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Abstract

Let P be an n X n symmetric orthogonal matrix. A real n x n matrix A is called
P-symmetric nonnegative definite if A is symmetric nonnegative definite and (PA)T =
PA. This paper is concerned with a kind of inverse problem for P-symmetric nonnegative
definite matrices: Given a real n X n matrix /A{, real n X m matrices X and B, find an nxn
P-symmetric nonnegative definite matrix A minimizing ||A — Z||F subject to AX = B.
Necessary and sufficient conditions are presented for the solvability of the problem. The
expression of the solution to the problem is given. These results are applied to solve an
inverse eigenvalue problem for P-symmetric nonnegative definite matrices.

Mathematics subject classification: 15A24, 65F20.
Key words: Inverse problem; Matrix approximation; Inverse eigenvalue problem; Symmet-
ric nonnegative definite matrix

1. Introduction

Throughout this paper, we denote the real m x n matrix space by R™*", the set of all
orthogonal matrices in R"*" by OR™*", the transpose of a real matrix A by A7, the Moore-
Penrose pseudoinverse of a matrix A by AT, the n x n identity matrix by I,, the set of all
symmetric nonnegative definite matrices in R"*" by SR{*". A > 0(A > 0) means that A is
a real symmetric positive(nonnegative) definite matrix. For A, B € R™*"  we define an inner
product in R™*" :< A, B >= tr(BT A), then R™*" is a Hilbert space. The matrix norm || - ||
induced by the inner product is the Frobenius norm.

Definition 1.1 (c.f.[5]). A real n x n matriz A = (a;;) € R™*™ is called doubly symmetric or
bisymmetric if

Qjj = Qji = Any1—jnti—i, ¢=1,2,-- n.

The set of all bisymmetric matrices in R™*" is denoted by BSR"*". A real n x n matriz A is
said to be bisymmetric nonnegative definite if A is bisymmetric and nonnegative definite. The
set of all bisymmetric nonnegative definite matrices in R"*™ is denoted by BSR{™".
Definition 1.2. Let P € R™" be a symmetric orthogonal matriz. A € R™ ™ is called P-
symmetric nonnegative definite matriz if A is symmetric nonnegative definite and (PA)T = PA.
The set of all P-symmetric nonnegative definite matrices in R"*™ is denoted by SR} ™.

If P =I,, then SR?RX” = SR{™". e; denotes the ith column of I,,. Let S,, = [en,€n_1, -, €1].
If P=S,, then SR5*" =BSR;"".

In this paper, we consider the following problem.
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Problem IP. Given a matriz A € R™*"™ two matrices X, B € R™"*™  let
Sa={Ae€SR}"|AX = B}, (1.1)

find A€ Sy such that o _
1A= Alp= ok 13- Al (1.2)

Problem IP is essentially computing the nearest P-symmetric nonnegative definite matrix
in the Frobenius norm to an arbitrary real matrix A under the linear restriction AX = B. The
problem arises in a remarkable variety of applications such as structural modification and system
identification*'Y. If P = I,,, Problem IP reduces to an inverse problem for real symmetric
nonnegative definite matrices('?l. If P = S,,, Problem IP is an inverse problem for bisymmetric
nonnegative definite matrices!'?). If B = XA, A = diag(\i,--- ,\) € R™*™, then the set
Sy, further the solution fT, is determined by the eigenvalues Ay,---, A, and corresponding
eigenvectors, Problem IP becomes an inverse eigenvalue problem!?.

The symmetric nonnegative definite solutions to the matrix inverse problem AX = B were
studied by Zhang[12]. The analysis of Re-positive and Re-nonnegative definite solutions can
be found in [8] and [9], respectively. The bisymmetric nonnegative definite solutions to the
matrix inverse problem AX = B were treated in [10]. In this paper, the results from [10] are
generalized and extended to P-symmetric nonnegative definite matrices.

In section 2, we give necessary and sufficient conditions for the set S4 to be nonempty and
construct the set S4 explicitly when it is nonempty. In section 3, we show that there exists
a unique solution in Problem IP if the set S4 is nonempty and present the expression of the
solution to Problem IP. In section 4, we consider an inverse eigenvalue problem for P-symmetric
nonnegative definite matrices.

2. The Set S,

To begin with, we introduce a lemma.
Lemma 2.1 (c.f.[7]). Suppose that P € OR"*" is symmetric. Then there exists an orthogonal
matriz U € OR™™" such that

P:U(I’c 0 >UT. (2.1)
0 —In—k

The representation (2.1) is referred to as a spectral decomposition of the matrix P. For
convenience, let us introduce the notations

k‘lzk, k2:n—k.

It is easy to obtain the following lemma from Definition 1.2.
Lemma 2.2. A € SR " if and only if

AT =A4>0, AP-PA=0. (2.2)

About the structure of SRE*", we have the following result.
Theorem 2.1. Let the spectral decomposition of the matriz P € OR™ ™ be (2.1), A € SRE*"

if and only if
_ A11 0 T
A_U< 0 Ay )U , (2.3)

where A;; € SRF M (i =1,2).
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Proof. If A € SR}E", it follows from (2.1) that

1 0 I, 0
T k1 _ k1 T —
crav (B ) (T 5 )urav—o (2.4
Since A € SRy™", so UTAU € SRy*™. Let
A Aro >
UTAU = , 2.5
< Ay Axn (25)

where A;; € SRIgiin (l =1, 2)
Substituting the expression (2.5) in (2.4) yields A;2 = 0. Hence

_ A11 0 T
o (A0 Yer

On the other hand, it can be directly verified that the matrix A in form (2.3) belongs to
SR}*" from Lemma 2.2.
Lemma 2.3 (c.f.[12]). Let Y, Z € R"*™, and the singular value decomposition(SVD) of the

matriz Y be
_ X0 T

where Q@ = [Q1,Q2] € OR™"™, V = [Vi,W] € OR™ ™, ¥ = diag(o1,--,0.), o; > 0(i =
1L,---,7), r=rank(Y), Q, € R"™", Vi € R™*". Then there exists a matriz A € SRy™" such
that

AY =Z (2.6)

if and only if
Y2 =2TY >0, rank(Y'Z)=rank(2), (2.7)
in which case the general symmetric nonnegative definite solution of (2.6) can be expressed as
A=2Y" + 2y (L, = YY) + (I, =YY ZY T 2) 21 (I, - YY) + Q.GQY, (2.8)
where G € SR(()nfr)X(nfr) is arbitrary.

Theorem 2.2. For given matrices X, B € R" ™ let the spectral decomposition of the matriz
P € OR™" be (2.1), and

Ty _ [ X1 Th_ ( B
UX—<X2 L UTB={ g ), (2.9)
where X;, B; € R¥>™ (i = 1,2), and the SVD of the matriz X; be
) (1) )
X; = QY < 20 g ) voT =12 (2.10)

where QW = [Q1”, QY] € ORF >k v() = [, V)] € OR™ ™, £0) = diag(a(",--- , o\V)),
UJ(-i) >0 =1,---,1), ri = rank(X;), Qgi) € Rkixri, Vl(i) € R™*"i_ Then Sy is nonempty if
and only if

XI'B;=BlI'X; >0, rank(X!B;)=rank(B;), i=1,2 (2.11)

in which case Sy can be expressed as

T
Qe QY 0

SA = {AO + U ( T
0 QYG,QY

) UT|G; € SR (kimroy (2.12)
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where

A o
Ag=U ( 3 e Ut (2.13)
0

AY = BX[ + (BXHT (I, — XiX])

p=1.2 2.14
(T — XX)Bi(XTBY B (I, — XiX7), ' (2.14)

Proof. Since S4 is nonempty if and only if AX = B has a solution A € SR} ", then it
follows from Theorem 2.1 that AX = B and A € SR}E*" are equivalent to

A11 0 T _
U< 0 A, >U X = B, (2.15)

where A;; € SRE*¥i(j = 1,2). Thus AX = B has a solution in SRS*" if and only if A;X; =
B; (i = 1,2) has a solution in SR’giin. It follows from Lemma 2.3 that A;;X; = B; has a

solution in SRE ¥ if and only if

XI'B; =B!I'X; >0, rank(X!B;)=rank(B;), i=1,2

in which case the general symmetric nonnegative definite solution of A;; X; = B; can be repre-
sented as

Ay =BX; + (B XH)T (I, — X; X}1)

) T 1=1,2 2.16
+(Ir; — XiX;")Bi(XIB))*BI (I, — X; X;") + ng)Gngz) , (2.16)

where G; € SRS’CFW)XUCFT") (i = 1,2). Using (2.3) and (2.16) we obtain the expression (2.12)
of the set S4.
From Theorem 2.2 we obtain the following conclusion.
Corollary 2.1. If the SVD of the matriz X;(1 = 1,2) is (2.10), X; and B; satisfy the following
conditions
X!'B;=B'X;>0, i=1,2

then Sy is nonempty, and Sy can be expressed as
T
gl)G,1 le) 0 i
0 QG205
where Ag is expressed by (2.13), Qgi) € RFix(ki=m) (j; — 1 2),

Su={Ag+U ( > UT|G; € SR ™ xkimm)y

3. Expression of the Solution for Problem IP

Lemma 3.1 (c.£.[6]). LetC eR™", O = (C+CT)/2 and Cy, = QH be a polar decomposition
(Q € OR™", H>0). Then C = (Cy + H)/2 is a unique positive approzimation of C in the
Frobenius norm, i.e.

IC=Cllp=__inf ||C=C|p. (3.1)
VCESRy

We denote the unique positive approximation of C in the Frobenius norm by [5]+ Now we
prove the following theorem.
Theorem 3.1. Suppose A € R™", X,B € R"™™, X, and B;(i = 1,2) are defined by (2.9),
and the SVD of the matriz X;(i = 1,2) is (2.10). If X; and B;(i = 1,2) satisfy the condition
(2.11), then Problem IP has a unique solution AeSy. Moreover, let

~ A A o~ s T ~ .
UTAU = ( %; g ) Ag) = QY (A - B(XTB)*BNQY,  (32)
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where U is defined by (2.1), A € Rkixks (i = 1,2), then the unique solution A of Problem IP
can be expressed as

~ oWé,on" 0
A=Ay+U 2 2 A o7 uT, (3.3)
0 Q3 G20

where Ay is defined by (2.13), G; = [/ng)h_(z =1,2).

Proof. Since X; and B;(i = 1,2) satisfy the condition (2.11), the set S4 is nonempty. It is
easy to verify that S4 is a closed convex subset of the Hilbert space R™*"™. It follows from the
best approximation theorem[1] that there exists a unique matrix A € S4 satisfying (1.2), i.e
Problem IP has the unique solution Aes A-

By Theorem 2.2, A € S4 can be expressed as

(1) T
A =A0+U< @ 2) ’ 7 )UT
0 Qz G2Q2

QW ( - )Qu)T 0 (3:4)
=Ay+U !
0

where G; € SR T — 1 9).
From (2.10) and (2.14), it is easy to verify that

Xry =0
(I, - X;XHQY =0 i=1,2. (3.5)
i )T i
Q" 4PQY = Q4" Bi(XT By BI QY
From (2.13), (3.2), (3.4) and (3.5), we have

~ ~ 7
1A Al = ||A—A0—U( A o )UTII%
0 Q5" G2Qs

- W, oW’ 0
= [[UT(A - Ag)U - ( 2 G0 @ )T ) I
0 @y G2@Qy

~ T ~
Ay — AV - Y608 Arz r |7
~ ~ F
A21 Ay — AP - Q) G2QY
= 1 - 4 - QP0G I + | el + 1
0 O T ~ ~
= 5 - 4 (0 & ) QO I+ el + 1
0 O
- 210 (- a0 - (1§ g )||F+||A12||F+||A21||F
o (A, A“)>Q“) Q" (A - 4@t
=3 I

(3.6)

.

(2

i i i T ~ i i
Q" (A — AP QP (A — AP)QS -
+|Aro|% + ||A21||F

2 .
> IAS) — Gill2 + M,

i=1

T ~ . .
— AP QT (A, — AW
where M = ||A12||F+||Am||p+zn(QbT( o), G e
7 (A — AHQY 0
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Hence, Problem IP is reduced to find G; € SR[()k"_”)X(ki_”) such that

145 — Gill% = inf IAS) = Gillr, i=1,2. (3.7)
VGi€SR(()ki*7‘i)X(ki*7‘i)

It then follows from Lemma 3.1 that
Gi =AY, i=1,2. (3.8)

Substituting (3.8) in (3.4), we obtain (3.3).
If n=2k,P =S, =]en, - ,e1], then we have

_ I 0 T
P—U(0 —Ik>U’ (3.9)
where U = L Lo I € OR™ ™. For the matrices X, B € R™**™ let
\/5 Sk _Sk ) )

Xy = L[5, S,]X, B = —=[I, 5B (3.10)

1 — \/§ kyRk ) 1 — \/§ kyRk .
Xo = Iy, —Su]X, B> = —=[Is, —Sx]B (3.11)

2 — \/5 k> k 9 2 — \/5 k> k -

From (3.9) ~ (3.11), Theorem 2.2 and Theorem 3.1, we obtain the following corollary.
Corollary 3.1. Suppose A € R, X B € R™"™. Ifn = 2k and the SVD of the matriz
X;(i=1,2) is (2.10), then Sx = {A € BSR{*"|AX = B} is nonempty if and only if

I, S I, S
T k k — BT k k >
X <Sk Ik>B B (Sk Ik>X_O

[ (3.12)
rank[XT ( bk ) B] = rank[(I}, Sk)B],
Sk Ik
and
XT< I =5 )B:BT< B =5 )Xzo
-Sr I =Sk I (3.13)
rank[XT < I =5k ) B] = rank|[(I},, —Si)B].
=Sr Ix

If X and B satisfy the conditions (3.12) and (3.13), then there exists a unique bisymmetric
nonnegative definite matriz A € Sa satisfying (1.2). Moreover, let

1 Ik Sk > ~< Ik Ik > Avll AVIQ e kxk
— A - ~ ~ 7A € R * )
2 ( I, —Sk Sk =Sk Ao Asp *

- T ~ I. S. I
A = QY (A — (I, SBXT (& 7 ) By BT F )1,
Sk Ik Sk

i A I, -8 I
A;22) = Q§2) [A2s — (I, —Sk)B(XT k ) B)*BT k ]Q§2).
—Sk I —Sk

A can be expressed as

-~ 1 Ik Ik 121\11 0 Ik Sk
A== ~ 3.14
2<Sk _Sk><0 A22><Ik _Sk>, ( )
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where

Ay = B X"+ (B XTI, — X; X"

N T 3.15
- XXHB(XT B BE(, — xix ) + QOG0 =10 O
Ifn=2k+1,P=S5, =le,, - ,e1], then
_ Ipyr O T
P_U< J _Ik>U, (3.16)
I, 0 I
whereU= | 0 V2 0 € OR™ ™. Let
S, 0 =Sk
1 (L 0 S 1 (I 0 S
Xl_ﬁ<0 Y 0)){, Bl_ﬁ<0 Y 0>B, (3.17)
ngi(lk 0 —Si )X, B2:i(1k 0 —Si )B. (3.18)
V2 V2

It is easy to obtain a result similar to Corollary 3.1 from (3.16) ~(3.18), Theorem 2.2 and
Theorem 3.1.

4. An Inverse Eigenvalue Problem

Now we consider the following inverse eigenvalue problem for P-symmetric nonnegative
definite matrices.

Problem IEP. Given a matriz A € R™"™ m(0 < m < n) eigenvalues A1, -+ , A, € R and
corresponding eigenvectors Ty, - ,Tm € R™, let
Sa={AeSRY"|Azx; = Nz, i=1,---,m}, (4.1)
find A€ Sy such that
14~ Allp = inf |4~ Alr. (4.2)

Problem IEP is related to the frequently encountered engineering problem of a structural
modification on the dynamic behavior of a structure*!]. Let

X = [1’1,'-- ,xm]; A= dzag(Ala 7Am)7 (43)

then
Sa={A€SRY"|AX = XA} (4.4)

Lemma 4.1 (c.f.[12]). Suppose Y = [y1, - ,ym] € R"*™(y; € R"), A = diag(A1,- -,
Am) € R™X™_ Then there is a matriz A € SRy™"™ such that AY = YA if and only if

The following result gives the solution to Problem IEP.
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Theorem 4.1. Suppose A € R™" X = [Z1,- - ,Zm] € R™™ A = diag(Ay,---, A\m) €
R™X™_ Let the spectral decomposition of the matriz P € OR™" be (2.1), and
X
Ty _ 1
o= (5 »”

where X; = [xgl),--- ,m%)] € Riv¥m X, = [a:?),--- ,a:g,%)] € Rk2xm(m§-i) e RFi(i =1,2,5 =
1,--+,m)), and the SVD of the matriz X; be (2.10). Then Sa is nonempty if and only if

, e R0 2 - i i=1,--
Ai 20, (N —Aj)zp g 0, 1=1,2, i,5=1,--- ,m. (4.7)

If X and A satisfy the condition (4.7), then there exists a unique P-symmetric nonnegative
definite matriz A € Sa satisfying (4.2). Moreover, let

vrAu = ( fii Zz ) , AY = QY Ay — XiAXT XA TAXTIQY, i = 1,2

where A;; € Rkixki (1 =1,2), then A can be expressed as

-~ 121\11 0 T
A=U S N 4.8
( . A22> (48)

1. - + 4 WA, D" (; =
where Ay = XAX; + QP AR Q8" (1=1,2).
Proof. From Theorem 2.1, we know that AX = XA and A € SR}*" are equivalent to

A11 0 T _
U( o A, )U X = XA, (4.9)

where A4;; € SR’giin (1 =1,2). So Sy is nonempty if and only if 4;;X; = X;A has a solution
Ay € SREHM (7 =1,2). Tt follows from Lemma 4.1 that A;; X; = X;A has a solution in SRy **¢
if and only if X; and A satisfy the condition (4.7).

From Theorem 2.2, Theorem 3.1 and XiTXiXi+ = XZTB], it follows that Problem IEP has a
unique solution A which can be expressed as (4.8).
Remarks. Our results here generalize those results in [10].

5. Numerical Algorithm and Example

Based on Theorem 2.2 and Theorem 3.1 we can describe an algorithm for solving Problem
IP as follows.
Algorithm 5.1. 1) Compute the spectral decomposition (2.1) of the given matrix P;
2) Form the matrices X; and B;(i = 1,2) by (2.9);
3) If XI'B; = BI'X; > 0 and rank(X[ B;) = rank(B;)(i = 1,2), go to 4); otherwise
Problem IP has no solution and stop;
4) Compute the SVD of X;, and X; (i = 1,2);
5) Compute Ag by (2.13) and (2.14);
6) Compute A; and AY)(i = 1,2) by (3.2);
7) Find the unique positive approximation G; of Zgg) (1 = 1,2) based on Lemma 3.1;
8) Compute the solution A of Problem IP by (3.3).
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Example 5.1. Let

: 2 3 0 27 -12 -01 -12
¢ 1 -z 9 ~ -1.1 21 1.2 11
— 3 3 3 =
P -2 1+ 0 |’ 4 0 11 27 11 |’
0 O 0 -1 -1.1 1.2 1.2 4
V3-1 1 V3-1 2
NG V3 NG V3
V341 1 V341 2
X=| Vi o |B=| VE ¥
Ve V3 Ve V3
0 -1 0 -2
The spectral decomposition of the matrix P is
1 1 _1 1 1L _1 g\7r
V2 Ve VB 1 V2 V6 V3
a1 1 1 a1 17
p=| V2 "¥s V3 V2 V6 VB
0 2 1 -1 0 2 1 0
NG V3 NG V3
0 0 0 1 -1 0 0 0 1
We get
1 0 1 0
-1 0 X 1 0 B
Ty _ _ 1 Tnh _ _ 1
vtx 0 1 ( X, )’ u'B 0 2 < By )’
0 -1 0 -2
1 0 0 1 0 2 . .
where X; = <_1 0> = B, X = <0 _1>,B2 = <0 _2>.It is easy to verify

XIB; = BI'X; > 0 and rank(XI B;) = rank(B;)(i = 1,2). It follows from Theorem 2.2 that
S4 is nonempty. Using MATLAB we obtain the unique solution of Problem IP as

2.9527 —=0.7500 —-0.3098 —1.1620
—0.7500 2.0723 1.1903 1.1620
—0.3098 1.1903  2.5125 1.1620
—1.1620 1.1620 1.1620  4.0126

A=
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