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Abstract

Least-squares solution of AXB = D with respect to symmetric positive semidefinite
matrix X is considered. By making use of the generalized singular value decomposition,
we derive general analytic formulas, and present necessary and sufficient conditions for
guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some
numerical examples to show the feasibility and accuracy of this construction technique in
the finite precision arithmetic.
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1. Introduction

Denote by R"*™ the set of all real n x m matrices, I, the identity matrix in R¥*¥ QR"™*™
the set of all orthogonal matrices in R™*", SR™*" the set of all symmetric matrices in R**",
and SRy ™" (SR}*") the set of all symmetric positive semidefinite (definite) matrices in R"*".
The notations A > O (A > O) represents that the matrix A is a symmetric positive semidefinite
(definite) matrix, A" represents the Moor-Penrose generalized inverse of a matrix A, and || - ||
denotes the Frobenius norm. We use both O and 0 to denote the zero matrix.

The purpose of this paper is to study the least-squares problem of the matrix equation
AX B = D with respect to X € SR{*", i.e.,

Problem I. For given matrices A € R™*" B € R"*P, D € R™*P_ find a matrix X €
SRy™™ such that

|IAXB—D||= min ||[AXB-D]|.
XeSRry "
Allwright[1] first investigated a special case of Problem I, i.e.,
Problem A. For given matrices B, D € R™*"™, find a matrix X e SRy™™ such that
|IXB—-D||= min || XB-D|.
XeSRry "

The solution of Problem A can be used as estimates of the inverse Hessian of a nonlinear

differentiable function f : R® — R!, which is to be minimized with respect to a parameter
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vector x € R™ by a quasi-Newton-type algorithm. Allwright, Woodgate[2,3] and Liao[4] gave
some necessary and sufficient conditions for the existence of solution of Problem A as well as
explicit formulas of the solution for some special cases.

Dai and Lancaster[5] studied in detail another special case of Problem I, i.e.,

Problem B. For given matrices A € R"*™ D € R™*™ find a matrix X e SRy™™ such
that

|ATXA-D||= min ||[ATXA-D|.
XeSRry "

An inverse problem[6,7] arising in structural modification of the dynamic behaviour of a
structure calls for solution of Problem B. Dai and Lancaster[5] successfully solved Problem B
by using singular value decomposition(SVD).

Obviously, Problem I is a nontrivial generalization of Problems A and B, and the approachs
adopted for solving Problems A and B in [1-5] are not suitable for Problem I.

In this paper, by applying the generalized singular value decomposition (GSVD) we will
present necessary and sufficient conditions for the existence of the solution of Problem I, and
give analytic expression of it, too.

2. Solutions of Problem I

We first study the solution of Problem I when matrices 4, B,D € R"*™ and rank(A4) =
rank(B) = n.

Lemma 2.1, If rank(B) = n, then Problem A has a unique solution.

Theorem 2.1. If A,B,D € R™" and rank(A) = rank(B) = n, then Problem I has a
unique solution.

Proof. Because A, B € R™ "™ and rank(A) = rank(B) = n, we easily know that rank(B) = n
and

IAXB — D|| = (AXAT)(A™"B) - D|| = ||XB - DI, (2.1)

where B = A~TB, and X = AXA”. Now, it is obvious that X > 0 if and only if X > 0.
Therefore, by Lemma 2.1 and (2.1) Problem I has a unique solution.

To study the solvability of Problem I in general case, we decompose the given matrix pair
[AT] B] by GSVDI§] as follows:

AT = My U7, B=MxgVT, (2.2)
where M is an n x n nonsingular matrix, and
I, O O r Op O O T
5, = O Sa O s S, = 0O Sg O s
A71o 0 Ouk-r—s B=l o 0 Ip|k-r—s
o 0 O n—k O O O n—k
r s m—r—s p+k—r s k—r—s

k =rank(AT,B), r=Fk—rank(B), s=rank(A) + rank(B) -k,
I, and I are identity matrices, O4 and Op are zero matrices, and
Sa = diag(ar, as,...,as), Sp=diag(B1,082,.-.,08s)
with
I>a1>a,>...20a;,>0, 0<B <B<...<B:s<1l, 2+ =1>i=12,...,5),

U = (Ula UQa U3) € ORmxm7 V = (‘/17 ‘/'2’ V3) € ORPXP'

r s m—r—s p+r—k s k—r—s
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Theorem 2.2. Let A € R™*", B € R"*P, and D € R™*P. Assume that the matriz pair
[AT, B] has GSVD (2.2). Denote by D;; the matriz U DV;(i,j = 1,2,3). Then Problem I
exists a solution if and only if

rank(Xas) = rank(Sg' DTy, X2, S7" Da3), (2.3)

where Xoo is a unique minimizer of ||SaX22Sp — Das|| with respect to Xoo € SRy™®.
Moreover, if Problem I exists a solution X, then this solution has the following expression:

(Y vz .
X=M ((YZ)T ZTYZ+G3>M ) (2:4)

where VZ € RF*(n=k) gnd
X11 D12S§1 D13

Y = SélD{Q Xo» S;llDzB ) (2.5)
DL DLS,' X
X1 = D12Sg X5, S5 DL, + Gy, (2.6)
X33 = D%;SXIX;&SXIDQB + (D13 — Dlgs];lX;éSZngg)TGT (D13 — D12551X£SZID23) +G2,
(2.7)

VGy € SRI*", VG, € SRIFTTTIX k=) yqy ¢ gRIMTRIX(nmk)
and G satisfies the following condition:
rcmk:(Gl) = rank(Gl,Dlg - D12S§1X2+2551D23).

The following lemmas are necessary for proving Theorem 2.2.
Lemma 2.2. Suppose that A € R™*", B € R"™P and D € R™*?, and there ezists a
minimizer X to Problem I. Then

|AXB - D|| = min . gprxn |AXB = D|| = inf ¢ gpnxe | AXB = D (2.8)
Proof. 1t is obvious that
|AXB — D|| = min wxn||AXB — D|| <inf _qnxn||AXB—D|.

XeSRy XeSR),
On the other hand, if AB = 0, then X + €l >0 for any € > 0, and
|A(X + eI)B — D|| < ||[AXB — D|| + ||eAB|| < ||[AXB — D|| +¢;
if AB # 0, then by letting & = (2||AB||) ‘e for any e > 0, we have X + 6I > 0, and
|A(X +6I)B — D|| < ||[AXB — D|| + ||6AB|| < |AXB — D|| + .
That is to say,

n XeSRer"HAXB —-D||<||AXB-D| = min

and it follows straightforwardly that (2.8) holds.

Lemma 2.3 (See [9], Theorem 1). Let Q = (Qij)2x2 be a 2 x 2 real block symmetric
matriz, with Q11 and Q2 square submatrices. Then @ is a symmetric positive semidefinite
matriz if and only if

Q11 >0, Q- Q1T2Q1+1Q12 >0 and rank(Qq1) = rank(Qii, Q12).

s [AXB = D],

Lemma 2.3 directly results in the following Lemmas 2.4 and 2.5.
Lemma 2.4. Let Q = (Qij)2x2 € SR™™™ be a 2 x 2 real block symmetric matriz, with
Q11 € SR™" the known submatriz, and Q12 and Qs two unknown submatrices. Then there
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exist matrices Q12 and Qa2 such that Q > 0 if and only if Q11 > 0. Furthermore, all submatrices
Q12 and Q2o such that Q > 0 can be expressed as

Q2 =QuZ, Q= ZTQnZ +G,

where VZ € R™("=") and VG € SR (7).

Lemma 2.5. Let Q@ = (Qij)sxs € R™™ be a 3 x 3 real block symmetric matriz,
with Q11 € R™" and Q33 € R**® two unknown submatrices, and the other blocks the known
submatrices. Then there exist Q11 and Q33 such that Q > 0 if and only if

Q22 Z 0 and Tank(Q22) = rank(Q21, Q22, Q23).
Furthermore, all submatrices Q11 and Q33 such that Q) > 0 can be expressed as

{ Q11 = Q12Q5,Q21 + Gy,
Q33 = Q32Q;2Q23 +(Q31 — Q32Q2+2Q21)GT(Q13 - Q12Q2+2Q23) + G,

where VG € SRy ",YG> € SR;™® and G, satisfies
rank(G1) = rank(G1, Q13 — Q12Q32Q23)-

(2.9)

Proof. 1t follows from Lemma 2.3 that

Qu Q12 Qi3 Q22 Q21 Q23
Q20| Q2 Q2 Q|20 Q12 Qu Q| >0

@31 @32 Q33 Q32 Q31 Q33

< (22 >0, (QH Q13> _ <Q12> QIQ(Q% Q23) >0 and rank(QQQ) = rank(QQQ, @21, Q23)
@31 Q33 Q32
< Q22 Z 0, rank(sz) = rank(le, Q22, Q23) and
Qi1 — Q1205021 Q13 — Q12Q5,Q3

(le Q0 QhQn Qs - Q32Q§+§Q23> > 0. (2.10)

By Lemma 2.3 we know that there exist submatrices @1; and Q33 such that (2.10) holds, and
all submatrices @11 and (33 such that (2.10) holds can be expressed by (2.9) when Q22 > 0.
This completes the proof of this lemma.

Proof of Theorem 2.2. For any X € SR;*", partition the matrix (M7 X M) as

X11} X2 Xiz X r
X X X X s
T _ 12 22 23 24
M*"XM = XL XL Xgy Xau |k—r—s’ (2.11)
Xﬁ X2T4 X.’)?:l X44 n — k?
r s k—r—s n—k
It follows from (2.2) and (2.11) that
|AXB — D||*= |[E4iMTXMYp - UTDV|?
~Dy Xi2Sp—-Dix  Xi3—Dis \ |
= —Ds1 SaX22Sp — Do SaXoz — Das (2.12)

—Dyy —D3, —D33
= ||SaX22Sp — Daol|* + || X12S8 — D12]|?
+[|SaXa3 — Das||* + || X13 — D3| + C*,

where
C* = ||Du1ll* + [|D21ll* + [ Da1|I* + || D32 ||* + || Dss |- (2.13)
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From Theorem 2.1 we know that there exists a unique matrix ng which minimizes ||S4X22S5 —
Das|| with respect to Xoo € SRy™®. Obviously, if there exist submatrices X1, X33, X14, Xo4, X34
and X44 such that the following matrix X:

X1t D1»Sg! Dy3 X1
SL;ID%FQ Xon SXID23 Xoy
DI, DLS' Xz X
Xﬂ Xzﬂ Xg; X44

X=MT M1 (2.14)

is a symmetric positive semidefinite matrix, then by (2.12) we know that the matrix X is
certainly a solution of Problem I, where the sizes of submatrices X1, X33, X14, X24, X34 and
X44 are the same as (2.11).
Thus, if (2.3) holds, i.e.,
rank(ng) = rank(SBTlDsz, X22, Slezg),
then by Lemma 2.5 we know that there exist submatrices X7; and X33 such that
X11 D1%S§1 D13
Sz'DL,  X»»  Sy'Das | >0, (2.15)
DI, DLS'  Xs
and that all submatrices X7 and X33 such that (2.15) holds can be expressed as (2.5), (2.6)
and (2.7). Therefore, by Lemma 2.4 we know that Problem I has a solution when
rank(X22) = rank(SEng, XQQ, 521D23),
and in this case the solution X of Problem I can be expressed by (2.4).
Conversely, we only need to show that there is no minimum point to Problem I when

rank(ng) ;é rank(SBTlD{z, X22, Slezg).

Suppose that A R
rank(X22) 75 rank(SEng, XQQ, 521D23),

and that there is a minimum point, say Xo € SR{*". Then by partitioning the matrix
(MTXoM) into

)_(11 )_(12 )93 )94 r

Xl Xpn Xoz Xo s

T = — — — —
MIXM = | R ST % T | ker s (2.16)

Xt XL XL, Xu/ n-k

T s k—r—s n—k

we obtain from Lemma 2.5 that Xa5 > 0 and rank(Xss) = rank(X1,, Xa2, Xo3).
If
(X1, X23) = (S5' Dy, S1 ' Das),
then Xy # ng. Otherewise, we have
rank(Xm) = rank(Xss) = rank(XL,, Xoo, Xa3) = rank(Sngg,Xm, S Das),
which obviously contradicts the initial assumption that
rank(Xm) # rank(Sngﬂ,Xm, S;ngg).

Hence, in both cases
(X{3, X23) = (S5' D1, 83" Da3)

and . )
(X{5, Xa3) # (SélD{m 521D23),
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it follows from (2.2), (2.16), (2.13)-(2.14) and Lemma 2.2 that
||AXOB — _D“2 = ||SAX2QSB — D22||2 + |LX1253 — D12||2
+1SaXas — Das]? + || X13 — Dis|]* + C*
> ||SaX22Sp — Dasl]> + C*

= minxmes%m SaX22Sp — Dasl|* + C*
= ianzzESRixs SAXQQSB - D22||2 + C*
:ianESRixn |14A7B—l)||2

=minygpnxn||AXB — D||?.
0

This contradicts the optimality of X, and therefore, contradicts the existence of a minimum
for Problem I when . R
rank(X22) ;é T(lnk(Sng%;, X22, 521D23).

This completes the proof.

Theorems 2.1 and 2.2 directly result in the following Corollary 2.1.

Corollary 2.1. Let A€ R™*", B € R"P and D € R™*P. Assume that the matrix pair
[AT, B] has GSVD (2.2). Denote by D;; the matrix (Ul DV;)(i,j = 1,2,3). Then Problem I
exists a unique solution if and only if

rank(A) = rank(B) = n.
Moreover, if Problem I exists a unique solution X , then this solution has the expression
X=MTXpM1,

where X is a unique minimizer of ||S4X22Sp — Das|| with respect to Xo2 € SRy*®.

3. Numerical examples

Without loss of generality, we take numerical examples only when rank(A4) = rank(B) = n.

Based on Corollary 2.1, we formulate the following algorithm to find the solution X of
Problem I.

Algorithm I. Let A € R™*", B € R"*?P and D € R™*? satisfying rank(A) = rank(B) = n.
Then Problem I can be solved in the following steps:
Step 1. Make the GSVD of the matrix pair [AT, B] as (2.2), and determine the nonsingular
matrix M, two orthogonal matrices

U = (Us, Us), V=W, V2),
n m—n p—n n

and two diagonal matrices S4 and Sp.
Step 2. Compute Dys = UZTDVQ.
Step 3. Find XQQ such that ||SAX225B — D22|| = minX22€SR0n><n||SAXQQSB — D22|| by Steps
3.1-3.3:

Step 3.1. Let Xo5 = RTR, where R is a real n x n upper triangular matrix.

Step 3.2. Apply function leastsq in MATLAB 5.2 (in Optimization Toolbox) to find an
n X n upper triangular matrix R such that

ISART RS — Dasl|| = minpeypnxn||SaRT RS — Das ||,
where U R™*™ represents the set of all real n x n upper triangular matrix.
Step 3.3. Compute Xo» = RTR.
Step 4. Compute X = M~ TX,, M.
Example 1. Let

1 1 11 1 2 3 4 5 4 4 4 41
0111 1 2 3 40 4 4 4 4 2
A= 001 1])° B= 12 3 0 0})° D= 4 4 4 4 3
0 0 01 12 0 0 0 4 4 4 4 4
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By Algorithm I we can obtain
Sa = diag(0.67900045105510, 0.29237120107268, 0.22052424039119, 0.11580293242550),
Sp = diag(0.73413785317675,0.95630490994416, 0.97538149428820, 0.99327220883384),

Dy =
7.17868562330402  —4.34925845431121  5.23827163251109  13.06724226129175
—0.40736482721515 0.40355766917324  —1.04429834846536 0.56545475670779

0.25850324718914  —0.28398319841221  0.79562977702294 —0.59141348223689 |’
0.35408102236058 —0.37013855799996  0.99999987562708 —0.65296851547864

M=
—0.01555475779938 —0.00943920405869 —0.02234168930958 0.36443137182595
0.03405753947243 0.05781738134286 —0.37863876928710 0.24123666845791
—0.12095689494276  0.30552896086328 —0.12231369029055 —0.02864203963210
0.15032348727376  —0.02350051290568 —0.01374893154067 —0.01383273238163
and
Xoo =
16.92191115413709 —5.00339698440652 6.71455609224128  17.15393787459080
—5.00339698440652  3.26222671723772 —4.10376434898835 —3.05896814967633

6.71455609224128 —4.10376434898835 5.18170828291030  4.41458237110209
17.15393787459080 —3.05896814967633 4.41458237110209  19.66212838748324

By Step 4 we obtain the solution X of Problem I as

0.32029627401864 —0.11109026289899 —0.11798376068749 0.51769660209808
—0.11109026289899  0.28124971516215  0.17971787222005 0.16750828998783
—0.11798376068749  0.17971787222005  0.12285189590644  0.00777278233746
0.51769660209808  0.16750828998783  0.00777278233746  1.33302305422671

and the residual error of X as

X =

IAX B — D|| = 5.90033297964392.
Example 21, Let

100 16 0 1 0 0
A=l0o 10|, B=|43 o |, p=[0 -2 3].
001 00 —05 0 2 4

By Algorithm I we can obtain the solution of Problem I as

. 0.22351194666855 —0.11059428172018  0.24343268003258
X = | —0.11059428172018  0.05472233348565 —0.12045111068973
0.24343268003258 —0.12045111068973  0.26512887061414

and the residual error of X as

Y

|AXB — D|| = 5.60099906971185.

Example 3. Let X represent the solution of Problem I, )\mm(X ) the smallest eigenvalue
of X. Denote by hilb(n) the n-th order Hilbert matrix, pascal(n) the n-th order Pascal matrix,
magic(n) the n-th order Magic matrix, toeplitz(1 : n) the n-th order Toeplitz matrix whose first
row is (1,2, ...,n), and hankel(1 : n) the n-th order Hankel matrix whose first row is (1,2, ...,n).
For example,

1 1/2 1/3 1/4 11 1 1
oo 172 173 174 15 (12 3 4
WD) =1 13 s 1y5 16 |0 Pecd@ =11 3 ¢ 10
1/4 1/5 1/6 1/7 1 4 10 20
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16 2 3 13 1 2 3 4
magic(4) = g 171 160 182 , toeplitz(1:4) = g ; % g ,
4 14 15 1 4 3 2 1
1 2 3 4
hankel(1 : 4) = 3 i 3 8
4 0 00

We run a variety of numerical experiments about Algorithm I for the above classes of

matrices of different dimensions. Some numerical results are listed in the following table.

n A B D |AXB - D|| Amin(X)

5 | pascal(n) hilb(n) magic(n) 27.65834202778205 0.00000000023753
8 | toeplitz(1mm) | pascal(n) | magic(n) | 1.555704103619826e+02 | 0.00027396920
10 | hankel(1n) | pascal(n) hilb(n) 1.37750594595019 0.00000000000000
12 | pascal(n) | hankel(1m) | hilb(n) 1.44223367332441 0.00000000000000
15 | toeplitz(1:n) | hankel(1m) | pascal(n) | 5.326721946822061e+07 | 0.00003917588353
18 | pascal(n) | toeplitz(1n) | hilb(n) 0.73324543583197 0.00000000001451
20 | toeplitz(1:n) | hankel(lm) | hilb(n) 0.76224214450855 0.00000000000000
22 | toeplitz(1:n) | hankel(lm) | hilb(n) 0.78857254740837 0.00000000000000
25 | toeplitz(1:n) | hankel(lm) | hilb(n) 0.82387824421197 0.00000000000002
28 | hankel(1n) | toeplitz(1m) | hilb(n) 0.85505173764166 0.00000000000000
30 | hankel(Im) | toeplitz(1m) | pascal(n) | 4.001069977211434e+16 | 0.00000961119604
35 | hankel(1m) | toeplitz(1m) | hilb(n 0.91555674992815 0.00000000000024

Fro
1.

m Examples 1-3, we clearly see that Algorithm I is feasible and accurate for solving Problem
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