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Abstract

Trust region (TR) algorithms are a class of recently developed algorithms for nonlinear
optimization. A new family of TR algorithms for unconstrained optimization, which is
the extension of the usual TR method, is presented in this paper. When the objective
function is bounded below and continuously differentiable, and the norm of the Hesse
approximations increases at most linearly with the iteration number, we prove the global
convergence of the algorithms. Limited numerical results are reported, which indicate that
our new TR algorithm is competitive.
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1. Introduction

In this paper we consider the unconstrained optimization problem
min f(x), z € R, (1.1)

where f is a continuous differentiable mapping from R™ to R'. Many trust region (TR) algo-
rithms for problem (1.1) apply the following iterative method (for instance, see [10]). At the
beginning of the k-th iteration one has an estimation zj of the required vector of variables, an
n X n symmetric matrix By, which need not be positive definite, and a trust region radius Ay.
A TR algorithm calculates a trial step s by solving the “trust region subproblem”:

1
Ty Lor — b ‘
min gpd+ 2d Byd = ¢(d) (1.2)

st |12 < Ay (1.3)

where g, = V f(z1) and By, is an approximation to the Hessian of f(x). The algorithm then
computes the ratio ry between the actual reduction and the predicted reduction in the objective

function
= Aredy, _ flzr) — f(xg + sk) (1.4)
Predy or(0) — pr(sk) '
and decides whether the trial step sj is accepted and how the next trust radius Ay is chosen
according to the value of ry.
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Recently, many authors ([1-5]) give some nonmonotone trust region methods for uncon-
strained optimization. Toint [8] points out that the nonmonotone technique is helpful to over-
come the case that the sequence of iterates follows the bottom of curved narrow valleys (a
common occurrence in difficult nonlinear problems). The nonmonotone trust region algorithm
presented in [2] adjusts the next trust radius A4 according to

. Jiwy — f(xp + s1)
£ T 00(0) — or(se)

where figy = | max {£(k =)}, m(k) = min{m(k 1) + 1,20, M}, m(0) = 0, M > 0'i

an integer, M}, is relevant with k and is given in the specific algorithm. As pointed out in [5],
however, one disadvantage of using (1.5) is that, it uses the function value at x;(;), which may
be far away from the current point x.

If the matrix By, is exactly the Hessian Hy, of the objective function at zy, and if the trust
region subproblem (1.2)-(1.3) are solved exactly, it would be reasonable to use the current ratio
Tt to adjust the next trust radius Ag41. However, in practical computations, the matrix By, is
often obtained approximately (a common way is to update By_; using the pair (sx—1,yr—1)),
and the subproblem (1.2)-(1.3) are solved roughly. In such a case, it may be more reason-
able to adjust the next trust radius Ag41 according to not only rg, but the previous ratios
{"k—m,.--,Tk}, where m is some positive integer.

Following this line, we define the following quantity

(1.5)

min{k,m}

T = Z WhiTk—it15 (1.6)
i1

where wy; € [0, 1] is the weight of ry_; 1, satisfying

iwki =1 (1.7)
i=1

In the next section, we will describe a new family of TR, algorithm in which the adjusting
of the next trust radius Ag4; depends on the quantity 7 in (1.6). In Section 3, we will prove
the global convergence of our new TR, algorithm under very mild assumptions. The numerical
results, which are reported in Section 4, show that our new TR algorithm outperforms the usual
TR method for the giving test problems. Conclusions and some discussions are given in Section
S.

2. The Algorithm

We now describe the new TR algorithm as follows.

Algorithm 2.1

Step 1 Given x1 € R, A1 >0, ¢ >0, By € R™" symmetric;
0<m<y<l<, <<, k:=1.

Step 2 If ||gk]|2 < € then stop;
Find an approxzimate solution of (1.2)-(1.3), sy.

Step 3 Choose wy; € [0,1] satisfying (1.7) and compute 1, and 7y, by (1.4)
and (1.6); Calculate xy4+1 as follows:

oz if i <0,
Tht1 = { T + s, otherwise; (2.1)
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Choose Ay that satisfies

[3Ak, Talg] if 7 < 7o,
Akt € { [Ag, T1Ar]  otherwise. (2:2)
Step 4 Update Byy1;
k:=k+ 1; go to Step 2.
The constants 7;(1 = 1, --,4) are chosen by users. When the weight of the present ratio ry

is 1 and the other weights are all zero, the algorithm reduces to the usual TR, algorithm.

3. Convergence of TR Algorithm 2.1

In this section we prove the global convergence of Algorithm 1.1 under mild assumptions.
For this purpose, we assume that the predicted reduction satisfies the following relation

llgr]|2
],

¢k (0) — ¢r(sk) > c1l|gr||2 min[Ag, Bl

(3.1)

where ¢; is some positive constant. A trial step si satisfying relation (3.1) is normally called
a “sufficient reduction” step. In real computations, it is much easier to compute a sufficient
reduction step than to find the exact solution of the subproblem (1.2)-(1.3). Several techniques
can be used to compute a sufficient reduction step sy, for example the dog-leg type techniques
or the way of searching in the two dimensional space spanned by the steepest descent direction
and the Newton’s step.

Lemma 3.1. Assume that f(x) is differentiable and V f(x) is uniformly Lipschitz contin-
uous. Let xy, be generated by Algorithm 2.1 with sy, satisfying (3.1). If there exists a positive
constant § such that

llgkll2 > 0, for all k, (3.2)
then there exists a constant T > 0 such that
-
Ap > — .
. (33)
holds for all k, where My, is defined by
My =1+ max [|Bill2. (3.4)
1<i<k

Proof. Because V f(z) is uniformly continuous, there is a positive number 7 such that the
bound

1
sTIVf(z+d) — Vf(z)] < 501(1 —12)0||sk|l2, z € R", (3.5)
is satisfied for all ||d||2 < 1. We show by induction that (3.3) holds with
7 = min[Ay My, 77" My, 76, c1 (1 — 72) 73 0). (3.6)

When k£ = 1, we clearly have that A; > ML So (3.3) holds for £ = 1. Assume that (3.3) is

1
true for k. Since the sequence {Mj;k =1,2,3,---} increases monotonically, to prove the truth
of (3.3) for k + 1, it suffices to establish the relation

-
Apyr > 7 (3.7)
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Relation (3.7) is trivial if Agyq > Ag. Therefore we assume in the remainder of proof that
Apgy1 is in the range
T3Ak S Ak—i—l S 7'4Ak. (38)

In this case the technique for adjusting the radius of the trust region implies that 7 < 7.
From the definition of 7, we can deduce that there exists an integer k € [k — min{k, m} + 1, k]
such that rg < 7:

flag + sp) — flap) > {og(zg + s5) — ¢ (0)}- (3.9)
If ||sz||]2 > 1, we have the bound

Apr > HTRAL > A
> 73"|sgll2 > 75"n (3.10)
> gl T
T -_— -_—.
2 T3 an = M,

Therefore in the rest of our proof we also assume that ||sz||2 < 7.
It follows from the mean vaule theorem and (3.5) that

1
flag+s0) = for) = [ SEV Sy +0s5) do
0
1
= Si0 +/ sp AV f(ag +0s5) — gg} db (3.11)
0
1
< sigp+ el = 72)d][sgll2,
which with (3.9) gives the bound
T 1 1L 7
(1—72){31—69764- 501(5||S,‘€||2} > §T28EBESE. (312)

Moreover, we have by (3.1) and (3.2) that

1 )
—st gp — =5t Bpsp > c1d min[Ag, ——]. (3.13)
2 1Bl 2
By adding (1 — 7») times this inequality to (3.12), we can get that
AZIIBillz > lsgll3]1Bgll2
> —S%BESE
> 2(1 )e1d min[A i ]-(1 )erd]|sz||
- i s — (11— i
)t e BT, erdllsell (3.14)
4]
Z 01(1 - 7'2)6{2 min[Afg, —] — AE}
1B ll2
4]
= 01(1 — TQ)(Smin[Ak, 22— — AE]
1B ll2

Using the above condition, we can give a constant lower bound on the product Ag||Bgll-
In fact, if Agz||Bg|l2 <4, it follows from (3.14) that

0

Apl|Billz > e1(1 = 12)8,  Ap > ——.
1Bzl2

(3.15)
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Thus the following relation always holds

. T
AEHBEHQ > mln[C1(1 — 7'2)6, 5] > T_m (316)
3
By (3.8), (3.16), (3.4) and the definition of 7, we can then obtain
Ak+1 Z 7'3Ak Z T§+1_EAE
> AL >
= O B (3.17)
T T
> >
- ME - M,

Thus (3.3) also holds for k£ + 1. Therefore by induction, (3.3) holds for all ¥ > 1. O
Powell [7] showed the global convergence for the usual TR method under the assumption
that

||Bk||2 5024—63]{;7 k:172)37"'7 (318)

where ¢ and ¢ are constants. To prove the global convergence of Algorithm 2.1 under (3.18).
we draw the following lemma from [7] or [9].

Lemma 3.2. Let {Ar} and {My} be two sequences such that Ay > ML > 0 for all k,
k

where T is a positive constant. Let J be a subset of {1,2,3,---}. Assume that

Ak+1 S TlAk, k € J (319)
Ak+1 S 7'4Ak, k ¢ J (320)
My > My, k>1 (3.21)
> Lo (3.22)
M;, ’
keJ

where 71 > 1, 74 < 1 are positive constants. Then
i = < 0. (3.23)
My,
k=1

Lemma 3.3. Assume that the conditions of Lemma 3.1 holds. If {f(xr)} is bounded below,
we have that (3.23) holds.

Proof. Define the set J = {k|F > m2}. Then (3.19) and (3.20) follow the update formula
(2.2). Further, for each index k € J, we define Sy = {k : r; > 7o,k € [k —min{k,m} +1,k]}. If
i € J, we know from the definition of 7, that there exists an integer k € [k —min{k,m} +1, k]
such that r; > 7». Thus Sy is nonempty, which with the nonmonotonicity of M}, implies that

1 1

>
M; — M,
€Sk

forall k € J. (3.24)

Eall

Since {f(zx)} is bounded below, we have from the definitions of J and Sj, Lemma 3.1 and
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(3.24) that
+o00 > Z(f(l“k) = f(®ry1))
k=1
> LSS (Fap) - flaga,)
kedJ kes,

(3.25)

v
|3
]
A
5
B
s
S

v
Q
2l
(=%}
N
™
=
=,
g
5

S 1720 min[r, d]
m
Therefore by Lemma 3.2, we know that this lemma is true. O

Now we are ready to give our main convergence theorem.

Theorem 3.4. Assume that f(z) is differentiable and ¥V f(x) is uniformly Lipschitz contin-
uous. Let xy be generated by Algorithm 2.1 with sy, satisfying (3.1). If (8.18) holds, if e =0 in
Algorithm 2.1, and if {f(z)} is bounded below, then either g, = 0 for some k or the following
relation holds

lim inf ||gk||2 = 0. (3.26)
k—o00

Proof. We prove by contradiction. Assume that the theorem is not true, namely, condition
(3.2) holds for some constant § > 0. Then we have by Lemma 3.3 that (3.23) holds. However,
it follows from (3.18) that

|
k=1

which contradicts (3.23). The contradiction shows that the theorem is true. O

Remark 3.1. It may be not possible to strengthen Theorem 3.4 about the new TR algorithm.
This is because, if {My;k =1,2,3, -} is any nondecreasing sequence of positive numbers such
that condition (3.23) holds, we can use the counter-ezample presented by Powell [7] to show the
Judgement.

Remark 3.2. In practical computations, for k > 2 one may recursively define Ty, as follows:

T = UgTr + (1 — Nk)kal, (3.28)

where p € (0,1) is some constant. In this case, we can establish the global convergence result
for the choice (3.28) in a similar way.

4. Numerical Experiments

We tested the usual TR method (UTR) and the new TR method (NTR) with double pre-
cisions on an SGI Indigo workstation. The codes are edited by FORTRAN language and are
based on Y. Yuan’s ones for the usual TR method. The test problems and the used initial
points were taken from Moré, Garbow and Hillstrom [6]. In practical computations, we prefer
to the following choice:

T = wiry + (]. — wl)kal, (41)
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where 71 = r;. The above choice of 7, is easier to calculate. If w; = 1.0, then Algorithm
2.1 with 7 given by (4.1) is corresponding to the usual TR method. For each problem, the
stopping condition is

llgrll <107 (4.2)

Algorithm 2.1 with 7, given by (4.1) is tested with different values of w; in (0,1]. We find
that the choice wy = 0.9 gives the best numerical results for the given test problems. Here
we only list the numerical results of w; = 0.9 and 1.0, that are rather typical. See Table 4.1,
where n, ny and ny, mean the number of iterations, the number of function evaluations, and
the number of gradient evaluations, respectively. In the table, the unconstrained optimization
problems are numbered in the same way as in [6]. For example, “MGH2” means problem 2 in
[6]. From Table 4.1, we see that the new TR method performs better than the usual TR method
for four of the test problems, whereas for the other two problems, the usual TR method requires
fewer function evaluations and gradient evaluations. On the whole, the new TR method with
wy = 0.9 performs better than the usual TR method.

Table 4.1 Numerical comparisons of UTR and NTR

problems UTR NTR(wy = 0.9)
MGH? 13/44/40 39/40/38
MGH4 308/200/172 99/100/78
MGHS 100/101/88 87/38/80
MGH9 11/12/10 10/11/9

MGHI0 38/39/38 35/36/36

MGHI5 59/60/52 83/34/76

MGH17 55/56/49 145/46/40

MGHIS 32/33/26 59/60/47

5. Conclusions

A new family of TR algorithms for unconstrained optimization has been presented. Under
mild assumptions, the new family of TR algorithms are proved to be globally convergent.
Preliminary numerical results have been reported, which showed that the new TR method may
be competitive with the usual TR method.

Although Theorem 3.4 allows a large range of the weights of 7, it is worth studying how to
choose the optimal values for them in practical computations.
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