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Abstract

In this paper we present high-order I-stable centered difference schemes for the numer-
ical simulation of viscous compressible flows. Here I-stability refers to time discretizations
whose linear stability regions contain part of the imaginary axis. This class of schemes
has a numerical stability independent of the cell-Reynolds number Rec, thus allows one to
simulate high Reynolds number flows with relatively larger Rc, or coarser grids for a fixed
Rc. On the other hand, Rc cannot be arbitrarily large if one tries to obtain adequate
numerical resolution of the viscous behavior. We investigate the behavior of high-order
I-stable schemes for Burgers’ equation and the compressible Navier-Stokes equations. We
demonstrate that, for the second order scheme, Rc < 3 is an appropriate constraint for nu-
merical resolution of the viscous profile, while for the fourth-order schemes the constraint
can be relaxed to Rc < 6. Our study indicates that the fourth order scheme is preferable:
better accuracy, higher resolution, and larger cell-Reynolds numbers.

Key words: I-stable, Viscous compressible flow, Burgers’ equation, Cell-Reynolds number
constraint.

1. Introduction

Compressible flows with high Reynolds numbers, or, more generally, systems of conservation
laws with small viscosities, remain a challenging numerical problem, even with great progress
in the development of modern shock capturing methods for inviscid flows (the Euler equa-
tions) or systems of conservation laws in the last two decades. On the one hand, due to the
constraint on the computing capacity, one attempts to simulate high Reynolds number flow
with relative coarse grids (larger cell-Reynolds numbers), but on the other hand, when the
cell-Reynolds number becomes too large, one loses appropriate resolution on the viscous effect
and the numerical solutions become unphysical.

Due to the great success of modern shock capturing methods for hyperbolic systems, a very
natural idea for the simulation of the viscous flows seems to be the application of a shock
capturing method for the convection terms, coupled with some centered differences for the
viscosity term. By building a numerical viscosity into the scheme which reduces the accuracy
to first order across the discontinuities in order to suppress the numerical oscillations, shock
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capturing schemes are very effective in simulating inviscid flows and hyperbolic systems of
conservation laws [13]. Since the main idea of shock-capturing is underresolution across the
discontinuity, when simulating a slightly viscous flows where viscous effect is important, the
mixture of numerical viscosities with the physical ones become a subtle issue.

In this paper, we seek an alternative approach by using simply high order centered difference
schemes. This approach allows zero numerical viscosity, thus guarantees that, under enough
resolution, the viscous effect observed numerically is purely physical. However, the traditional
second order centered difference schemes for slightly viscous convection equations has a cell-
Reynolds number constraint Rc < 2. To break this stability barrier, we take the method of line
approach and use the so-called I-stable time discretization, which yields a numerical stability
independent of Re.

We call that a time-discretization for an ordinary differential equation is I-stable if the linear
stability region contains part of the imaginary axis. In [19] Vichnevetsky studied the stability
charts in the numerical approximation of partial differential equations. He first found that the
linear stability regions of some time-discretization schemes contain part of the imaginary axis
and applied these schemes to linear hyperbolic and advection-diffusion equations. In [3, 4], E
and Liu realized that to solve the incompressible Navier-Stokes equations, using the fourth-order
Runge-Kutta method (which is I-stable according to the above definition) along with a fourth-
order centered difference for the convection removes the cell-Reynolds number constraint, thus
allows them to simulate incompressible flows with very high Reynolds numbers. Choi and Liu [2]
introduced a class of three-stage, second order Runge-Kutta method (which is I-stable) for the
compressible Euler equations, and observed good convergence property toward the steady-state
solution. This is the scheme we will explore here.

While the I-stable scheme has a remarkable stability property, which allows one to use
an arbitrarily large cell-Reynolds number, in practice, this can never be done if one wants to
resolve the viscous effect. Failing to resolve adequately the viscous effect will simply produce
the results for the inviscid equations, rather than the viscous equations. The rule of the game
is to use relatively larger cell-Reynolds number (if stability allows) but still resolve the viscous
effect without numerical oscillations. It is the goal of this paper to investigate the suitable cell-
Reynolds number constraint for viscous conservation laws using high-order I-stable centered
differences. We use the Burgers’ equation and the compressible Navier-Stokes equations as
examples to study this issue.

We observe that, when using a second-order I-stable centered difference scheme, Re < 3 is an
appropriate constraint, while for the forth-order I-stable schemes this can be relaxed to Re < 6.
Within this range of Re the numerical schemes are stable and are essentially non-oscillatory.
This significantly improves the traditional cell-Reynolds number constraint Re < 2, and sheds
light on a promising direction to develop numerical schemes for compressible flows with high
Reynolds numbers.

This paper is organized as follows: In the next section, we introduce the high-order I-stable
centered difference for viscous conservation laws. In section 3, using the Burgers’ equation
as an example, we investigate the effect of the cell-Reynolds number for different time and
spatial discretizations. In section 4, we propose the fourth-order I-stable scheme for the 2-D
compressible Navier-Stokes equations. We study numerically the effect of cell-Reynolds number
using flows in a driven cavity and a Buoying-driven cavity. We end in section 5 with some
discussions.

2. For systems of conservation laws with small viscosity

Consider the scalar conservation laws with viscosity:

Oru + 0, f (u) = v0yau . (2.1)
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Let ¢ = sup | f'(u)| be the supreme of the characteristic speed, h be the grid size, and u; be the
numerical approximation of u(z;). The cell Reynolds number is defined as: Rc = ch/v
We use the method of line approach to solve (2.1), which decouples the spatial discretization

from the time discretization. We consider the second order centered difference
1 v
o L (ir1) = fluiz1)] = 55 Wiy = 2ui + i), (2.2)
and the fourth-order centered difference

1

Opu; + o [f(uj—2) = 8f(uj—1) + 8f(ujs1) — f(uj+2)]
v

12h? (

The discrete systems (2.2) or (2.3) can be written as a system of ordinary differential equations
(ODEs)

8tUi +

—uj_g + 16u;_1 — 30u; + 16w — Uj+2) . (23)

au

— =F{U 24

= F(U), (24)
where U = U (t) is a vector function of ¢ and F is a vector function of U and ¢. Let At be the
time step. Consider the following four explicit time discretizations for the ODE system (2.4):

1. Forward Euler (FE)

UM = Uk + AtF(UY); (2.5)
2. Classical second-order Runge-Kutta (RK2)
Ukt =U* + AtK,, K, =FU"), K,=F (U"+AtK,/2). (2.6)
3. Second-order three-stage Runge-Kutta (RK2*)
Ut = U* 4 ALK, (2.7)
Ky, = F{U"), Ko=F({U"+AtK./3), K;=F (U"+AtK,/2).
4. Fourth-order Runge-Kutta (RK4)
Uttt = Uty %(K1 + 2K, + 2K5 + Ky), K, = F(U", (2.8)
Ky = F(U"+AtK/2), K;=F(U*+AtK,/2), Ki=FU"+ AtKs).

When v = 0, the Forward Euler method in time coupled with a centered difference in space
is notoriously linearly unconditionally unstable [17]. With » > 0, the Euler method in time
with centered difference (2.2) in space has the stability constraint Re < 2, in additional to the
usual CFL condition vAt/h? < 1/2 [17, 5]. This imposes a restriction for the grid size for any
given v, thus limits the Reynolds number for any given grid size, an unattractive fact for the
simulation of conservation laws with small viscosity or fluid flows with high Reynolds numbers.
One observes similar behavior for the second order classical Runge-Kutta method (RK2).

However, past experience [3, 4] shows that, by replacing the FE or RK2 in time by clas-
sical Runge-Kutta method of order at least three, or the modified three-stage, second order
Runge-Kutta method (RK2*), this stability constraint is lifted. Still lack of rigorous theory,
nevertheless, a linear stability analysis provides a clue to this phenomenon [5].

In fact, the usual stability analysis for numerical methods for ODEs deals with the following
prototype linear scalar problem:

v' = Av. (2.9)

Applying (FE) to this linear equation (2.9) gives
oMl = (1 4+ AAH)Y = (1 + 2)vk, (2.10)
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where z = AA¢t. Then the region of absolute stability is given by
1+ 2| <1. (2.11)
Similarly, the regions of absolute stability for RK2, RK2* and RK4 are given by:

1

For RK2 : 1+2z+ 5% <1 (2.12)
1 1

For RK2* : 1+2z+ §z2 + §z3 <1 (2.13)
1 1 1

For RK4 : 1+z+522+§z3+ ZZ4 <1 (2.14)

In Figure 1, we draw the regions of absolute stability for the ODE solvers FE, RK2, RK2* and
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Figure 1. Regions of absolute stability for ODE solvers FE, RK2, RK2* and RK4

RK4. From the figure, one can see that the regions of absolute stability of FE and RK2 do not

cover any interval along the imaginary axis. On the other hand, the regions of absolute stability

of RK2* and RK4 cover i [—\/3, \/3] and i[—2.85,2.85] along the imaginary axis, respectively.
Let us return back to the PDE (2.1) with the linear flux f(u) = au, i.e.,

O + adu = VO .U . (2.15)

Assuming a periodic boundary condition u(t,0) = u(t,27), the solution can be expanded in a
Fourier series, u(z,t) = Y, @x(t) exp(ikz). For each mode u(t) we have
Opiig (t) = (—iak — vk?)iy,(t) := Mg (1), (2.16)

with A\ = —iak — vk?>. When v = 0, X lies on the imaginary axis, while when v > 0 but
small, A is on the left-half of the plane, but very close to the imaginary axis. Similar eigenvalue
behavior occurs for the discrete systems (2.2) and (2.3). Expand the solution of (2.2) or (2.3)
with f(u) = au using a discrete Fourier series u;(t) = >, _, @k (t) exp(ikz;). For each mode k
of the solution of (2.2), we have

Ouiig(t) = (i sin(kh) — 45 sin? (kh/2)) a(t) = Xiig (1), (2.17)
h h?
Similarly, for each mode k of the solution of (2.3), we have
- o _.i . o _ L . 9 a2 -
dyii(t) = ( i (8sin(kh) — sin(2kh)) — 5 (16 sin” (kh/2) — sin (kh))) i (t)
= Aig(t). (2.18)
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The above analysis reveals that both RK2* and RK4 are I-stable, while FE and RK2 are not.
Combining the eigenvalue analysis on the PDE and the stability analysis on the ODE solver,
one sees that an I-stable time discretization is stable for centered differences with a suitable
time-step, but imposes no constraint on Re, even with v = 0 (so theoretically Rc can be
infinite!).

We would like to point out that the classical Lax-Wendroff scheme [10] and the MacCormack
scheme [14] also possess a stability independent of Re, provided a suitable CFL condition is
satisfied. This is easy to understand since both are stable for the inviscid equation (v = 0), and
the viscosity term only enhances their stability property. However, the higher order extension
of the Lax-Wendroff idea requires numerical evaluation of not only the Jacobi matrix of the
flux, but also Hessian matrix and the third order derivative of f(u), while for the MacCormack
scheme, based on the predictor-corrector idea, is not easy to extend to higher order. The
approach using method of line, nevertheless, can be extended to any order of accuracy. Another
way to enhance numerical stability is to add artificial numerical viscosity, see for example
[18, 16]. However, this approach, like other shock capturing methods, deviates from our purpose
here since we try to avoid any numerical viscosity. Traveling wave schemes introduced in [7]
seem to improve the Rc but they lack the generality to be applied to complicated physical
systems.

For systems of conservation laws with viscosity, the above approach applies componentwise
to the system, with similar stability property.

For problems with small parameter, such as the viscosity coefficient, the stability is not the
only issue of concern. Although theoretically the Rc can be arbitrary for I-stable schemes, if one
fails to resolve the small parameter numerically to a certain degree, one may miss the viscous
effect. Thus a numerical computation for problems with small parameters should balance the
issue of accuracy and resolution, namely, on the one hand, one hopes to use large Rc, but on
the other hand, Rec should be suitably small in order to numerically resolve the small viscous
effect. See [11] and [15] for a rather general discussion about the resolution power of some
high-order finite difference approximations of spatial derivatives.

Below, we investigate these numerical issues for second order ( (2.2)+RK2*) and fourth-
order ( (2.3) + RK4) I-stable centered difference schemes for the Burger’s equation and the
compressible Navier-Stokes equations. Our experience indicates that the fourth order scheme
always achieves better accuracy and higher resolution even with a coarse grid, thus allowing the
use of larger Re. These great advantages greatly compensate the additional cost of the higher
order scheme.

3. Burgers’ equation

In this section we use Burgers’ equation as an example to test the performance of the I-
stable schemes introduced in the previous section. The initial-boundary value problem has exact
solution, which allows us to carry out a detailed comparison between the numerical solutions
and the exact one.

3.1. The analytic problem

Consider the Burgers’ equation in conservative form:
ut+(u2/2)zzl/um, a<z<b, t>0. (3.1)
with initial condition
u(z,0) = up + 0.5(u; — up) [1 — tanh ((u; — up)(z — 0.25)/4v)], a<xz<b, (3.2)
and boundary conditions

u(a,t) = u, + 0.5(w; — u,) [1 — tanh ((u; — u,)(a — 0.25 — st)/4v)], t >0, (3.3)
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u(b,t) = up + 0.5(u; — u,) [1 — tanh ((w; — u,)(b — 0.25 — st)/4v)], t>0, (3.4)

where s = (u; + u,)/2. The problem (3.1)-(3.4) has the exact solution [13]
u”(z,t) = up + 0.5(u; — u,) [1 — tanh ((w; — u,)(x — 0.25 — st)/4v)] . (3.5)

3.2 Discretization

Let h = (b—a)/n denote the grid size, u; = w;(t) ~ u(z;,t), ©; = a+jh,for j =0,1,---,n.
The second-order centered discretization (2.2) of (3.1) is

duj Wi — UG uje = 2uj oy -

TRl 1<j7<n-1. .

it m Y E ’ =jsm (36)

The fourth-order centered difference (2.3) of (3.1) gives
du; _uj o, —8uf +8uf, —uj,
dt 24h
i+ 16w — 16U — W
izt 10U 1?;%7 L R L R P R e (3.7)

For the fourth-order scheme, we use two “ghost points” w_1 and upy1. The “ghost points”
approach for boundary conditions in calculating incompressible viscous flows is widely used
and gives promising results [4, 5]. They are calculated by a fourth-order interpolation formula
obtained by Taylor expansion:

u_1 = 5ug— 10u; + 10us — Sus + uy, (3.8)
Upnt1 = BSup — 10up—1 + 10up_2 — SUp—3 + Up—4. (3.9)
The cell-Reynolds number is
h
Re = Mmaxful. (3.10)
14

In next section, we solve the above problem using two I-stable centered schemes, (D2): the
second order ( (2.2)+RK2*) scheme, and (D4): the fourth-order ( (2.3) + RK4) scheme.

3.3. Numerical results

We take a =0, b =1, u; = 1.0 and u,, = 0.0. we use the above two schemes to calculate the
numerical solutions of the problem (3.1), (3.2), (3.3) and (3.4) for different v and h. We choose

% = 0.5 in all computations. Table 1 shows

time step At according to a fixed CFL:=

the discrete L'-norm error [[u” —up ||y := 37— hlu” (25, ") —up| = 37 =2 |u” (x5, ") — uj|
at t, = 1.0 for different v and Rec when using the discretization (D2). Table 2 shows the
similar results for the discretization (D4). Furthermore Figure 2 shows the numerical solution

for v = 0.000625 and different Rc at t = 1.

Table 1: The discrete L' error for (D2) at t = 1

[|u” — un 1 Rc=1 Rc=2 Rc=3 Rc=4 Rc=8
v =0.01 5.21E-4 2.16E-3 4.99E-3 1.01E-2

v = 0.005 2.60E-4 1.03E-3 2.29E-3 4.42E-3 2.03E-2
v = 0.0025 1.30E-4 5.14E-4 1.23E-3 2.51E-3 1.29E-2
v = 0.00125 6.51E-5 2.57E-4 5.76E-4 1.25E-3 5.36E-3
v =0.000625 3.25E-5 1.28E-4 3.05E-4 6.27TE-4 2.68E-3
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Table 2: The discrete L' error for (D4) at t =1

[|w” — un Rc=1 Rc=2 Rc=4 Rc=6 Rc=38
v =0.01 1.53E-4 2.73E-4 2.83E-3 9.52E-3

v =0.005 8.07E-5 1.24E-4 1.58E-3 5.20E-3 1.16E-2
v = 0.0025 4.93E-5 6.54E-5 6.00E-4 3.11E-3 7.91E-3
v = 0.00125 4.25E-5 3.99E-5 3.02E-4 1.27E-3 2.59E-3
v =0.000625 5.69E-5 3.71E-5 1.56E-4 7.93E-4 1.29E-3

a) 06 065 07 075 08 085 09 b) 06 065 07 075 08 085 09

0.8}

0.6}

0.4}

0.2}

-0.2 : : : : : 2 : : : : ;
c) 06 08 07 075 08 08 09 d) ©6 065 07 075 08 08 09

Figure 2. Numerical solutions for v = 0.000625. Top row: Using the second-order scheme (D2) with a)
Rc =3 and b) Rc = 4. Bottom row: Using the forth-order scheme (D4) with ¢) Rc =5 and d) Rc = 6.

From Tables 1-2, one can see that:

1) For fixed Re, the error is basically the same for different v. For fixed v, the error increased
quadratically with Rec.

2) To achieve the same accuracy, the (D4) can use Rc twice as big as (D2).

Note the solution has a sharp viscous layer, which prevents both schemes to achieve the
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desired accuracy for a smooth solution. In this case, the accuracy may not be the best indicator
of the performance of a numerical scheme, and the resolution is more appropriate measure.
Although one cannot quantify the resolution, Figure 2 indicates that the numerical shock layer
matches well with the physical one when Re < 3 for (D2) and when Re < 6 for (D4).

4. The Compressible Navier-Stokes equations

In this section we consider numerical discretization for the compressible viscous flows. Since
our previous numerical tests clearly indicate that the fourth order I-stable scheme outperforms
the second order scheme, in this section we only propose the fourth order scheme for the
discretization of the compressible Navier-Stokes equations.

4.1 The equations

We consider two-dimensional, dimensionless, compressible Navier-Stokes equations [12, 20]:

O  Opu Opv _
5t e oy = (4.1)

Opu  Opu®  dpuv 1 0pT 1 (40°u  0%u 1 0%
ot + Ox + Oy + yM? 9z Re \ 30z + Oy? + 30z0y )’ (42)
Opv  Opuv  Opv? 1 0pT 1 /1 0%u 0% 40%
L P o (L2 L )
ot ox dy yM? Oy Re \30xz0y Ox 3y 2¢F'r
O PR o)+ 2 P )M (0?4
5 <7pT+2(7 1) M~ (u® + v*) + o (puT+ 2(7 1)M*(u +U))
9 P MR 4o = gy T DM
+8y(va+2(7 1)M?(u +v))_\Il+ e P
1 (T  &@T\ (y—1)M?
e (a— W) TR MY (44)
with
v = 7(7_1)M2 4&@4_”62_”4_3 0% +Ea2u +U&+4_U&
N Re 3 Oz Oy?  30xz0y 30x0y 0x2 3 0y?|’

®d® = 2 @ ’ + @ ’ + 1 @ + @ ’ — 2 @ + @ ’
N Oz Oy 2\0y Oz 3\o0z 0oy) ’
where M is the Mach number, F'r the Froude number, Ra the Rayleigh number, Pr the Prandtl

number, Re the Reynolds number, Pe the Peclet number, a the thermal diffusivity, - the ratio
of specific heats, and € the temperature difference parameter. Here we use the equation of state

p = pRT, (4.5)

where R is the gas constant.
4.2 Fourth-order spatial discretization

Let 75, be the rectangular grid of the physical domain and h be the spatial mesh size. Define
the following fourth-order centered spatial difference operators:

Dyu(z,y) = Flh [u(z — 2h,y) — 8u(z — h,y) + 8u(z + h,y) — u(x + 2h,y)], (4.6)
Dyu(z,y) = Flh [u(z,y — 2h) — 8u(z,y — h) + 8u(z,y + h) —u(x,y + 2h)], (4.7)
Dy u(z,y) = 1 [—u(z — 2h,y) + 16u(z — h,y) — 30u(x,y)

12h2



High-order I-stable centered difference schemes for viscous compressible flows 109

+16u(a: + h,y) —u(z + 2h,y)], (4.8)
+16u(a: Y+ h) —u(z,y + 2h)] (4.9)
Dyyu(z,y) = 24h2 [10u(z — h,y — h) — 10u(z — h,y + h) — 10u(z + h,y — h)

+10u(xz + h,y + h)) —u(z — 2h,y — h) + u(x — 2h,y + h)
+u(x + 2h,y — h) —u(z + 2h,y + h) — u(x — h,y — 2h)
+u(z — h,y + 2h) + u(z + h,y — 2h) —u(z + h,y + 2h)]. (4.10)

With these notations, we can then write our forth-order centered difference scheme for the
Navier-Stoles equations (4.1)-(4.4) as follows:

dp
% + D, (pu) + Dy(pv) =0, (4.11)
d(pu) Du(pT) _ 1 (4 1
i + D, (pu®) + Dy (puv) + A = Re gDmU + Dyyu + gDzyv , (4.12)
d(pv) oy, Dy(T) 1 (1 4 p
—0 + Dy (puv) + Dy(pv°) + MZ  Re Dwu + Dypv + 3Dyyv = SeFr (4.13)
d (1
TG 2y = )M2(w? + %) ) + D, (puT + EL(y = )M2(u2 + 0?))
dt 2 2
pv, 2/ 2 2 _ (y-1M?
+D, (va+ 5 (v =1)M*(u* +v )) =T, + e Dy,
1 —1)M?
+ 5 (DuaT + Dy T) - %pv; (4.14)
with
(v — 1)M? [4u 4o
Uy, = R |3 —D,ou+ uDyu+ 3D 2y + 3D eyt + VD0 + 3 —Dyyv|, (4.15)
2 2, 1 2| 2 2
¢, =2 |(Dyu)” + (Dyv)” + 3 (Dyu + D)™ | — 3 (Dgu + Dyv)~. (4.16)

The discrete system (4.11)-(4.16) holds at all interior points. Then we apply the forth-order
Runge-Kutta scheme (2.8) to discretize the ordinary differential system (4.11)-(4.14).
Boundary conditions are dealt with the “ghost points” approach as follows: For example,
suppose I' = {(2,0) : a < x < b} is a boundary and the Dirichlet boundary condition or
Neumann boundary condition is posed. We always use the “ghost points” (z;, —h).
1). For the Dirichlet boundary condition u(z,0) = ug(x), we have that

u(z;,0) = wo(zj), (4.17)
u(zj,—h) = bu(z;,0) — 10u(x;, h) + 10u(z;,2h) — 5u(x;, 3h) + u(z;,4h). (4.18)

2). For the Neumann boundary condition g—‘;(m, 0) = g(z), we have that

48 36 16 3 12h
L0 = —u(xy 2 LAR) — 2 g(z), (4.1
U(CU],O) 25U($],h) 25 (CU], h) 5 (.’L'],3h) 25“’(:1"]7 h) 25 g(.’L']), ( 9)
1
u(zj,—h) = 3 [-10u(z;,0) + 18u(z;, h) — 6u(z;,2h) + u(x;, 3h)] — 4hg(z;). (4.20)

The above equations (4.17)-(4.20) are obtained by Taylor expansions and are fourth-order
accurate. The boundary conditions at other sides are dealt with in a similar way.
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In the next subsection, we use the above scheme to solve several problems of compressible
viscous flows.

4.3 Numerical examples

U—Ub(.’L'),Tzl,’U:g—ZZO ’U,:’l}:%:a—z:o
u=0 u=0 u=0 u=0
v = v=20 v=20 v=20
T= T=1 T="T T=T,
0 ) 5 9
or =0 m=0 =0 %
—p=2 _ — _ . _ 9T _ op _
u—v—a—Z—O,T—l “_U_a_y—a_z—o
(a) (b)

Figure 3. Boundary conditions for: (a). the Lid-driven cavity flow; (b). the buoyancy-driven flow.
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Figure 4. Numerical solutions for the lid-driven cavity flow for Re = 4000 on a 200 x 200 mesh. a)
Velocity field, b) Temperature.

Example 4.1. The lid-driven cavity compressible viscous flow

As shown in Figure 4(a), the fluid in the unit square cavity is driven by the moving top at a
velocity up(x) = 162?(1—x)2. This is to avoid the singularity at the two top corners for velocity
in the initial data. We take M = 0.5, ¢ = 0.6, v = 1.4, Fr = 1.0 and Pe = 100.0. In our
computation, we take At = 0.001. Figure 3 shows the velocity field and contour of temperature
for Re = 4000 on a uniform mesh 200 x 200 (the corresponding Rc = 20) at ¢ = 5.0.

Example 4.2. The buoyancy-driven cavity compressible viscous flow

The second example is a buoyancy-driven gas flow in a square enclosure [20]. As shown
in Figure 4(b), the configuration consists of two insulated horizontal walls and two vertical
walls at different temperatures Tj, and T.. In [20], the solution near incompressible regime was
presented. We take M = 0.5, =0.6,vy=1.4, Fr =1.0, T, = 0.4, T, = 0.1 and Pe = 100.0. A
uniform 100 x 100 grid is used in our computation. In this computation, we take At = 0.0002.
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Figure 5. Numerical solutions for the buoyancy-driven cavity flow for Re = 600 and M = 0.5. a)
Velocity field, b) Temperature.

Figure 4 shows the velocity field and contour of temperature for Re = 600 at t = 2.0. The
corresponding cell-Reynolds number is Rc = 6. Since the solution becomes discontinuous, when
Rc > 6, we observed numerical oscillations.

5. Conclusions

In this paper, we propose a high-order centered spatial difference scheme for the numeri-
cal simulation of compressible viscous flow. By using I-stable time-discretization methods, the
usual cell-Reynolds number constraint Rc < 2 is greatly relaxed. Under the standard CFL
condition, these schemes are stable and with high resolution of the viscous effect when Rc is
much greater than 2. Our numerical results show that, for the second-order centered spatial
difference scheme coupled with the I-stable second-order three-stage Runge-Kutta time dis-
cretization, Re < 3 gives quite good resolution for problems involving sharp viscous layers,
For the fourth-order centered spatial difference scheme coupled with the classical fourth-order
Runge-kutta time discretization, Rc < 6 gives very good resolution. When applying high-order
centered spatial difference schemes, the “ghost points” approach to deal with the boundary con-
dition is recommended and the one-sided high-order spatial difference scheme approach should
be avoided or used very carefully. Numerical results also show that the cell-Reynolds number
Re can be chosen much higher when the solution is sufficiently smooth (for example, when
the Mach number is very small) than solutions containing large gradients. For applications
of the I-stable centered difference schemes for incompressible viscous flows based on a weakly
compressible model, we refer to [1].
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