = o) = b))

- A i Al ((Ju(ka) > = [u(kmax)|*) (1 = 1) + 20(1 — |u(kmax)|?))-

The estimation (4.2) follows immediately.
Remark. It is easy to verify that

u(ka)
U(kmax)

2n 1 — |u(kmax)|? 2
_ 77 |U( 32)| 21_ 77 (n—l)
1-n |U(kmaX)| 1-mn

Generally we always have that kg = kmax or |u(kq)| = |u(kmax)|-
Now denoting

~1,

(-2 L%M%MW>“”
a=|(1-
1=n  |u(kmax)[?

b (1_2_77;)‘”2_ [T,
L+ 7 |u(kmax) |? 1-n ’

: * N ok : *
we have upper bounds for the residual ||Az} — Az} ||2 and the approximate error ||z} — sk, ull2

in terms of the optimal bounds shown in (2.15) and (2.16).

Corollary 4.1.

. A=A
Azt =\t |l < 0—21
I Ly ﬂ'v”/cd||2 S IU(kmax)Ia’
1 — |u(kmax)|?
ko g < Y TvmaxJl
||$kd Slvdu”? =7 |u(kmax)| ﬁ:

where sy, is that as defined in Corollary 2.1 for k = kq.

Proof. By Theorem 4.1 and the definition of o and 3, we have that

u(ka)l* > [u(kmax)|* /o
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and 1+
L= fuka)l* < 37 (0= fuCma) -
Applying Corollary 2.1 for k = kg yields immediately the inequalities (4.3) and (4.4).

Corollary 4.1 shows that xj, also gives the same residual and approximate error as those
given by z__  up to factors a and 3, respectively, which close tightly to one.

A much simpler but less stable way of locating the largest component of u is to use a single
vector zj directly. Though the normalized vector =} may not a good approximation of w if u(k)
is not greater than the average in magnitude, it also provides information about the position
kmax of the largest component if u(k) is not small enough.

Theorem 4.2. Let |z (ig)| = max; |z (). If |u(k)| > v2n/||ulloo, then

, V2
|U’(’Lk)| Z |U(kmax)| — —|’U,(k:)| .
Proof. By (3.6),

1
A=Al

0 < [ (ik)] — ok (kmas)| < (i) | = [ulhmae)]) + V20).
It yields the result required.

Below is a small example which substantiates the statement above.
Example. The symmetric matrix A is constructed as follows.

[@,R] = qr(1 — 2 x rand(n));
s =10 — 20 * rand(n, 1);
A = Qxdiag(s) *Q;

with n = 100. We set A\ = s(1) * (1 + 7) using 7 = l.e — 6. For such an example, the
smallest component of u in absolute value is |u(86)] = 1.2574e — 5 and n = 2.2201e — 5. If
we unfortunately choose k = 86, z} gives a large residual ||Az} — 5\.772”2 = 0.0590. However,
with the index i locating the largest component of xy, |u(ir)] = 0.1676 is the third largest

component of u. (The two largest components are 0.1732 and 0.1718.) z} is almost the

1k

optimal approximation to u with residual [[Az] — Az¥ ||, = 4.4470e — 6 close tightly to the

k
smallest one ||Az} ~— —Azy ||2 = 4.3019e —6. Figure 2.1 plots the components u(k), residuals

|Axy — ;\:rZ||2, and [|Az] — ;\x;‘k |2 for all &’s.
Finally we finish this section by showing the following interesting result about component-
wise approximation.

Theorem 4.3. Let || - || be the 2-norm or oo-norm. If n < ||ul|co||ul|, then
leull G| 2
maxy [|ze|l  |lulloo | 7 [Jufloollull =7

Proof. As that in (3.8), we write

) = — () lull + 0k), 10k] < /1 = u(k)?.

A=A

and have

max ||z || = (lellolull + ), 18] <.

L
A=Al
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tol = 1e-006, eta = 2.2201e-005
T T T

25 —— log, (abs(u))
~ logyyferr(9)
b —_ loggferr()
i
1 |
\
350 ! H Ly i
! f
I I 1
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Figure 2: Components of u (— + —), residuals (—.) and refined residuals (—).

It follows that

lewll  Ju()] _ ||w(E)]llull + 0k |u(k)]
maxy, [|zg]| [l [ulloollull 40 lullo

_ 5kIIUIIm—5IU(k)I‘
(lulloo[[ull + 0)[Julloo

_ n([lullss + [u(k)]) ‘
(lulloollull = m)lwll o
2n

llwlloolull —n°

5. Determination of £,

For determining k4, Fernando considered the following nearly homogeneous set of equations

[3]
(A= NDyp = e, yr(k) =1 (5.1)

with real number py. Obviously, yr = urzr with z; defined in (3.6), and hance z (k) = 1/ k.
Therefore the index k minimizing |ug| is just kg4 defined in (4.1). Fernando’s algorithm of
computing uy bases upon the LDU and UDL factorizations (double factorization)

Lydiag(d ) Uy = A — X = U_diag(d_)L_

of the shifted matrix A — \I when A is tridiagonal. There are several formulae of evaluating
i which are mathematically equivalent each other. One of them reads

it = di (k) +d_(k) = (a(k) = A).

However algorithms based upon LDU and/or UDL factorizations are unstable even the factor-
izations exist. The index k located numerically by Fernando’s algorithm may differ from the
index kg, or |u(k)| may be relatively small compared with |u(kq)| or |u(kmax)|- In the following
we will propose a stable algorithm for computing the index k4 using QR and @ L factorizations
which will be referred as orthogonal double factorization.
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Let T' = [f, a;,7;] be a nonsingular tridiagonal matrix of order n. And let G;; be the

Givens rotation in the (i,j) coordinate plane. The process of the QR factorization T' = QR of

T can be written as follows
Gnn-1--G32G2.1T =R
Obviously R is a upper banded matrix of bandwidth three with the

with @ = G2T’1 e G;L:n,l.
kth row
[' : '707Tk78k7tk707' : ]
Writing A
G k-1 = diag(Ix—2, G -1, In—k—1)
for the 2 x 2 submatrix GA’M_l of the Givens rotation G ;—1, we can verify that
Con Th—1 Sk—1 _ | k=1 Sk—1 ke
T Br o M Tk s, |

Here 7y = a1 and §; = ;. Similarly, the Q)L factorization of 7' can be written as

T= (G Gn1,) L=GL

Tr 3
err1 fr+1 Grt1

and
A Br ar W
Gk [ ; . =
ke e kst
where ejt1, fr+1 and gy are the three nonzero entries of the (k + 1)th row

('")ankJrl:karl)ngrl:O)" )

of the lower triangular matrix L with starting g, = B,—1 and fn = ay.
Theorem 5.1. Let T = [3;, s, ;] be a nonsingular tridiagonal matriz of order n, and let

QR=T=GL

be the QR and QL factorizations, respectively, with upper triangular R = (r;;), lower triangular

L = (l;;), and orthogonal Q and G. Then for each k, 1 <k <n,
e

Sk—1

T71 —1 =aqp— - :
( )kk Tk—1 gk+1

The second and the last terms on the right side of the equation above will vanish for k =1 and

k = n, respectively.
Proof. Considering the first £k — 2 Givens rotations G 1, -, Gr—1,5—2 as matrices of order

k — 1 and denote by @1 the product
Q1 =Gr_1p—2---Go,

we have that .
Q1 T(1:k—1,1:k—1) =Ry,

where R, is the upper triangular matrix of R(1: k—1,1: k —1) except the last diagonal entry

Fr—1. Similarly for the (n — k) x (n — k) orthogonal matrix Go = Gi41 k+2 - Gn1,n,

A

GzT(k:+1n,k:+1n):L2
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with Ly = L(k+1:n,k+1:n) except the first diagonal gg+1. Therefore we have that

Ry Sp—1
diag(Q1,1,G2)T = Br  ax =B.
fre+1 L,

Note that R is upper triangular while Ly lower triangular. It can be shown that

(T~ ) (k, k) = (B~ ") (k, k) = (B;")(2,2), (5.2)
where
Th—1 Sk—1
Br,=Bk-1:k+1,k—1:k+1)=| B o, Vi

for1 Gkt

Applying Cramer’s rule gives

~ —1
_ Pr—10k+1 Sk—1 fri1
B1)(2,2) = 228 — . — - .
(B )(2,2) det By, (ak fk—1ﬁk §k+17k>

By (5.2) the result of the theorem follows.
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