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Abstract

This paper presents a new trust-region algorithm for n-dimension nonlinear optimiza-
tion subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived,
which is the basis for constructing the new algorithm. Global convergence of the algorithm
to a first-order KKT point is established under mild conditions on the trial steps, local
quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical
experiment is presented to show the effectiveness of our approach.
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1. Introduction

In this paper, we study the following nonlinear inequality constrained optimization problem:

min  f(x
{ st H((w)> <0, (1.1)

where H(z) = (hy(z), ha(x),- -, hm(z))T, f(x) and hi(z), i € I = {1,2,---,m}, are R® — R
twice continuously differentiable. We assume m < n in this paper, which is important for our
argument.

Trust-region algorithms are very efficient for solving nonlinear equality constrained prob-
lems. (see, [1], [2], [5], [11], for example). However, for nonlinear inequality constrained opti-
mization problem, the results about trust region method are very few, (see [4], [6], [9], [12], [7],
for example), and there are still some unsolved problems now. The paper [7] deals with inequal-
ity using slack variables and finally only discusses equality constraints and bound constraints.
The convergence to so-called p-stationary point has been proved. The paper [9] presents trust
region method for an arbitrary closed set and proves the global convergence theorem. But it is
very difficult to solve the subproblems arisen in the algorithm of [9]. Very general problems have
been discussed in [12]. The basic idea of [12] is to reduce the smooth constrained optimization
problem into a nonsmooth unconstrained problem by using [, exact penalty function and then
to solve the nonsmooth problem by trust region method. Global convergence of the method has
been proved under the assumption that the penalty parameter is bounded. When the penalty
parameter tends to infinity, the method of [12] is still convergent, but the limit is not the KKT
point of the original problem. [3] discusses an interior Newton method, [4] gives a trust region
approaches for nonlinear optimization only for a special case, that is the optimization problem
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with bounded constraints. [6] extends the method of [3] and [4] to the problem with bound
constraints for partial variables and equality constraints.

This paper presents a new trust region method for nonlinear optimization with inequality
constraints. We change the problem into an equivalent problem with equality constraints and
non-negative constraints by using slack variables. Then we derive a new equivalent KKT condi-
tions which is the basis for constructing our algorithm. The subproblems in the algorithm can
be solved by the method proposed in [5] and [6]. We have proved that at least one accumulation
point of the new algorithm is a first- order KKT point. The local quadratic convergence for
nondegenerate minimizer point has been shown.

The problem proposed by this paper is different from [6], Assume p is the number of bound
constraints. [6] requires that m < n and p = n —m. Hence the problem of [6] can be reduced
to an optimization problem with simply bound constraints. In our paper, by introducing slack
variables problem (1.1) is changed into problem (2.1), where the number p of bound constraints
is m. So our problem is different from the problem in [6].

The paper is organized as follows. In section 2, we derive an equivalent first-order KKT
condition; In section 3, we discuss the Newton’s method of the KKT equations; We present
a method to compute trial step in section 4; In section 5, the new trust-region algorithm is
formulated; The global convergence theorem of the algorithm is given in section 6; Section 7
makes local analysis for the algorithm; The last section is numerical test.

In this paper, the vector and matrix norms used are ls norm, subscripted indices k represents
the evaluation of a function at a particular point. For example, fj represents f(zj) and so on.

2. Optimality conditions

By introducing slack variables s € R™, (1.1) is transformed equivalently to the following
problem for the variables z € R™ and s € R™:

min  f(z
{S-t H((CU))+s:0, s> 0. (2.1)

Denote u = (z7,sT)T € R™*" C(u) = H(z) + s € R™,
z,5,0) = f(2) + Y Ni(hi(z) + s1),
i=1

A(z) = (Vhy(x), Vhe(z), -, Vhy(z)) € ™™,
J(u) = (AT (2),I,,) € R™*("+™) which is Jacobian of C'(u). I,,, € R™*™is unit matrix.
A point u* = ((z*)7, (s*)T)T satisfies the first -order KKT conditions of problems (2.1) if
there exist A* € R™ such that:
H(z*)+s*=0, s*>0,
Vi(z*)+ A(z*)A\* =0, (2.2)
sf>0 = Ar=0; s=0 = AN2>0i€el.

(2

We assume m < n,rankA(xz) = m in this paper. So the constrained qualification is satisfied.
From QR factorization of A(x)

aw) = @), z0) ("), (23)

(2.2) is equivalent to

H(z*)+s* =0, s* >0, Z(x*)TVf(z*) =0,
s1>0 = [-R(z*)"Y(z")TVf(z*)]; =0, (2.4)
s1=0 = [-R(z*)"Y(a)IVf(@*)]; >0
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Denote VF(u) = (Vf(z)T,0L)T € R**™ and introduce a matrix D(u) € R"*" as follows:

D(u)=<D(()u) 0 ) (2.5)

Infm
where D(u) € R™*™ is a diagonal matrix, and its diagonal elements are
g g

S (1 ifR@TY (@) TVi@): <0,
(D)) = { s s RS (L,

Introduce another matrix W (u) € R(mm)xn;

o= (T, 7 )

Obviously, rankW (u) = n ,J(u)W (u) = 0, the columns of W(u) form a basis for the null
space of J(u). Hence, we have the following proposition.

Proposition 2.1 The point u* = ((z*)7,(s*)T)7T is a first order KKT point of (2.1) if and
only if u* satisfies

{ C(u*) =0, s*>0, (2.6)

D(u*)?*W (u*)I'VF(u*) = 0.
Definition 2.1 A point u € R"*™ is nondegenerate for problem (1.1) if [-R(z)"'Y (2)TV
f(@)]; = 0 implies s; > 0 for alli € {1,2,---,m}.

Define two diagonal matrixs E(u) € R**" and E(u) € R™*™ by
_ (Blw) 0
B = (80 0), (27)

where the diagonal elements of E(u) are given by

- { [-R(@) 7Y (@)TVi@)]i; if [-R(2)7'Y (2)"Vf(2)]: > 0;

(E(u))i = (2.8)

0, otherwise.
From the definitions of D(u) and W (u), we have the following proposition.

Proposition 2.2 If a nondegenerate point u* satisfies the second-order sufficient KKT condi-
tion of (2.1),then

D(u*)W (u*)TV21(z*, s*, X)W (u*)D(u*) + E(u*), (2.9)
is positive definite, where \* = —R(2*)~'Y (2*)TV f(z*).
Proof. From the second-order sufficient condition V2[(z*,s*, \*) is positive definite on
O ={de R"™d"V,C(u*) =0,d"e; = 0,i € I(s*)},1(s") = {i|s; = 0}.
Let d = W (u*)D(u*)dt,d* € R". Tt is easy to prove that d € Q*. Hence, Vd' € R"
(@I D)W (u*) V2 1(z*, s*, X)W (u*)D(u*)d' >0, (2.10)

where the equality holds only for d = 0. It follows from nondegenerate condition that (d*)T
E(u*) d* >0 for d = 0 and d' # 0, which combing with (2.10) implies (2.9). O
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3. Newton’s interior-point method
In this section we consider Newton’s interior-point method to solve (2.6), i.e.,

C(u) =0,

D(w)2W (u)TVF(u) =0, (3-1)
with s > 0.
Since rank(W(u)) = n, we make a factorization of d,, by
dy = d" + W (u)d" (3.2)

with d* = ((d™)T,0T)T € R**™ (d"), € R™,d* € R". We require that s is strictly feasible.
By using the similar analysis in [3], [4] and [6], combining with (3.2), J(u)W (u) = 0, J(u) =
(A(z)T,I), we obtain the system of equation for Newton-like step d,, = d* + W (u)d? by
A(2)T(d")z = —C(u), (3:3)
(D)W (u)"Vii(z, s, )W (u)D(u) + E(u)]D~" (u)d" = —D(u)g(u), '

where E(u) is defined by (2.7).

g =W [Vil(z,s,\)d" + VF(u)] = (rh <u)>

g2(u)

and g1 (u) € R™, ga(u) € R*™™. D(u) € R"*" and D(u) are diagonal matrices

E n—m
v _ (D) 0 A (1 if (g1(u)): <0,
D(“)_< 0 fnm> (D(“”“‘{ﬁ-, if (71 (u)); > 0. (3.4)

4. Trial steps

(3.3) is a basis that we make a trust region algorithm. At each iteration k, Ay is a trust
region radius, we compute the trial step dy. If di is accepted, we set ugy1 = ug + dy, where

o= () o= ()

We require s > 0,541 > 0. The trial step di is determined by dp = d}} + Wkdi, where
d}? is the quasi-normal component, Wjd: is the tangential component with respect to the null
space of Ji and di, € R".

4.1. The quasi-normal component
In order to keep si > 0, the quasi-normal component is chosen by d}} = ((d’f‘))m) and related
to the trust-region subproblem

{mm§W%+AﬂWMW (4.1)

st ||(d™)z]| £ TAE.

where 7 € (0,1) is a constant independent of k, J, = (A}, I,,,)
Same as in ([5] and [6]), (4.1) is not to be solved exactly, it is only required that

1di [l = [1(di)a]l < mllCl, (4.2)
ICkII* = 1ICk + Judil” = ICk|* — ICk + AL (d7)al” > wol|Cullmin{ks||Cill, TAR},  (4.3)

where K1, k2, k3 are positive constants. (4.3) just is a weaker form of Cauchy decrease condition
for (4.1) (see [6]). [5] has provided algorithms to compute dj} satisfying (4.2) and (4.3).
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4.2, the tangential component

Denote d' = ((d)7T,(d")T)T, where d® € R™,d' € R"™™. We have d' = d, since d =

d™ + Wydt = ((dT,dT)T we have d* = ds. From (3.3) the trust region subproblem of tangential
component is

min  grd' + 3(d)T (W[ ByWy + E, D *)d! 4

{ st Dy < A, (44

where By € R(mtm)x(ntm) ig o symmetric matrix, which is an approximation to the Hessian
matrix V2I(zy, sk, \x). Note that if trust restriction is inactive, the solution of (4.4) is the
solution of (3.3) with By, = V2l;. In order to require si, + (di.)s > 0, we choose oy, € (0,1],0 €
(0,1) and compute it with

d_i, = (dk)s > —0Sk, (4.5)
(4.5) can be satisfied by scaling technique, for example, let
_ ) . —(sk)i
T = opmin{l,min{ ,(di)si < 0}}, (4.6)
(dk)si
where (di)s; expresses the ith component of (dj)s.
Denote .
qr(d) =1 + Vul,{d + §dTBkd, (47)
4.7
1 _
Y(d) = qi(d} + Wid) + 5dT(EkD,;?)d,
then (4.4) can be rewritten as
min dt
{ ‘/”“,(_1) . (4.8)
st ||Dg dY| < Ay

Again we do not need to compute d, exactly, only compute di, with di, = (di.)s > —oys
and satisfy a fraction Cauchy decrease for the subproblem (4.8), i.e.,

Vi (0) — i (dy) > Blibw(0) — i (vd)], (4.9)

where 3 € (0,1) is a constant independent of k, v € R™ is a solution of the following problem:

min . (v?)
— 1 p . 7d (4.10)
st ||Dg v < Ag,v® € Span{—Digr}, 0% > —opsk,
where v € R™ 5% € R* ™, v = (047, (6%)T)T. Tt is obvious that sy, + of > 0.
4.3. Calculate Lagrange multiplier \;;; and choose merit function
From (2.3) we have the following formula for calculating Lagrange multiplier
Mot = —R(@g + (di)2) ™'Y (@k + (di)2) "V f (2r + (di)o) (4.11)
We use augmented Lagrangian as a merit function:
B(x,5,Xp) = f(2) + D Nihi(x) + 51) + plC (W), (4.12)
i=1

where p > 0 is a penalty parameter.
At kth iteration, the actual reduction and predicted reduction are defined by

ared(di; pr) = ®(xk, sk, Aes pk) — @(@r + (di) e, sk + (di)s, Aket1;0n), (4.13)

pred(dy; pr) = qe(0) — @ (dr) — AXNE (Judy, + Cr) + prlllCell* — | Jrdi + Cr ], (4.14)
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where A)\k = >\k+1 - /\k

5. Statement of algorithm

Algorithm 5.1.

Step 0. Set up = (xf,s8) 50 > 0,Ag > 0; set p_; > 1,By € RTmx(ntm) g 5
symmetric matrix, a;,7 € (0,1), > 0, Aoz > Apin > 0,17 € (0,1) and £ > 0,k:=0.

Step 1. If ||Cy|| + || DLW VFy|| < &, then stop.

Step 2. Compute df to satisfy (4.2) and (4.3); compute di, to satisfy (4.5) and (4.9);
dy = dz + Wkdi,i

Step 3. Compute Ak, Ap+1, ANg = Agp1 — Ag-

Step 4. Compute pred(di; pr—1)-

I pred(dy; pr—1) > “5H[|Ck|* — | Jkdi + Cil?] then py, := pj—1;

otherwise

_ 2ax(dr) = ax(0) + AN (Jpdi + Cp)]

= 5.1
P 1CAIP — [eds + Cul? (5-1)

Step 5. Compute ared(dy; p), pred(dy; pr). If % < n then Ay := ay max{||d}]|,
|D,* di||} and goto step 2

otherwise A* := Aj. Choose Ay such that Ayee > Aprr > maz{Ayi, AF}

Step 6. xjy1 :=xk + (di)s; Sk+1 := sk + (di)s, compute Bi1, k:=k+1 goto step 1.

Remark 5.1. From step 4 we easy prove the following statements:

Pk > pr—1 > 1, (5.2)

pred(di; pr) 2 SICIP = 17k + Cil?) (5.3)

6. Global convergence

6.1. Assumptions of global convergence

In order to establish the global convergence of Algorithm 5.1, we need some assumptions
(compare with [5]-[6]).

AS.1 For all k,ug,up +dj € Q@ C R™™, where Q = (37), 2, € R", Q, = RT and Q, is
an open convex set of R™.

AS.2 f(x),hi(z)(i € I) are twice continuously differentiable on 2,

AS.3 For any z € Q,,rankA(x) = m.

AS.4 f(z),Vf(z),V2if(x),hi(x),Y (), Z(x), R(z), R~ (z), VZh;(z) are uniformly bounded
in Q.

AS.5 {By},{sk} are bounded.

From the assumptions above, there exist constants v; > 0, (i = 1,2,---,10) independent of

k and wu such that
{ IVF (@) < v, (1Vell < wo, (1RSI < ws, | Ri | < v, || Ze]) < ws, 6.1)
Wl < ve, |1 Dell < vr, [|Bell < ws, Akl < v, | k]| < vio-

From now on we assume that above assumptions hold.

6.2. Intermedium results

Lemma 6.1. Assume that dy is computed by algorithm 5.1. Then for each step dy, we have

_ 1
(s b > —— . 2
maa{llgf 107" dhll} = 15—l (62)
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Proof. (6.2) follows from
lldill = lldi + Widi || < i1l + welldill < ldill + veve || Dy di .

O

Lemma 6.2. Supposed that di is an approzimate solution of (4.8) and satisfies (4.5) and
(4.9). Then we have

ai(dy) — i (dif + Widy) > k|| Digr [min{rs|| Drgill, ke Ar}, (6.3)
where K4, Ks, kg are positive constants independent of k.
Proof. The proof is similar to the proof of Lemma 6.2 in [6]. O

Lemma 6.3. Assume that dy is computed by Algorithm 5.1. Then

pred(dy; p) > allDrgillmin{ss||Drgell, ke Ar} — k7l|Cill

6.4
TOlICHIE — 1 Tedi + Cul?] (6.4)

Proof. This result is proved directly from (4.14), dj, = d? + Wy d.,, global assumptions, (4.2)
and Lemma 6.2 with k7 = [v1 + (vavg + Dy + %I/gTAmaz]hll + 2vy. a

Lemma 6.4. There is a positive constant kg independent of k such that
|ared(d; pr) — pred(dy; pr)| < ksprlldill®. (6.5)

Proof. The lemma is proved by mean-value theorem. O

6.3. Global convergence

Lemma 6.5. If ||Ck|| < aAy, , ||Digrll + ||Ckl| > € and « is a constant such that

a< mm{ﬁ, ;—Iimm{gzi—;;, K61}, (6.6)

then
pred(di; p) = %||Dk§k||mm{f€5||l_)k§k||, keAr} + pllICkI* = 1 Jkdi + CrlP], (6.7)
pred(di; p) > koA, (6.8)
Pk = Pr—1, (6.9)

where K9 is a constant independent of k.

Proof. From ||Dygi ||+ ||Cr|| > € and (6.6) we have [|Ci|| < £,]|Drgil| > 2€. Then it follows
from Lemma 6.3 and (6.6) that

2K5€
3Amam ’

K4, = . _ 1 .
pred(di; p) > ?4||Dk§k||mm{n5||Dkgk||,ngAk} + 56/<;4Akmm{ K6}

— krag + pll|CkI” — | Jedy + Chl[?]
g - . _
> fllegkllmZ"{ﬁsllegkll,'%*Ak} + PlICKII? = | Jkdy + Cill?].

(6.7) is proved. From (4.3) and (6.7) we have (6.8) with kg = %min{ﬁfns;,nﬁ}. Moreover,
(6.7) implies that pred(dy; pr—1) > pe—1[||Ckl|* = || Jkdr + Ck||?]. Then from step 4 of Algorithm

5.1 it follows (6.9). O
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Theorem 6.1. The algorithm is valid, i.e., the interior loop (step2-step5) can be ended in
finite times at each iteration.

Proof. Let the index of interion loop be i. Then corresponding values are
Ap.iy i iy pris pred(dii; pr,i), ared(dy 5 pr.i)-

We note that Cy, Ji, Wi are not changed in interior loop. The proof is by contradiction. If
i = 400 then from algorithm we have Ay ; — 0 and

| ared(dy,i; pr,i)
prad(dy,i; pk,i)
Case(i), ||Ck|| # 0. From (5.3) and (4.3) we know

—1>1-n. (6.10)

#3]|Crl
Amﬂm

; ki .
pred(dy.i; pr,i) > Pl HCEI® = ICk + Jrdyil|*] > pT@HCkaW{Ta

> YA, (6.11)

which combining with Lemma 6.4 to yield

| ared(dy.:; pr,i) < 2Kk3

pred(dy,; pr,i) T Ko||C ||min{r, 22Okl

Agi— 0. (i = o0)
vl

This contradicts with (6.10).
Case(ii), ||Ck|| = 0. It follows from (4.2), definition of g and (3.8) that dj; ; = 0, and

_ ( k.1 ) - < —R'YIV S )
9k = — - T )
Gk,2 Zy N [
then Dy, = Dy, Dy, = Dy, |DkWENV EL|| = ||Dygl||- Therefore, it follows from Lemma 6.4 and
lemma 6.5 that pj; = pr—1 and

Ry

|ared(dk,i; Pk—1)
Ko

—1<
pred(dy,i; pr—1) |

— 0,

which contradicts with (6.10) again. The proof is completed. O

Lemma 6.6. If | Dygr|| + ||Ck|| > € for all k, then the sequence {py} and ®(xy, sk, \i; pr) are
bounded. Furthermore, there exists a constant A* independent of k such that

AF > A" (6.12)
where AF is the accepted radius of trust region method at kth iteration.

Proof. See Lemma 7.11, Lemma 7.12 and Lemma 8.2 of paper [5]. O

Theorem 6.2. The sequences of {uy} generated by Algorithm 5.1 satisfies

lim_inf[|DWT VL + [ICell] = 0. (6.13)
k—4o00
Proof. First we proof B
Jimin [ Digell + Cull] = . (6.14)

The proof of (6.14) is by contradiction. Suppose for all k ||Dygr|| + ||Ck|| > €. We discuss
two cases: (i) ||Ck|| < aAF; (i4)||Ck|| > aA*, where a is defined by (6.6).
Case (i). From Lemma 6.5 and Lemma 6.6 we have pred(dy; pr) > ko AF > kg A*.
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Case (ii). From (5.2), (5.3), (4.3) and Lemma 6.6 we follow
1 . . K . .
pred(dy; pr) > §n2||Ck||mm{TA’”,n3||Ck||} > gamm{v', kza}(A*)?.

Denote K4 = min{rkgA*, Z2amin{r, k3a}(A*)?}. Then for two cases we have pred(dy; px)
> Ky4. From Algorithm 5.1 we obtain that for each k

S — Dpyq > npred(di; pr) > K4, (6.15)

On the other hand, {®(zy, sk, Ar; pr)} is bounded and descent, this implies @, — P11 — 0, (k —
00), which contradicts with (6.15). Then (6.14) holds.

Now we prove (613) Let limkEKl[“Dkgk” + ||Ck||] = 0. We have limyeck, ||Ck|| = limgexk,
Ild]] = 0 by (4.2). Because of global assumptions and the expression of g, we have

. T = T o
kIGHII(ll |IDrgr|| = klérlr(ll [|DpW,, VFg| = 0. (6.16)

Next we only show that l_)kA can be replaced by Dy. From expressions (2.5) and (3.4) we
need only to consider Dy and Dy. Divide By by

[ Brp1 DB
Bi = ( Bys Big >

where By € R"*"™, Bys € R"*™, Bys € R™*" Byy € R™ ™. Given i € {1,2,---,m}. Assume
there exists €; > 0 such that for all £ € K; holds

[(Di = Di) (=R "Y'V f1))i] > ex. (6.17)

It is obvious that (—R,;lYkTka)i # 0. Then there exist e > 0 and Ky C K; such that for
k € Ko, |(—R,;1YkTka)i| > €5. There are two cases for k:

(D) (R V)i > €2 > 0; (i) (=R "V V)i < —ex <O0.
For case(i) we have (Dy); = (/3)i. From limge, ||d}|| = 0 and global assumptions we
have for sufficiently large k € K,

€2

(gkyl)i = [—R;lykTka + (—REIYkTBkl + Bm)(d?)x]i > 5 > 0.

Hence (Dy)y; = (V3k)i = (Dp)si- Similarly for case (ii) we have for sufficiently large k € K»

(D1)ii = (Dg)is = 1. Therefore limye, |(Dr — Dy)si| = 0. It contradicts with (6.17). Thus it
follows

lim in f[[(Dg — Dg) (— B 'Y,V fi)li| = 0 =limin f||(Dy — De) W, VFi[| =0,
which combining with (6.16) to yield limy in f||DW,I VF|| = 0. Then we have (6.13). O

7. Local analysis

We study the local rate of convergence of Algorithm 5.1 in this section. It will be shown
that asymptotically the trust region will be inactive under some conditions. By combining with
Newton’s step in our algorithm (see CS.3 below), the fast local rate of convergence will be
maintained. We add the following local assumptions.

CS.1 The second derivaties of f and h;(i = 1,2,---,m) are Lipschitz continuous in Q, and
Hessian matrix is exact, i.e., By = V2I(z, sk, A\x) with Lagrange multiplier Ay = —R,;lYkTka
for all k.
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CS.2 The quasi-normal component is computed by

- —akYkR_TCk
- < k), (7.1)
where -
{ ]., 1f||—YkR]: CkHSTAk;
ap = TA : -7
H—Tm, if || - YkRk Ck” > TAk.
CS.3 If the solution of (3.3) for d! exists with ||D; 'd!|| < Ay, which is denoted by (d%)"N,
we choose tangential component as 7 (dt)N, where 7 = o}, min{1, min{ 2 (d¢)N < 0}}

(d)N>
and

t \N (JZ)N Ft\N m NN n—m
@)Y = (o ) @Y € R (@)Y e B,
k

CS.4 up — u* and u* is a nondegenerate point satisfying second-order sufficient conditions.
The parameter oy, is chosen such that oy, > o and |0} — 1| = O(||Dy.gxl|)-

Remark 7.1. It is easy proved that quasi-normal component (7.1) satisfies (4.1)-(4.3).
Furthermore, it is obvious that sy + 7" (d})™ > 0.

Remark 7.2. Combining with proposition 2.1 and CS.4 we have

C(u*) =0,D(u*)*W (u*)VF(u*) =0, —R(z*) 'Y (*V f(z*) > 0. (7.2)

Moreover, by introducing a finite set of functions and using a similar way of analysis in [3], we
can obtain that, unter local assumptions, there exists a constant 4 > 0 independent of &k such
that for sufficiently large k,

Amin(DeWy{ BeWi Dy, + E) > 7. (7.3)
See [3] for more details.
Lemma 7.1. If d} is chosen by (7.1), then there exists a constant k19 > 0 such that
ldi |l < Kiol|dil|- (7.4)
Proof. From (7.1) and the relationship of dj, d}, dt,, cifg we follow that
Hdell? > 1(di)all? > 4l NI = (i)l + 14112 < 21ldi

Then
i |l < lldell + IWrdi]| < (1 + v206)||dill = K10lldil],

where 510 = 1 + v2vs. O
Lemma 7.2. There ezists constant k11 > 0,k12 > 0 such that
lared(dy; p) — pred(dy; p)l| < ki lldi|l* + praal|Crlllldi 1. (7.5)
Proof. 1t follows from mean-value theorem.

Lemma 7.3. For sufficient large k the predicted decrease satisfies

pred(di; p) > —rasl|di||[|Crll + Kra(lldr]] — 261610 ||Crl]) ||l
+o(ICkI1? = | Tkdi + Cill?),

where k13 > 0, k14 > 0 are constants independent of k.
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Proof. The predicted decrease can be written as
[9(0) — qr(dy) — AN (Jdk + Ch)]
[ar () — ar (dfy + Wid})] + pllICkI” = | Tdy, + Ci|I*]

pred(di; p) =
_ n
From (7.1) it follows V,[Fd? = 0, which combining with lemma 7.1 and ||AX;|| < &[|dk]| to
(7.7)

A)\{(Jkdk + C’k)
— k3 ||de || Crl,

178 (10) —qr(d})
——(dZ)TBde - A)\k(Jkdk + Ck) >
Y(dt) > 0 we have

yield
vgkiK1p + k. From 1 (0)

where £ > 0 is a constant, K13 = %
gidi. > = (d\)T (W ByWy + Ex D, ?)d.,.
Then for sufficiently large k, it follows from (7.3) that
1Dl = 5l (73)
On the other hand, from lemma 7.1 and (4.2) we have
il < 20ldg]I* + 2vslldi I* < 261 m10]|C il + 206 | |
Hence, we obtain
i ||* > L[lldkll = 261510/ | Cr ]l dk ], (7.9)
it follows from (6.3), A ”i%“ and (7.8)-(7.9) that
() = auld + Wed) > T Lmin{ 521, %03 | = 2ma10) e,
which combining with (7.7) to yield (7.6) with k14 = 2L T min{ ;ij, o} O
Lemma 7.4. For sufficiently large k, {pr} is bounded, the trust radius Ay, is uniform bounded
away from zero and eventually all the iterations will be successful.
Proof. First we prove the boundedness of {p,}. We consider two cases (i) ||Ckl| < @||d]l;
(ii) |Ckl| > @||dk||, where .
as 2(K13 + 2K1K10K14) (7.10)
Case (i). From Lemma 7.3 we have
pred(dy; p) > %Hdkﬂj + [5dell — (K13 + 261 K10614) || Cr]|][ e[ (7.11)
+o(ICII* = | Tk dy, + Cil*)
From [|Cy|| < alldy|| we obtain pred(dy; p) > §(IICkll> — | 7xdi + CilI*), then py = pr—1 since

Algorithm 5.1.
Case (ii). If py, is increased then
Pk
(ICkI1” = 1 Tkdk + CilI)

2
=qr(dr) — qr(0) + AN (Jrdi + Cr) + SUICkI* — | Trdk + Ck?)

+
N
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From (7.7),(4.3) and ||di|| < (7 + vev7) Ak we derive that

Prk2 T _
e B di|llICkll < Crlllld

2 7 pepn OHIARIICRIT < (ors + 210) [ Ciellldill
which combining with ||C|| > @||dk|| to yield

2(k13 + prio)
= komin{ K3@}

R
T+vevr?

Hence, for two cases {pi} is bounded. We denote p; < p*.
Next we prove
. ared(d; pr) _ 1. (7.12)
k——+oo pred(dy; pr,)
For case (i), ||Ckll < alldkl|, from (7.11), pred(dk; pr) > Z3¢||dg||*. It follows from Lemma 7.2
and ||dg|| = 0, ||Ck|] — O that

ared(dy; pr)

dp, * (o
1< fulldill + P l|Cell

|pred(dk; Pk) - 0.5/{,14

, (k= 00).

Therefore (7.12) holds. For case (ii), because of ||Ck|| > @||dk]|, from (5.3) and (4.3) we have

pred(dk; Pk) > %5207 min{%’/ﬁw: ’i3d}”dk“2-

We prove (7.12) since Lemma 7.2 and pj, > 1. From Algorithm 5.1 we know that Ay is uniform

bounded away from zero and every iteration will be successful for sufficiently large k. O

Lemma 7.5. For sufficiently large k we have ay = 1 in (7.1) and
7 = 1] = O(Ju — ). (7.13)

Proof. This lemma is proved in a similar way of the proof of Lemma 12 in [3] and Corollary
9.4 in [6]. O

Lemma 7.6. For sufficient large k we have that ||D,'(d})N|| < Ay and 7N (di)N satisfies

(4.9)-

Proof From (7.3) we know ||(DWI B WiDy, + E)~Y| < 1/4. Then we obtain that
|D; (dh)N]| < Ay since (dE)N = (=D2WyBWy + Ei,) ' DGy, limg oo ||Digkll = 0 and
Lemma 7.4.

We also note that the solution of (4.8) is (df)" when trust restraint is inactive. Combing
with positive definite of DWW B,WyDy, + Eg, |7 — 1| = O(||lux — u*||) and Lemma 7.4 we
have

i (0) — i (rY (df)N)
= gl ()N — S U (W] BV + BeDy ) ()
> 7 [Yr (0) — i ((di)™)] > Blvor(0) — i (vp)],
this means that 7 (d})V satisfies (4.9). O

Theorem 7.1. Let {uy} be the iterative sequence generated by Algorithm 5.1. Under the global
and the local assumptions, {u,} convergences to u* quadratically.
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Proof. Denote dY = d} + Wi, (di)N,dy, = d + 7Y Wi, (dt)YN, it follows from (7.13) that
Il — di || = |7 = 1Wi(di) ™| = O(lur — u*|?).
From Theorem 11 of paper [3] we have

Jursr = uwll = llug + di = u*[| = O([Jur — u*[]?).

8. Numerical example

A Matlab subroutine is programming to test Algorithm 5.1. The test problem comes from
the Hock and Schittkowski collection in [8]. We use the formula (7.1) to compute the quasi-
normal component and use modified conjugate-gradient algorithms to compute the tangential
component satisfied conditions (4.8) and (4.9). The parameters of Algorithm 5.1 are chosen as

7=0.8,a1 = 0.5, = 0.01, Apraz = 10, Apmin = 0.01, 5 = 0.01, p_1 = 3.

There are two choices for By,
1 V2l 0 2
B'(“): ( 8 0>’B’(“):[(n+m)x(n+m)-

The example is problem 29 of [8], which has four optimal solutions

z* =(a,b,c), (a,-b,—c), (—a,b,—c), (—a,—b,c),

where a = 4,b = 2v/2,¢ = 2, the optimal value of function is f(z*) = —16v/2. We choose

or = 0.9995 for all k. The result is reported in Table 8.1.

Table 8.1
(0, 50) (1,1,1,1) (2,2,2,2) (15,1.5,1.5,1)
By Bl B B!" B Bl B
k 8 206 8 216 7 203
Tk y* y* y* y* y* y*
flzx) | -22.6274 | -22.6274 | -22.6274 | -22.6274 | -22.6274 | -22.6274
resl 5.5396E-15 | 1.7366E-11 | 1.7804E-15 | 1.7366E-11 | 2.1354E-15 | 1.8034E-11
res2 5.9204E-07 | 9.5262E-06 | 1.6593E-07 | 9.5250E-06 | 7.6865E-07 | 9.7095E-06

Where (z0, so) is start point, k is the number of iterations, z;, = y* = (4.0000, 2.8284,2.0000)
is approximate optimal point, resl = ||Ck||, res2 = ||D,WIVF]|.

Remark 8.1. For our computation, when we choose different start point, for example, we
choose start points as

(1‘0, 50) = (1) _1; _1) ]-)7 (2; _2; _2) 2)7 (157 _1-57 _1-5) ]-)7

then z, = y* = (4.0000, —2.8284, —2.0000) and other values in Table 8.1 are same, i.e., {z\}
converges to the optimal point (a, —b, —c). Other two optimal points have the same character-
ization.

From numerical example it shows that the calculated result is coincident with theoretical
analysis.
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