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Abstract

This paper is mainly concerned with solving the following two problems:
Problem I. Given X € R"*™, B € R™*™. Find A € P, such that

|XTAX — B||r = min,

where P, ={A € R""| mTAzi >0, VreR"}.
Problem II. Given A € R™*™. Find A € Sk such that

|A—Allr = min [|A - Allr,
AeSg

where || - || is Frobenius norm, and Sg denotes the solution set of Problem I.

The general solution of Problem I has been given. It is proved that there exists a unique
solution for Problem II. The expression of this solution for corresponding Problem II for
some special case will be derived.
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1. Introduction

[2] pointed out that XTAX = B comes from an inverse problem vibration theory. [2] has
studied least-squares solutions where the unknown A is symmetric positive semidefinite, given
the expression of general solution. It is more difficult to study least-squares solutions for the
case that the unknown A is positive semidefinite (may be unsymmetric). In this paper we will
discuss this problem. We will give the expression of general solution. Then we will discuss
so called optimal approximation problem associated with XTAX = B. That is: to find the
optimal approximate of a given matrix A by A € Sg, where Sg is the solution set of the least-
square problem of XTAX = B. The existence and uniqueness of the solution for the problem
is proved, the expression of the solution is derived for some conditions.

We denote the real n x m matrix space by R"*™, and R® = R™*!, the set of all matrices in
R™™ with rank r by R}*™, the set of all n x n orthogonal matrices by OR"™*", the set of all
n X n symmetric matrices by SR™*", the set of all n x n anti-symmetric matrices by ASR™*",
the column space, the null space and the Moore—penrose generalized inverse of a matrix A by
R(A), N(A), AT respectively, the identity matrix of order n by I, the Frobenius norm of A

n m
by ||A||r. We define inner product in space R™*™, (A,B) = ttBTA= 3" Y a;jbij, VA,Be€
i=1j=1
R™ ™ Then R™ ™ is a Hilbert inner product space. The norm of a matrix defined by the inner
product is Frobenius norm.

* Received September 13, 2000.
DSupported by the National Nature Science Fundation of China.



168 D.X. XIE AND L. ZHANG

Definition 1. A € R™™ is called positive semidefinite if 27 Az > 0 for every non-
vanishing vector x in R™ and denoted by A > 0.
Let

P ={A € R™"a" Az >0, Ve R"),
SR" ={Ae R™"| A=A", 2"Az >0, VzeR"}.

Now we consider the following problems:
Problem I. Given B € R™*™ X € R"™. Find A € P,, such that

f(A) = || XTAX — B||y = min.
Problem II. Given A € R"*", Find A € Sy such that
|4 —Allr = Jnip |A = Allp,

where Sg is the solution set of Problem I.

In [2] the symmetric positive semidefinite and positive definite real solutions of || XTAX —
B||r = min have been considered. And Problem II has not been studied (or the optimal
approximate solution has not been studied).

At first, in this paper, we will discuss the optimal approximate problem on P,. Then we
will give the general solution of Problem I. At last, we will prove that there exists a unique
solution for Problem II and derive the expression of this solution for some special case.

2. THE OPTIMAL APPROXIMATE PROBLEM ON P,

Problem MA. Given nonempty closed convex cone S C R™*", F' € R"*", D = diag (dq,

cvoidy) ,di >0,i=1,---,n. Find F € S such that
ID(E - F)D|| < |D(E ~ F)D], VE€ S,

To solve Problem MA we introduce a conclusion.

Lemma 2.1,  Suppose V is a real Hilbert space, (-,-) denotes inner product , ||ully =
\/(u,u) represents norm in V, K C V is a nonempty closed conver cone. K represents the
set of all elements which are orthogonal to K in V. It is obvious that K+, K++ 2 (KH)* are
closed linear subspace in V. K1 is the minimum subspace that concludes K. K* is the dual

cone of K in K++. Then, for every u € V, there is an unique ug € K+, u; € K,us € K* such
that

(u1,us) =0, U= ug+ u; — Us
and
lu—wlly <llu—olly, Voek

In R™*™ we define a new inner product and norm:
(A,B)p = (DAD,DBD) = tr(DBTD?AD), ||A|llp = V/(4,A)p = \/(DAD,DAD)

where D = diag(dy,---,d,), di >0, i =1,---,n. This new Euclidean space is noted by R}, ".
Therefore Problem MA is equivalent to

IE—-Fllp <||IE-Fllp, VEe€SCRp™

We point out P, as a closed convex cone with vertex at zero point. In fact, it is evident that
P, is closed. And for any a > 0,38 > 0 , there is aP,, + P, C P,,. According to the definition
of convex cone P, is a closed convex cone.

By Lemma, 2.1 Problem MA has a unique optimal approximate solution.

Lemma 2.2/4.  For every matriz F of order n there are an anti-symmetric matriz Fy,
a symmetric nonnegative definite matriz Fy and a symmetric nonpositive definite matriz F_
such that

F=F+F, +F_,
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and (Fy,F.)=tr(F'F.)=0, F,F =0.

We denote the symmetric nonegative definite matriz and the symmetric nonpositive definite
matriz above decomposition of F' by [F|; and [F]|_ respectively. The computing method of [F]+
is the same as [4]

Theorem 2.1. When S = P, in problem MA. For every given F' € R"™*" there exists a
unique E € P, such that

|F - Ellp = nin |F' = Ellp, (2.1)
and . "
. DFD + DF* D DFD — DF* D
E = Dil[%hD*l + Dilfol. (2.2)

Proof. At first, by above discussed conclusion we know that there exists a unique Eep,
such that (2.1) holds.

Next, we give the expression of E. From Lemma 2.2 we know D7
T T
D’l[MQM],D’l, D*1MQ_F—DD’1 are orthogonal in R7,". Hence there is a
DFD 4 DF'Dy p-1 p-1{DED 4+ DF'D) p-1
2 ’ 2= ’

T
DED + DF"D; -1,

matrix C' which is orthogonal to D[
T
D’lLD_QMD’1 in R™ and for any E € R™*",
T T
E = AlDfl[DFD + DF D]+D71 + )\szl[DFD + DF D]inl

T
2D 1DED=DF'D 1y

T
When FE € P, taking the inner product with Dil[W],D*1 on above equation,
from
~1{DFD + DF'D; -1
(E,D [—27]_D )p < 0 we have A\ < 0. Therefore

12 - Pl ]
— HE_Dfl[DFD-f-DF D],Dfl

_p-\[RED 4+ DF'Dy p-1 _ p-1DED = D'D p-1)2

= (1 = M)D L [REDALDETD) p-tjj2 1 ||(1 = Ap) D~ [REDLDFID) -t
11 = 2) DT RED=DETD potyip 02, > [[(1 = Ap) DL [REDEDEID) povz)
> D [REDEDEID) povjz,

T
ie||E—F|p>||p [PEDEDED) pi, vE € P,
On the other hand, let

o D_I[DFD +2DFTD]+D_1 . p-1DFD —QDFTDD_l‘
Then
18- Fllp = 01 ZERA D) oy
Hence
B D_I[DFD + DFTD]+D_1 L p1DED - DFTDD_l‘

2 2
Corollary 1, When D = I,,. Then E in Problem MA is

.  F+FT F-—FT
E=] 5 I+ + 5
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3. Solution of Problem I
Lemma 3.151. Suppose H € R"*" has following block matriz
i Hyy Hypp
H=1| % = .
< Hy  Hy >
If H=HT", then H > 0 if and only if

Hy =Hl,, and Hy >0, (3.1)
R(Hy2) C R(H\ HY), or HyH} His = Hp» (3.2)
Hy = HYL,  and Hy — HLH Hin > 0. (3.3)
Suppose U € OR™™ ", A € R"*"™. Let
A=UTAU = ( gﬂ 2}12 > , Ay € R (3.4)
21 Ag

_ . aT _
We know A > 0 is equivalent to % > 0, using of Lemma 3.1 we have A;; > 0 from
A>0.
Now we discuss Problem I.
Theorem 3.1. Given B € R"*™ X € R"™ and X has following factorization
X:U< % 8>VT:U12V1T. (3.5)
where U = (Ul,UQ) € OR"™™ U, € R"™*", V = (Vl,‘/z) € OR™ ™ VvV, € R™*" ¥ =

diag(oy,---,0.), 01 > 09 > --- > o, > 0. Then the general solution of Problem I can be
represented as

A=U
Al —ZT+ S Y VIBV + VT BTV S S L (VT BV, + VI BTV ) S HTY .
7 YIE WMIBV + VBT STHTY |, ur,
2
VPeP,,, ZeR" M YyeR>nm
(3.6)
where T T RT T T T
Vi BVi + V' B'V, Vi BVy — Vi B'V,
A = LT S Ay et L ST e (3.7)
Proof. Let A has the partition in (3.4). Let
By1 Bi»
VvIBYV = , By € R™*". 3.8
( By Bas ) H (3:8)
Using orthogonal invariance of norm and attention to (3.5), (3.8) and (3.4) we have
2
¥ 0 ¥ 0
200 — IVTAY — BII2 — T _yT
f(A)7_||XAX B||_‘ 0 0>UAU<0 0) VBV (3.9)
= [IZA1% = Bu|l? + [ Ba1|* + || Br2|” + || Ba2|*.
It is obvious that A > 0 by A > 0. Therefore || XTAX — B|| = vglei% is equivalent to
IS411% — Biillr = |41 = 7' B 27 |s = min, Ay € P, (3.10)
From Theorem 2.1 we obtain the solution Ay, of (3.10) as
By + B By — B
e e (3.11)
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i . . A4+ AT
We known A > 0 is equivalent to o) > 0, therefore from Lemma 3.1

Ay =-AT +L (3.12)
R(L) C R((A}, + (AY)")(A?, + (47)"))
or
L= (A% + (A7) ")(AY + (A0))TY, vy e () (3.13)
Ay, satisfies
Agy + AT, — (Ap + AT)T(AY + (A7) T (Ar2 + AL))
= gy + AL, - VT (A9, + (49) )Y € SRUTX ()

Write
Ay =7, Z € Rn=mxr, (3.14)
Agy + Ay — YT (AY + (AY)D)TY 2 R, Q=07 Q¢ SR(;_T)X(”_T)
i.e ) .
Q=Ap+ AL —YT(A% + (A TY
Let

Q A22 - Ag;
P=—-—+ ———==
2 + 2
Then P € P,_, and

YT(AY + (@)Y

Ay = 5 + P. (3.15)
By, + BE [B11 + Bl]
ecause = rom (3.11), (3.13), (3. we have
B [FL5—=, 5 from (3.11), (3.13), (3.15) we h
L=%7YBy + B2 Y27 [B, + BL. 2 HTY. (3.16)
_ YyT(2~YB BT, Hty
Ay = ( [B11 +2 i)+ ) P

Attention to (3.8) we have
yie='v'Bvi + VBTV, 27 HTY
2

Substituting (3.11), (3.12), (3.14), (3.16), (3.17) into (3.4) We can obtain the general solution
of Problem I as (3.6)

Theorem 3.2. Suppose B € R"*™ X € R"™™ and X has the factorization in the form
(8.5), then f(A) =0 in Problem I has a solution if and only if

B>0, BX'X=B, X"XB=B (3.18)
in which case the general nonnegative definite solution are

A=U
( S WIBV Lt —zT + 1WT(B + B S LS W (B + BTV, 5 1)*Y ) .,
v+,

1422 =

+P. (3.17)

7 YIETV(B+ BOMETHTY |,
VPeP, ., Z € Rin—m)xr 'y ¢ Rr*(n—r)

(3.19)

_ A
Proof.  We known A > 0 is equivalent to MQA— > 0, therefore from Lemma 3.1 and
(3.9) f(A) =0 has a solution A € P, if and only if

A =S1'BY 1 >0, By =0, Bia=0, By =0. (3.20)
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in the form (3.20) the second, the third and the forth equation is equivalent to BV> = 0,
VB =0ie BXtX = B, X*XB = B. From the first equation of (3.20) we can demonstrated
that B > 0. On the other hand, we can demonstrated that A;; > 0 from B > 0. Therefore
f(A) = 0 has a solution in Problem I if and only if (3.18) holds.

When B, X satisfy the (3.18). It follows that [V;"BVi + V;TBTWi]4 = V' BV: + VT BTV,
. Therefore in (3.6) A%, = S 1V, BV, ¥~ ! Therefore in the form (3.6) becomes (3.19).

4. The Expression of the Solution for Problem II

In general solution (3.6) of Problem I we fix a Y at randon. Then we get a subset of the
solution set Si for Problem I, write Sg y.
Lemma 4.1. Let
Ay =U
AY —Z7 + STV BV + VBT ST (ST VT BV + VT BTV ST Y
( 7 YT VBV + T BTAL R Y > v,

VY € Rrx(n=r) vz e Rn=r)xr,
Then Sg,y is a closed convexr cone with vertex Ay .
Proof. In the form of (3.6) taking P as zero matrix we can know clearly Ay € Sg y.Take
any two matrices of Sg vy
A=Ay + U, PU], Ay = Ay +UsPU), PPy € Py_,,
where U, is the same as Theorem 3.1. Let
C' 2 Ay +a(4 — Ay) + f(4, — Ay),  Va,3>0.
Then
C' = Ay + Uy(aP, + BR,)UL € P,
By the definition, we know that Sg y is a convex cone with vertex Ay, clearly it is closed.
Corollary 2. Solution set
Sg = U Sk,y
YERr*(n=r)
i.e. Sg is union set of many closed convex cones. And Sg is a closed convex set.

Proof. 1t is clear that Sg is a closed set from Lemma 4.1. Next, we will prove that Sg is
convex. VA; € Sg, VAs € Sg, Ay, Ay € P,. Therefore, Vaa > 0, V3 >0 and a+ 3 = 1. We
have aA; +3A, € P, and if A}, A> € Sg we have || XTA; X — B|| = min = ¢y, | XTA, X - B|| =
min = cp. Hence co < || XT(ad; + BA42)X — B|| < ||o(XTA, X — B)|| + ||B(XTA,X — B)|| =
acy + Bcg = cp. It implies that || XT (a4, + fA42)X — B|| = min . Thus a4; + 34, € Sg. By
the definition of convex set we obtain that Sg is convex. This corollary has been completed.

Lemma 4.2B1, Given W € R**™ R € R™*™. Then

T — R||> +||T — W||*> = min, VT € R™™

has the solution T = w

Theorem 4.1. Let B € R"*™, X € R"*™, A € R™" and X has the factorization in the
form (3.5). The notation is the same as Theorem 3.1. Let

N Ay, A -
T 11 12 xr
U"AU = o - A R™". 4.1
( Azr A > ’ ne (.1)
Then Problem II has a unique optimal approzimate solution. When B = —BT the optimal

approzimate solution of corresponding Problem II can be represented as

P A%, A — A T
A=v < L U (4.2)
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where . oo
BV, -V|'B
AY =x! i B 2V1 Viga (4.3)
o Agy + AL Ay — AT,
pof2tfey | An Ay (4.4)
2 2
Proof.
N =[V/"BVi + V/"B"Vi], =0 € SRL". (4.5)
Using orthogonal invariance of norm attention (3.7) we have
i Ay =27 |
Joo (7 )e
B A0 _gT 2
— T Ay — 11
“fow (4
=141 = AQ P + [ Az + ZTIP + | 421 — Z? + [| A2z — PIP?
Therefore ||A — A||> = min is equivalent to
VAESE
|As1 — Z|? + ||AL, + Z||?> = min, Z € R"7)%7, (4.6)
|As2 — P|| = min, VY € R™*(n=7), (4.7)
Hence from Lemma 4.2, (4.5) reaches minimum if and only if
Z = Ay — AL, (4.8)
From Corollary 1 (4.6) reaches minimum if and only if
A Agp + AT Ay — AL
p=pimiin I (4.9)

Substituting (4.5), (4.6) and (4.7) into (3.6) we obtain the unique optimal approximation solu-
tion as (4.2).

5. The Algorithm Analysis of the Unique Solution for Problem II in
Case B = —BT

According to Theorem 4.1, now we give an algorithm of the optimal approximate solution
of Problem II as the following steps:

(1) if B + BT =0, then next,
(2) calculate Singular Values Decomposition of X we get U,V
(3) calculate A%, according to (4.3),
4)
5)

Ay + AL
(4) calculate P = —=5—22.
(5) calculate eigenvalues of P, A\ > As > -+- > A\, and corresponding unit eigenvectors
U,U2, ***, Up—p-

. k
(6) find the minimum positive eigenvalue and write it as Ag, calculate P = > Nu;ul +

1
Azy — A3,
2

(7) according to (4.2), calculate A.

(8) stop.

In above steps we use stable Singular Values Decomposition. In [4] stability has been
analysied for step (5). Hence, this algorithm is stable.
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Example.
1 -1 0 -3 2 -6 0.7
0o 3 -4
1 0 2 - -4 0 25 1
Y=l -1 2 6| B= _43 _01 (1) A=l 0 1 o1 o0 |0
05 4 1 0o 3 -2 -1

Suppose Singular Values Decomposition of X as

_ 0 T

xeu(3 0
—0.0787  0.2253 0.6064 0.7585
0.2359 0.2470 0.7096 —0.6163

0.8865 0.3410 —0.2488 0.1896 ’
0.3902 —0.8786 0.2585 0.0948

S = diag(7.0807, 3.4935,1.7056), Y~! = diag(0.1412,0.2862, 0.5863)

0.0000  0.0467 0.1790 )
A% = —0.0467 0.0000 07503 |, P=0
—0.1790 —0.7503 0.0000

—0.0754 —0.0882 0.9932
V= 0.4820 —0.8752 —0.0411 |,
0.8729  0.4756  0.1085

U=

The unique solution of corresponding Problem II is

0.0000 —1.2942 0.2576 —1.4684
1.2942  0.0000 —0.4950 2.1360
—0.2576  0.4950  0.00000 —0.6181
1.4684 —2.1360 0.6181  0.0000

A=
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