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Abstract

A new kind of matrix-valued rational interpolants is recursively established by means
of generalized Samelson inverse for matrices, with scalar numerator and matrix-valued
denominator. In this respect, it is essentially different from that of the previous works [7,
9], where the matrix-valued rational interpolants is in Thiele-type continued fraction form
with matrix-valued numerator and scalar denominator. For both univariate and bivariate
cases, sufficient conditions for existence, characterisation and uniqueness in some sense are
proved respectively, and an error formula for the univariate interpolating function is also
given. The results obtained in this paper are illustrated with some numerical examples.

Key words: Generalized inverse for matrices; Neville-type; Rational interpolants.

1. Introduction

Many kinds of matrix-valued rational interpolation or approximation problems have ap-
peared in recent years, which have been found to be useful in linear system theory, especially
when the system is multi-input and multi-output. Pada interpolation and Pada approximation
can be generalized to the matrical case to approximate a matrix-valued power series [3, 5]. By
means of the reachability and the observability indices of defined pairs of matrices, Antoulas et
al. [2] solved the minimal matrix rational interpolation problem. According to Loewner ma-
trix, Anderson and Antoulas [1] discussed the problem of passing from interpolation data for
a real rational transfer- function matrix to a minimal state-variable realization of the transfer-
function matrix. Bose and Basu [4] discussed a matrix-valued approximant with matrix-valued
numerator and denominator for the approximation of a bivariate matrix power series.

Motivated by Graves-Morris’ Thiele-type vector-valued rational interpolants [6], Gu Chuan-
ging and Chen Zhibing [7] discussed the matrix-valued rational interpolants in Thiele-type con-
tinued fraction form, with matrix-valued numerator and scalar donominator. Given a set of dis-
tinct real points {z; : i =0,1,---,n} and a corresponding set of matrical data {4; : i =0,1,--,
n, A; = A(z;) € C™*™}, [7] showed explicitly that

N(z T—x T — Ty
R(m)zDEm§:A0+ A1°+___+7A . (1.1)

can serve to interpolate the given matrices. Gu Chuanqing also generalized (1.1) to the bivariate
case [9]. The working tool of this kind of matrix-valued rational interpolants is closely ralated
to the generalized Samelson inverse for matrices which was first introduced in [7] as following

1 AH
_:Aflz_, A#0, 1.2
a e (1-2)
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where A = (a;;) € C"™*™ and
1A = (trAHA)E - (ZZ |aij|2)§. (1.3)
i=1 j=1

A is the conjugate transpose matrix of A. from (1.2) and (1.3), it can be derived that
(471) 1 = 4, (1.4)

which turns out to be an useful technique in this paper.

[10] shows that by using of the generalized Samelson inverse for matrices (1.2) in matrix-
valued rational approximation problems, one need not have to define left and right approxima-
tion.

In this paper, we consider a new kind of matrix-valued rational interpolants based on (1.2),
with scalar numerator and matrix-vlaued denominator, which is called Neville-type matrix-
valued rational interpolants (NMRI). In this respect, it is essentially different from those of
the authors’ previous work [7, 9], where the matrix-valued rational interpolants is in Thiele-
type continued fraction form with matrix-valued numerator and scalar denominator. Although
NMRI is also based on the generalized Samelson inverse for matrices, compared with those
obtained in [7] and [9], it has the following advantages: first, the total degrees of the numerator
and denominator is low than that in [7] and [9](theorem 3.2, theorem 4.5); second, in the
construction process, one need not compute each matrical inverse, by (1.5) one just “turn over”
the matrix twice can make the computation easy(example 5.1-5.3); third, the interpolation
is defined through recursive algorithm, hence, it is more suitable to calculate the value of a
matrix-valued function for a given point (example 5.2).

In section 2, we iteratively construct NMRI. In section 3, some important conclusions such
as characterisation and uniqueness in some sense are proven respectfully , and an error formula
for NMRI is also given and proven. In section 4, most results obtained in section 3 are extended
to the bivariate case (BNMRI). In last section, some numerical examples are given to illustrate
the results in this paper.

2. NMRI

Given a set of distinct real points {z; : i =s,s+1,---,s +v,z; € R} and a corresponding
set of matrix data {4;: i=s,s+1,---,s+ v, A; = A(x;) € C"™*™}, we will construct NMRI
as

N (x)
MY =2 2.1
where N?(x) is a real polynomial and DY(z) is a real or complex polynomial matrix, such that
v Ng(zi) 1 :
MS(xl):m:E, Z:S,S+1,"',S+U. (22)

By (1.2), it is easy to prove
Lemma 2.1. For A,C € R™*™ and b € R,b # 0, then

A =00, (2.3)

NS
Q=

For simplicity, we define
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Definition 2.2.
Ug(z,A) = Di(z) = N ()4, (2.4)
;=T — x;, i=s,s+1,---,5s+w. (2.5)
from (2.3) and (2.4), it is obvious that (2.2) equals
U (x;, A;) = DY(x;) — NJ(z:)A; =0, i=s,s+1,---,s+0. (2.6)

The following theorem shows that N?(x) and DY (z) can be recursively defined,
Theorem 2.3. Let N(z) =1, D%(z) = A;, then

N(z) = a; N @) N (2) — aspo N2 (2) NP (), (2.7)
D;(z) = asN; ™M (2) D71 (2) = asyo Ny (2) DI (2). (2.8)
Proof. We only need to prove (2.6). It is clear that

U(z,,A,) = 0.

Suppose MY~ (x)and MY | (z) satisfy

s+1
Ugil(miaAi):Oa ’L.:S,S+1,"‘,S+’U—1, (29)
U:—;ll(miaAi):Oa i:S+178+27"'7S+U7 (210)
noticing
U (2, 4) = as N (@)U (2, 4) = a5 N (2) U7 (2, 4) (2.11)

and the definition of as and asy,, we finally get
UY(x;,A;) =0, t=s8,s+1,--+,5s+wv. (2.12)

by induction, the proof is finished.

The coefficients NY~!(z), N2 '(z) in (2.7) and (2.8) can be eliminated by the following
theorem.
Theorem 2.4  Let M{(z) = A", if N>~'(z)NY [} (z) # 0, then

M (z) = asas —_as+&s+v , (2.13)
Mo (x) M) (@)

where ag, as4, are defined as in (2.5).
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Proof. From (2.1), (2.7), (2.8) and by using of (1.5), one can easily derive

8§ S

asN; (@) DT (2) = asro N (2) DY (2)

8§ S

M(z) = asN, 7 (@) N7 (2) — s o N (2) N 7! (2)

As — Qsty
a; DY (2) gD (@)
N7 (@) N, ()
s — Qs4y
Qg Oy
N)o () N7 (x)
Di(z) Di (@)
g — as+v
(&) _ aerv
MT () M7 ()

Theorem 2.4 shows that M?(z) can be recursively defined and computed .

3. Characterisation ,uniqueness and error formula

Definition 3.1. A matrix-valued polynomial

A(z) = (aij
@) = (ay@)
is said to be of degree n and denoted by d{A(x)} = n, if d{a;;(x)} < n, fori,j =1,2,---,m
and d{a;;j(z)} = n for some i,j (1 <i,j <m).

Theorem 3.2. Let N?(x) = 1, D%(x) = As, then

d{N?(2)} = 0, (3.1)

d{D;(z)} <. (3.2)

Proof. From (2.7), (2.8) and by induction, it is easy to derive (3.1) and (3.2).
It is proved in [7] that in (1.1)
n
d{N(z)} =n, d{D(z)} = 2[5] (3.3)

here [z] represents the integer function. (3.1) and (3.2) shows that compared to R(z), M?(z)
turns out to be easy and concise. The following theorem shows that in some sense, MY (x) is
unique. o o .

Theorem 3.3. Let M?(x) = N¥(x)/D¥(z) and M,(x) = N, (x)/D,(z) be arbitrary two
NMRI which satisfy

— 1
7

and
d{N!(z)} = d{N,(z)} =0,  d{D!(z)} <v,  d{D,(x)} <w. (3.5)

then o -
N, (2)D{(x) = N (x) Dy ().
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Proof. From (3.4) and Lemma 2.1, it is esay to derive

v

N (e:) _ No(a:)

N, (z:)Di(x;) = N (2:) Dy (w:),

v

N (z;)D?(z;) — NY(x;) D, (x;) = 0, i=s,s+1,...,s+wv.

but from theorem 3.2
Y v v\
d{Ns(m)Ds (Z’) - Ns (1‘)DS(Z’)} S v,

it follows that
Y v — A\
Ns(x)Ds (Z’) = Ns (Z’)DS(Z’)

161

Theorem 3.4. Suppose [a, b] is the minimal closed interval in which the points xg, 511, -+,

Loy are included, A(x) = (ai;(z))

then For each T € [a, b], there exists = € R™*™, such that
w()

(v+ 1)

[1]

A@) - (@) =

here

w(z) = (2 = 25) (T = Ts41) - (T = Tspo),

== (aff "V (E))

gijE(a,b), i:j:1727"'7m'

)
mxXm

Proof. Without losing generality, we suppose

T # x;, i=s,s+1,--,5+w.

since
() = (@) D@ (2 ®)
’ D{() N{(T) NY(T)
we only need to prove that for i,j =1,2,---,m

o @ w@
aij(a:)— NU(E) = (U_+_]_)!a'ij+ (

for T € [a, b], we can find k;; € R, such that

dv,. . (x
Fij(z) := a;;(z) — %i)) — kijjw(z)
serves
Fij (f) =0.

and obviously, Fj;(z) has v + 2 roots in [a, b]

TsyTst1," " ,Z’S+U,T,

)

is of order v+1 continuous derivatives, and N¥(z) # 0,
m

(3.10)

(3.11)

(3.12)
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by using Rolle’s theorem, there exists &;; € (a,b), such that

F(65) = aff ) (6y) - N;(m) (255 (@) ") — kg0 + 11 =0 (3.13)

from
d{D;(x)} < v,
it is derived that
aly ™ (&) = kij (0 + 1)1 =0,
that is
g ()
Yo (v +1)!

thus by (3.11) and (3.12)

ai;j (Z) N @) (U+1) (@),
hence . @
A@ - (@) = e

where E is given by (3.8).

4. Bivariate Neville type matrix valued rational interpolants
(BNMRI)

In this section, most results obtained in section 2 and section 3 are extended to the bivariate
case. Given a set of distinct real points in R?

{(zs,yj) :i=s,5+1,---,s+v;j=tt+1,---,t+w}
and a correspoding set of matrices
{Ajjri=s,s+1,---,s+uvj=tt+1,- - t+w Ay = A(zy;) € C™*"}
we will construct BNMRI as

N (x,y)
MU (,y) = Sva— (4.1)
! Dst (1. y)

where N;’;tw (z,y) is a bivariate real polynomial and Ds7t (z,y) is a bivariate real or complex

polynomial matrix, such that

Ny (xiy;) 1

M;’tw(mz,y]):m—A—”, Z:S,S+1,,S+’U,]:t,t+1,,t+w (42)

Definition 4.1.

Ugy'(z,y;4) = Dy’ (z,y) — NP (z,9)4, (4.3)
o =T — T, i=s,s+1,-,5+w, (4.4)
Bi =y —yj, j=tt+1,--- t+w. (4.5)

By using of the same approaches as in the proof of theorem 2.3, theorem 2.4, theorem 3.2
and theorem 3.3, we can derive the following three theorems.
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Theorem 4.2. Let N£7}0(m,y) =1, DS V(z,y) = Ay then
(i) when v>1l, w=0

N:,%O = a,N'] 1 ON:+_11,20 as+va+11 tONv Lo (4.6)
DZ,’? = NU ' OD;);ll,7t[) - a8+va+11t0Dv bo (4.7)
(ii) when v=0, w>1
= ﬂtNow 1N£Zi11 BrywN, 0;111]\7?,?”_17 (4.8)
= BN T DI — B Ney T DI (4.9)

(iii) when v > 1, w>1

1 1 1 1 1 1 —1l,w—1
Nv T N;)H-lw N;)-H tw N:+1,t1-l|)-1 (as+vﬁt+w - as+vﬂt - asﬂt-ﬁ-w + asﬁt) (4-10)

g’f:awvﬁwu}N:,tjiw 1N:+11tw 1N:+11ti11Dv bt

aeruﬁtNU 1,w— 1N:+711”tw IN;)JrllttillD:’ti,lw 1
—asﬁterNU b IN:,;Jiiw 1N:+11t1111DZ;11,’:]71
s BN TN TN D (4.11)

Theorem 4.3. Let Mgf (z,y) = A;%, then corresponding to theorem 4.2
(i) if Ny L ON:HltO # 0, then for v > 1,

As — Qsty

v,0
M e (4.12)
M‘:Ill”to Mv 1,0
(ii) if Ny 'Noyiyt # 0, then for w > 1,
ﬁt - ﬂt—l—w
M 4.13
s, t Oﬂt - ﬂé"‘“’ ] ( )
Jw— w
Ms,t+1 M
(iii) if Ny B0 N Y TN TN # 0, then for v > 1w > 1
vaw (as—i-v - as)(ﬂt—l—w - ﬁt)
= . (4.14)
’ as+vlﬁt+ui _ aerlvﬂt - asﬁlt+w o+ Olslﬂt .
MU Y M;),H-iw M:+1,7tw M:+1,7tl-l|)-1

Definition 4.4. It is called

lim M(z,y) = (bij)mxm,
(:t,y)—)(:to,yo)
if
lim Mij(may) :bija i, =1,2,---,m, M(x,y) = (Mij(mhy))

(Ivy)H(IUryO) mxXm

and if

Az—0 Az
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exists, the limit is denoted by OM (x,y)/0z, by induction, if

anfl anfl

Az—0 Az

M(z,y)

exists, the limit is denoted by 0™ M (x,y)/0x™, the meaning of 0" M (z,y)/0y™ is similar.
Theorem 4.5. Let N?”to(x,y) = I,D[s):?(:n,y) = As 4, then

d{N, " (z,y)} =0, (4.15)
d{Dy}" (z,y)} <v+w, (4.16)
aerl
anrl o
ayw_H Ds:t =0, (418)

here v,w >0 .
The following theorem shows that in some sense, M/} is unique.

_ Theorem 4.6. Let MY (z,y) = N2 (2,y) /Doy (z,y) and M, (z,y) = N,y (2,y) /
D:ZU (x,y) be arbitrary two BNMRI which satisfy

v, W

M:,%w(mivyj) = Ms,t (xl)y]) =

, i=s,s+1,---,s+v;j=tt+1,---,t+w. (4.19)

and

N (@)} = AN (2,9} =0,  dD}Y(z,y)} <v+w,  d{D.) (z,y)} <v+w,

(4.20)
then o .
Ny (2,y)Dgy (z,y) = N (2, 9)D, )y ().
Proof. From (4.19) and Lemma 2.1,
D (xi,y5) DLy (i,y;)
for fixed j, by (4.17)
ENAER v, w v,w nvw
d{Ns,t (x’yj)Ds,t (m,y,) - Ns,t (m7yj)Ds,t (a:,y])} S v,
thus from (4.21), it is derived that
N::;ﬂ(x,yj)D:”:U(m,yj) - N:,%w(xvyj)ﬁts):tw(x’yj) =0 (4‘22)

now fix x, by (4.18)
ANy, (@, 9) DLy (w,y) = Ny (e,9)D,) (2,9)} < w,

hence from (4.22), we finally get

U, W

Nyt (@,y) Dy (@,y) = Ny (@,y)Dyy (z,y) =0,
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that is
——=v,w

N, (z,y)D0 (m,y) = N (2,y) D,y (2,y).

Example 4.7. Suppose s =t =0,v=1,w = 2, and

(330; yo) = (0: 0) Ao,o

O N
N O

O =

(3307211) = (0: 1) AO,l =

O =

(x1,90) = (1,0)  Ajp=

w N

N O
N e e N~ N N~

(z1,91) = (1,1)  Aix=

(
(
(£0,92) = (0,2)  Aop= (
(
(
(

= W

(z1,92) = (1,2) A=

find M&’g (z,y).
solution: By (4.14)

e ©0-1O-2)
0= GG G ly a2, oy
My Mgy M M)y
here by (4.13)
Yo 0=1 1
Vg (w2 Y
Myoy  Myy y —2y +2
1-2 1
0 — _ ’
0.1 y—OOZ_y—O% 3 —y+2
My, My 1 2y—2
Yol 0=1 1
1,0 Z/—O[l)_ y_ —y+1 y+11Y\’
Myy My y+1 3y
oo 1=2 1
1.1 y—002 y_o% dy—4 y+1 ’
MO? T MDY 2 245

by (4.23). it is easy to derive that

1,2 _
Mo,o =

6xy? — 10zy —y> — 2z + 3y + 4 2zy? — 2zy — 29> + 2z + dy
—y2 422+ 3y —92y? + 192y + 4y* — 4z — 8y + 4

165

(4.23)

;
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