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Abstract

We study a class of blockwise waveform relaxation methods, and investigate its con-
vergence properties in both asymptotic and monotone senses. In addition, the monotone
convergence rates between different pointwise/blockwise waveform relaxation methods re-
sulted from different matrix splittings, and those between the pointwise and blockwise
waveform relaxation methods are discussed in depth.
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1. Introduction

The waveform relaxation method is a basic and efficient iteration technique for solving
ordinary differential equations and differential-algebraic equations. It differs from classical iter-
ative techniques in that it is a continuous-time method, iterating with functions in a functional
space, and therefore is quite suitable for parallel computation. This kind of waveform re-
laxation method was first proposed by Lelarasmee, Ruehli and Sangiovanni-Vincentelli[19] in
VLSI-simulation, and was further studied and improved by many authors on both method
models and convergence properties. For example, Nevanlinna[23, 24] discussed the wave-
form relaxation method on finite interval in terms of Picard-Lindelof iteration, Janssen and
Vandewalle[18] studied the convolution SOR waveform relaxation methods, and Miekkala[20]
studied the applications of the waveform relaxation method to differential-algebraic equations.
In addition, Zubik-Kowal and Vandewalle[30] recently extended waveform relaxation technique
to functional-differential equations. For further details we refer to [20, 13, 14, 17, 21, 22] and
references therein.

However, so far as we know, most of these theoretical convergence results are about the
pointwise waveform relaxation method, and there is few about its blockwise alternative.

In this paper, we will consider convergence properties of the blockwise waveform relaxation
method for the linear initial value problems on the infinite interval [0, +00) in both asymptotic
and monotone senses. By making use of the block partition and the accelerated overrelaxation
techniques[16], we first set up a kind of blockwise waveform accelerated overrelaxation method.
This new method involves three arbitrary parameters, and therefore its convergence properties
can be considerably improved by suitable adjustments of these parameters. In addition, a series
of applicable and efficient blockwise waveform relaxation methods can be produced by various
choices of the parameters. Under suitable conditions, we prove the asymptotic convergence of
the blockwise waveform relaxation method for block H-matrix of different types. Moreover,
we demonstrate the monotone convergence properties as well as the monotone comparison
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theorems, which reveal the influence of the matrix splitting and the initial approximation upon
the convergence rate of this kind of method.

The organization of this paper is as follows. We introduce the definition of block H-matrix
and some related properties in Section 2, and establish the blockwise waveform relaxation
method in Section 3. The asymptotic and monotone convergence properties of the blockwise
waveform relaxation method are discussed in Sections 4 and 5, respectively. In Section 6, we
demonstrate the comparison theorem for the waveform relaxation methods. As a consequence,
the result of the convergence rates between the pointwise and blockwise waveform accelerated
overrelaxation methods is given in the monotone sense. We present numerical results by solving
a two-dimensional heat equation in Section 7, and at last, we end this paper with a brief
concluding remark in Section 8.

2. Preliminaries

The partial orderings “ <7, “ <” and the absolute value | o | in R” and R"*" are defined
according to the elements. For a matrix A € C**", let ¢(< n) and n;(< n)(i = 1,...,£) be

positive integers satisfying Ele n; = n, and define the blockwise vector and matrix spaces[3]

Vo(ni,...,ne) ={zeC |z=(f,...;a0)T, 2, €eC, i=1,....,0 }
Ly(ni,...,ng) ={AeC”™ | A= (4;), A e C¥>*ni ,j=1,...,0};
Ly r(ni,...,ne) = {M = (M;;) € Ly(n,...,ne)|M;; € C**™ nonsingular, i =1,...,¢},

which will be denoted simply by V,,,L,, and L, r, respectively, if there is no ambiguity.

A matrix G = (g;;) € R*™*™ is called an M-matrix if g;; < 0(¢ # j),i,5 = 1,...,n, and
G exists with G~! > 0; an H-matrix if its comparison matrix 9 (G) is an M-matrix, where
M(G) = (m;;) is an n x n matrix with m;; = [gi;| and m;; = —|gi;|(i # j); and an H-matrix
if G is an H-matrix satisfying g;; > 0(i = 1,...,n)[8]. Evidently, if we denote

DG:diag(glla-"agnn); BG:DG_Gy JG:DélBGa

and
Enxn:{M:(mij)|M€Rn><n’ mi; <0, i # 7, i,j:l,...,n},

then G € L™*" with positive diagonals is an M-matrix if and only if p(Jg) < 1[29], where p(e)
denotes the spectral radius of a matrix. For M € Ly, r, its type-I (type-II) block comparison
matrix (M) = ((M);;) € R (M) = ((M))s;) € RE<?) is defined by (M)i; = |[M;']|"!
()35 = 1) and (M)y; = —|IMyll (MD))is = —|IM5 Myl for i # j, i, = 1,....4; see
6, 7,9, 15, 25]. M € L, is called a type-I (type-II) block H-matrix if (M)(((M))) is
an M-matrix, and we simply denote it by M € Hg)(M € ng,n)). Evidently, it holds that
HD ¢ 5D,

For M € L,,, we use [M] = (||M;;||) € R**¢ to represent the block absolute value. The block
absolute value of a vector € V,, can be defined in an analogous way.

The following lemmas will be frequently used in what follows.

Lemma 2.1. Let L,M € L,,z,y €V, and v € C'. Then
(1) [L] = [M]| < [L+ M] < [L] + [M] (|[z] = [y]| < [z +y] < [2] + [¥]); [3]
(2) [LM] < [L)[M] ([Mz] < [M][z]); [3]
(3) [yM] = |y|[M] ([ya] = [7][=]); (3]
(4) p(M) < p([M]).
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Proof. (1)-(3) were proved in [3], and (4) was proved in [3] for || - ||; and || - ||co- Here we
just need to verify the validity of (4) for any consistent matrix norm.

To this end, we assume that A € C' is an eigenvalue of the matrix M such that p(M) = ||,
and z # 0 is the corresponding eigenvector, that is Mz = Az. By (2)and (3) we have |\|[z] =
[Mz] < [M][z], and it follows from Theorem 2.1.11 in [11] that p(M) < p([M]).

Lemma 2.2. [3] Let M € Hy' (HY"). Then
(1) M is nonsingular;
(2) M~ < (M)~ ([M] < (M)~ [D(M) ™),
(3) p(Jiay) <1 (p(Jiaryy) < 1),
where D(M) = Diag(Mj1, ..., Myy).
Lemma 2.3. Let D € C™*™ be a Hermitian positive definite matriz. Then
161 +D)7'Dlla <1 and |I(§1 + D)™l < [[D7]J2
hold for any € € C' satisfying Re(¢) > 0.

Proof. Because D is a Hermitian positive definite matrix, there exist a unitary matrix
V e C™*™ and a diagonal matrix A = diag(\1, ..., A\p) such that D = V*AV, where V* is the

conjugate transpose of V and Ay, ..., A, are the eigenvalues of D. Evidently, all \;(i = 1,...,m)
are positive reals.
Because || - ||2 is a unitarily invariant matrix norm, it follows that

1€ + D)1 Dlle = |(V* (€1 + A)V) VAV,
= ||(&1 + A) 1Al

. A1 A
‘dmg<s+xl’“"§+xm>

i
max <1
1<i<m |f + >\z| -

2

)
and

1
-1 = * -1 — < -1 — —1
T+ D)l = VAL + M)Vl = max cee < max (Al = (1Dl

when Re(§) > 0.

3. The Blockwise Waveform Relaxation Methods

Consider the linear initial value problem(IVP)

{ i(t)+ Az(t) = f(t), t>0, (3.1)
z(0) = xo, )
where A € C"*" is a given matrix, f(t) € C" is a known vector-valued function and z(t) € C*
is the unknown vector. By the famous Picard-Lindel6f Theorem, we know that for any given
initial vector zy € C", there exists a unique solution of IVP (3.1) in any interval [0,T](0 < T <
+00), provided that f(t) is continuous in [0,7]. Therefore, in the following, we assume that

f(t) € C[0,00).
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If we have a splitting A = M — N, then IVP (3.1) can be successively approximated by the
pointwise waveform relaxation(PWR) iteration

g P (t) + My® (t) = Na k=D (t) + f(t),
B (t) = By® () + (1 = Bzt~ (1), (3.2)
2 (0) = y™®(0) = 0,

where 2(°)(t) is a given initial guess, and 8 € (0,00) a relaxation parameter. Immediately, we
know that the solution of (3.2) has the brief expression

2 ® (t) = Kpa =D (1) + Bp(1), (3.3)
where
Kpa(t) =3 /0 =DM N (8)ds + (1 — B)a(t),

®p(t) :ﬂ(e_tMa:(O)+ / oo f(s)ds).

0

(3.4)

Evidently, when 8 = 1, the PWR iteration reduces to the waveform relaxation iteration dis-
cussed in [19].

If welet A =D — L —U, where D,—L,—U are the diagonal, strictly lower and upper
triangular parts of the matrix A, respectively, then we can obtain a specific class of practical
and efficient waveform relaxation iteration, called the pointwise waveform accelerated overre-
laxation(PWAOR) method, with

Kpwaora(t) =3 / e OMO N W) (s)ds + (1 - a(t),
0

t
®pw aor(?) :ﬂ(e—tM(v,w)m0+/ e(s—t)M(W)f(s)ds),
0

where 1 1
M(3,0) = =(D=9L), N(p0) = —((1 =)D + (@ =)L +0),
and v € [0,00) is a relaxation parameter, w, 3 € (0,00) the acceleration factors.

Noticing that there are three arbitrary parameters vy,w and 8 in the PWAOR method,
we can reasonably adjust these parameters so that this method possesses better convergence
behavior. Moreover, suitable choices of these three parameters (v,w, 3) can result in a series of
applicable and efficient waveform relaxation methods, such as the Jacobi (y = 0,w = 8 = 1),
Gauss-Seidel (y = w = 8 = 1), SOR (y = w > 0,8 = 1) waveform iteration methods, and
extrapolated Jacobi (y = 0,w = 1), Gauss-Seidel (y = w = 1), SOR (y = w > 0) waveform
iteration methods, etc..

It is well known that the PWR iteration (3.3) converges if and only if the spectral radius of
the kernel operator Kp is less than one, i.e., p(p) < 1. Since one always have p(Kp) = |1 -]
on any finite time interval[23], we would learn nothing about the effect of the matrix splitting on
the actual rate of convergence. Hence, in the following, we will concentrate on the convergence
properties of the waveform relaxation method on the infinite interval [0, +00).

Let LP(Ry,C")(1 < p < 00) denote the usual LP-space of C"-valued functions defined on
[0, 4+00). Then we can prove the following theorems, as those in [21].

Theorem 3.1. Let A = M — N be a splitting of the matriz A € C**™, and the operator Kp
in (3.4) be defined in LP(Ry,C") with 1 < p < oo. If all eigenvalues of the matriz A have
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positive real parts, then Kp is a bounded operator if and only if the eigenvalues of the matrix
M have positive real parts. Furthermore, if all eigenvalues of the matriz M have positive real
parts, then

p(Kp) = sup p(B(zI +M)™'N + (1 - B)I)

Re(2)>0

<B sup p((zI+M)"'N)+[1-p|
Re(z)>0

=B sup p(Kp(2))+[1-4],
Re(z)>0

where Kp(z) = (2I + M)™'N is the Laplace transform of the kernel of K.

Theorem 3.2. For any Hermitian positive definite matriz A € R"*™ and for the splitting
A= M — N that M and N are both Hermitian with M positive definite, the PWR method
converges, provided that the matriz 2M — A is positive definite.

Theorem 3.3. For any Hy-matriv A € R*"*"  the PWAOR method converges, provided the
relazation parameters satisfy
1

14+ sup p(Kpwaor(z))’
Re(2)>0

2
0<v<w, 0<w<—"" and 0<f<
7 1+ p([Ja])
where Kpwaor(z) = ((z/w)I + M(v,w))"'N(y,w).

In addition, analogously to [4], we have the following result for the PWAOR method with
8 =1, which is an extension of the result of Stein and Rosenberg[26].

Theorem 3.4. Let A € L™*" have positive diagonals and 3 = 1. Then for all v and w
satisfying 0 < v <w and 0 < w < 1, it holds that

(1) p(Ja) <1 if and only if p(Kpwaor) < 1;

(2) p(Ja) <1 (p(Kpwaor) < 1) if and only if A is an M-matriz;
(3) if p(Ja) <1, then p(Kpwaor) <1 —w+wp(Ja);

(4) if p(Ja) > 1, then p(Kpwaor) > 1 —w +wp(Ja);

(5) p(Kpwaor) > 1 —w;

(6) p(Ja) =0 if and only if p(Kpwaor) =1 — w.

Proof. Because 8 = 1, we have p(Kpwaor) = SUP Re(2)>0 p(Kpw aor(z)), where
z _
Kpwaor(z) = (;I+ M(y,w))"'N(v,w).

Now, we first prove the following statement:

p(Kpwaor) = p(K(v,w)), (3.6)

where K(v,w) = M(v,w) "' N(v,w).
Obviously, p(Kpwaor) > p(K(7,w)). On the other hand, we have

|[Kpwaon(2)| = (ST +M(y,0) "' N(3,w)]
|(zI +D —yL) (1 —w)D + (w —7)L 4 wU)| (3.7)
|

(I —y(z[+D)~'L)~' - (2I+ D)~ - (1 —w)D + (w — )L +wU)|.
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Since D > 0, for z € C' satisfying Re(z) > 0, it holds that |(2I + D)"!| < D!, and

n—1

Z('y(zl + D) L)
i=0

< Z |y(2I + D)*1L|i
i= 0
< Z (yD'L)

(I DL~

(I —y(zI+D)"'L) Y| =

which, together with (3.7), lead to
|Kpwaor(2)| < (I —yD L) (1 —w)[ + (w =)D 'L +wD 'U) = K(v,w).

Hence, we have p(Kpwaor) < p(K(y,w)), which shows the validity of (3.6).
For € > 0, if we denote

J.=D YL+U)+eeel =Ty +eceel’, e=(1,1,...,1)T ¢ R,

then J. is a nonnegative and irreducible matrix, and p(J4) < p(J) < 1 for any small €, provided
p(J4) < 1. By applying the Perron-Frobenious Theorem[27] to the matrix .J., we see that there
exists a positive vector u € R" such that

J-u = p(J:)u.
Thus, it holds that

K(v,w)yu = (I —yD L)Y (1 —w)+ (w =)D 'L +wD U)u
(I —w(I —AD'L)"Y (I = D~ (L+U)))u
(I —w(I —yD7'L)~YI - J.))u
(T — (1 — p(T)(T — DLy Yu
(1—w+wp(Je))u.

IN TN

It follows from Theorem 2.1.11 in [11] that p(K(v,w)) <1 —w + wp(J:). Since lim._,¢ p(J;) =
p(J4), we have p(K(v,w)) <1 —w+wp(Ja) as € = 0. Therefore we have (3).

In addition, since J4 > 0, p(J4) is an eigenvalue of J4, that is, there exists a vector v € R"
such that

J(y,w)v = (1 —w+wp(Ja))v,

where
J(v,w) = —aD™ L)Y ((1 —w)I + (w —v)D~'L + wD~'U),
_ 2
“= 1—w+wp(Ja)

Hence, 1 —w + wp(Ja) is an eigenvalue of the matrix J(vy,w), and therefore, 1 —w + wp(Ja) <
p(J(v,w)). If p(Ja) > 1, then @ < yand (I —aD 'L)~! < (I —yD 'L)"!, which implies that
J(v,w) < K(vy,w), and thus

p(J(7,w)) < p(K(v,w)). (3.8)

The relationships (3.6) and (3.8) show that

p(Kpwaor) > p(J(7,w)) > 1 —w+wp(Ja),

provided p(J4) > 1, that is to say, the statement (4) is true.
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(1) can be got directly from (3) and (4), and (2) is an obvious result.
Noticing that

Ky,w)=T=~yD 'Ly (1 =)+ (w—-9)D'L+wD'U)> (1 -w)I>0

when 0 < w <1 and 0 < v < w, we have p(K(y,w)) > 1 —w. By (3.6), we know that (5) is
true.

If p(Ja) = 0, it follows from (3) and (5) that p(Kpwaor) = 1 — w. Meanwhile, under the
assumption p(Kpwaor) = 1 — w, we know that p(Kpwaor) is independent of the parameter
v, and hence it holds that

p(Kpwaor) = p(K(y,w)) = p(K(0,w)) =1 —w+wp(Ja) =1 —w,

which implies that p(J4) = 0. Therefore we have (6).
The proof of Theorem 3.4 is completed now.
If A,M,N,L,U € L, and D € L, 1, then we can obtain the following blockwise waveform
relaxation(BWR) method
2™ () = Kgz* V() + ®p(t),

and the blockwise waveform accelerated overrelaxation(BWAOR) method
2 M (t) = Kpwaorz™ "V (t) + swaor(t),

respectively, which are block variants of the PWR and PWAOR methods, respectively. Here

Kg,®p and Kpw aor, ®Bw a0r have the same expressions as Kp, ®p and Kpwaor, Prwaor

in (3.4) and (3.5), respectively. However, the philosophies behind these expressions are quite

different, because the former is understood in blockwise sense, while the latter in pointwise one.
Evidently, Theorem 3.1 is also true for the BWR method, that is,

p(Kp) = sup p(B(zI+M)"'N+(1-B)I) < sup p(Ep(2))+ |1 -4, (3.9)
Re(z)>0 Re(z)>0

where Kp(2) = (21 + M) !N, provided all eigenvalues of the matrix M have positive real
parts.

4. Asymptotic Convergence Analysis for the Blockwise Methods

In this section, we discuss the asymptotic convergence properties of the BWR and BWAOR
methods.

Theorem 4.1. For any A € Hl(;), let D(A) = Diag(A11,...,Aw) be a symmetric positive
definite matriz, and the block splitting A = M — N satisfy

D(M) = D(A), (A)=(M)—[N]= D4y — By (4.1)

Then the BWR method converges, provided the relaxzation parameter 3 satisfies

0<fB<

)

1+ po

where po = SUPe(z)>0 P(KB(2)) and || -] is || - [|2-

Proof. Because all block diagonals A;(i = 1,...,¢) of the block matrix A € L,, are symmet-
ric positive definite, by making use of Lemma 2.3 and (4.1), for z € C' satisfying Re(z) > 0,
we have

12 + M) 7Hlz = ([T + Aii) Ml < 1Al = 1Mo
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It straightforwardly follows that
(A) < (M) < (2l + M) < Day.

Since both (4) and D4y are M-matrices, we know that (M) and (zI + M) are M-matrices.
Therefore, we have 2I + M € Hg) and (2I + M)~ < (M)~!. By Lemma 2.2, it holds that

(2] + M)™Y < (2T + M)

Hence
[KB(2)]

(2] + M)~1N]

(2 + M) ][]

(2I + M)~[N]

M)~"({(M) — D4y + B(ay)

I— (M) 'DA (I = Jiay) 2 Gh.

IN A IA

Because A € Hg), it follows from Lemma 2.2 that p(J4y) < 1, which implies that (I —
Jiay) ! exists and

o0

(I=Jay)™" =D (Ja)' >0,
=0

Let v = (I — Jiay) ‘e, where e = (1,1,...,1)T € R*. Then v > 0 and
Giv=uv-— (M)_lD(Al)(I —Jiayv < w,
which yields that p(G1) < 1. Thus, from Theorem 2.8 in [27] we can obtain

po= sup p(Kp(z)) < sup p([Kp(2)]) < p(G1) <1. (4.2)
Re(z)>0 Re(z)>0

Moreover, by (3.9) we have p(Kp) < 1 when 0 < 8 < 2/(1+ pp).

Theorem 4.2. For any A € Hgl), let D(A) = Diag(A11,...,Aw) be a symmetric positive
definite matriz, and the block splitting A = M — N satisfy

D(M) = D(4), ({4)) = ((M)) = [D(A)T'N] =TI = B(ray.- (4.3)

Then the BWR method converges, provided the relazation parameter 3 satisfies

0<fB<

)

1+ po
where po = SUPge(2y>0 P(Kp(2)) and [ || is || - [|2.
Proof. Because all block diagonals A;(i = 1,...,¢) are symmetric positive definite, from

Lemma 2.3 and (4.3), we have

[D(z1 + M)~'D(M)] = [D(zI + A)~"'D(A)]
= diag(||(=I + A1) " Aulla, . 12T + Age) ™ Agello) (4.4)
<I
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and
(21 + Mii) " Mijlla = [[(21 + Aii) " Mgl

<N+ Ai) ™ Aaill - 15 Mijlo
< A7 Mgl
= (| M5 M,
or equivalently,
((zI + M))ij > ((M))i
for z € C! satisfying Re(z) > 0. Therefore

((4)) < ((M)) < (L + M)) < I (4.5)
Since both ((M)) and I are M-matrices, and
(D(zI + M) (2 + M))) = ((zI + M)),

it follows from (4.5) that ((M)) and ((D(zI + M)~*(zI + M))) are M-matrices. Therefore, it
holds that D(zI + M)~L(zI + M) € HY" and ((D(zI + M)~L(zI + M)))~! < (M)~
By Lemma 2.2 we have
[(D(zI + M)™ (2l + M))™'] < {(D(zI + M)zl + M))) Y [D(D(2I + M)~ (21 + M))~1]
(DI + M)~ (21 + M)))~*
((ary)—,

which, together with (4.3) and (4.4), yield

IN

[Kpwr(2)] = (] + M)~'N]

(21 + M) " 'D(zI + M)] - [D(zI + M) ~LD(M)] - [D(M) ' N]
(D(2I + M) (2 + M))~1]- [D(M) 'N]

(M)~ (M) — I + Bray)

I — ((M))~X(I = Byay)) = Go.

VANVANPAY

[
[
(

Noting that A € Hgl), by Lemma 2.2, we know that

P(Bay) = p(Jay) <1.

Similarly to (4.2), we have

po= sup p(Kg(z)) < sup p([Kp(2)]) <p(Ga) <1,
Re(z)>0 Re(z)>0

Now, (3.9) immediately yields that p(Kp) < 1 when 0 < 8 < 2/(1 + pp).
Next, we turn to the asymptotic convergence of the BWAOR method.

Theorem 4.3. For any A € Hg), let A= D — L —U be a block splitting of the matriz A,
where D € Ly, 1 is symmetric positive definite. Then the BWAOR method converges, provided
the relazation parameters ~v,w and B satisfy

2 2
0<v<w, O<kw<——F—— and 0<B< ,
=7= L+ p(Jay) 1+p

where p1 = SUPge(z)>0 P(KBWa0R(2)) and || - || is || - |[2-
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Proof. Because the parameters v and w satisfy 0 < v < w and the complex z € C' satisfies
Re(z) > 0, by applying Lemma 2.3 we have

~
|
—

[(I —~(zI+D)*L)™!]

I
™

(=}

(v(:I + D) ' L)]

~
| =
=l

(]

(v[(=1+ D)= D] [D_lL])i

\\ﬂ,
|
= o

and
[(2I 4+ D) (1 —w)D + (w =)L +wU)] < [1 —w|I + (w—~)[D L] +w[D~'U].

It follows from these estimates that

I—(I-~4[D'L)) Y(I-Hw)) =Gs,

where H(w) = |1 — w|I + w([D"'L] + [D~'U)).
Since A € Hg), by Lemma 2.2 and Theorem 2.8 [27] we can obtain that
p(D7I L]+ [DU]) < p([D (L] + [UD) = p(Jiay) < 1.
Therefore, it holds that p(H(w)) < 1 when 0 < w < 2/(1 4 p(Jiay))-
Similarly to (4.2), we know that p(G3) < 1. Hence

pr= sup p(Kpwaor(z)) < sup p([Kewaor(2)]) < p(Gs) <1,
Re(z)>0 Re(2)>0

and p(Kpwaor) < 1 holds when 0 < 8 < 2/(1+ p1).

Theorem 4.4. For any A € Hgl), let A= D — L —U be a block splitting of the matriz A,
where D € Ly, 1 is symmetric positive definite. Then the BWAOR method converges, provided
the relaxation parameters v,w and 3 satisfy

2

0<yv<w, O<kw<— and 0<B<
1+p(J(<A>>) 1+p

)

where p1 = SUPpe(z)>0 A(KBWAOR(2)) and || - || is || - |2-
Proof. Because A € Hgl), it holds that p([D~'L] + [D~'U]) = p(J((ay) < 1. Similarly to
the proof of Theorem 4.3, we can immediately fulfill the proof of this theorem.
5. Monotone Convergence Analysis

To discuss the monotone convergence properties of the waveform relaxation methods, we
first introduce several elementary lemmas.
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Lemma 5.1. [27] If A, B are both n X n matrices, then

exp(tA + tB) = exp(tA) - exp(tB), t>0,
if and only if AB = BA.

Lemma 5.2. For A € C"*", suppose that the splitting A = M — N satisfies N > 0. Then the
operator Kp defined by (3.4) is isotone on LP(Ry,C") if and only if M € L™*™.

Proof. Because M € L"*™ there exists a sufficiently large @ € R such that af — M > 0.
Then for s < t, we have

e

(s=t)(M—al) _ (t=s)(aI=M) _ Z(OJ M? (=9 0.
2.

i=0
which, together with Lemma 5.1, show that

e(sft)M — e(sft)(aIJeraI) — e(sft)ale(sft)(MfaI) — ea(sft)e(sft)(MfaI) > 0.

Let x(t),y(t) € LP(Ry,C") satisfy y(¢) > x(¢t) for t > 0. Then

t ¢
Kpy(t) — Kpx(t) :/ e(s*t)MNy(s)ds—/e(s*t)MNm(s)ds

0 0

= /Ote(s_t)MN(y(s) —z(s))ds >0,

which implies that the operator Kp is isotone on LP(R;.,C").

In addition, assume that there exists an index pair (i, j) satisfying i # j,1 < 4,7 < n such
that m;; > 0. If we define F(t) = e '™ for t > 0, then it holds that F'(t) = —Me M.
Obviously, F'(0) = I and F'(0) = —M. Therefore, we have (F(0));; = 0 and (F'(0));; =
—my;; < 0, where (F(0));; denotes the (i, j)-th element of the matrix F'(0). By continuity of
the matrix function F(¢), (F'(t));; < 0 holds for any ¢ € (0,9), provided § is sufficiently small,
or in other words, (e*=M),; < 0for 0 < s <t < 4.

Let (1), y(t) € LP(Ry,C"), y(t) > a(t) satisfy N(y(t) — a(t)) = (0,...,0,8(1),0,...,0)7,
where 3(t) is the j-th element of the vector N(z(t) — y(t)) and satisfies 8(t) > 0 for ¢ > 0.
Then we have

(ratt) = K0 = [ VN0 = a(o)is)

0

t
= </ e<s—t>M(0,...,o,ﬁ(s),o,...,O)Tds>
0 i

= /t <e(5t)M> B(s)ds <0
0 ij

for 0 < t < &, which obviously contradicts the assumption that p is isotone on LP(R;,C").
Up to now, we have completed the proof.

Theorem 5.1. For A € R"*"™, let the splitting A = M — N satisfy M € L™ and N > 0.
Assume that z(©) y(©) € R" are initial guesses obeying z(® < y©  and {z(P}, {yP} are
iterative sequences, starting from z(© y©)  respectively, and generated by the PWR method. If
0<B<1andz® <z, yO© >y then

(1) = P) < gptl) < ¢0+D) < (P =0,1,2,.



692 J.Y. PAN AND Z.Z. BAI

(2) plLIr;o 2P =g = y* = plLIgo yP) and x* = y* is the unique solution of the IVP (3.1);
(8) for any 20 € R" obeying (0 < 20 <y the iterative sequence {z(p)}, starting from
2 and generated by the PWR method, satisfies ) < 2(P) < y®)(p =0,1,2,...). Hence
lim 2P = g* = y*.
p—>00
Proof. 1t follows from Lemma 5.2 that the operator Kp is isotone under the assumptions.
We can demonstrate (1) by directly using induction. From (1), we know that lim, ., () =
" <y* =limp o0 y® and z*,y* are solutions of the IVP (3.1). On the other hand, since the
IVP (3.1) has a unique solution (see Section 3), we immediately obtain that z* = y*. Finally,
the proof of (3), analogous to that of (1), can be done by direct and technical manipulations.
The monotone convergence result of the blockwise waveform relaxation method can be got
in an analogous way to Theorem 5.1.

Theorem 5.2. For A € L, let the splitting A = M — N satisfy M € L™ and N > 0.
Assume that z(©) y(©) € V, are initial guesses obeying () < y©  and {z(P}, {yP} are
iterative sequences, starting from 9, y(©)  respectively, and generated by the BWR method. If
0<pB<1,and z® <zM yO© >y then

(1) © P) < glptD) < y(p+1) <y® p=0,1,2,...;

*)

(2) lim 2P =z* =y* = lim y'?), and o* = y* is the unique solution of the IVP (3.1);

pP—>00 p—00

(3) for any 2© € V,, obeying z(©) < 2(0) < y(©)  the iterative sequence {z(P)}, starting from
2 and generated by the BWR method, satisfies z?) < 2(P) < y(P) (p=0,1,2,...). Hence,
lim 2P =g* = y*.
p—>00
From Theorem 5.1 and Theorem 5.2, we can obtain the following result for the PWAOR
and BWAOR methods.

Corollary 5.1. For A€ lL,,let A=D—L—U satisfy D € L™ and L > 0, U > 0. Assume
that (), y©) € R™ are initial guesses obeying x(*) < y(©, and {P}, {yP)} are iterative se-
quences, starting from z(®), y(©) respectively, and generated by the PWAOR (BWAOR) method.
If 29 < 2y > 40 " and the parameters v, w and 3 satisfy 0 < v < w, 0 < w < 1 and
0< pB<1, then

(1) = (p) <z (p+1) < y(p+1) < y(p) p=0,1,2,.

(2) lim 2 =gz* =y* = lim y?), and 2* = y* is the unique solution of the IVP (3.1);
p—00 p—r00

(3) for any 2(© € R* obeying (@) < 2(0) < y(O) | the iterative sequence {z(P)}, starting from
2 and generated by the PWAOR (BWAOR) method, satisfies (P) < 2(P) < y(®)(p =
0,1,2,...). Hence, lim 2P = p* = T

p—0o0

6. Comparison Results

In this section, based on the spirits of [1, 2, 10, 28], we will study the convergence rates
of the waveform relaxation methods resulted from different matrix splittings in the sense of
monotonicity. Meanwhile, we will investigate the influence of the relaxation parameters on the
convergence behaviors of these methods.

For this purpose, we need the differential comparison theorem in [12].
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Lemma 6.1. [12] Let z1(t) and x2(t) be solutions of the ordinary differential equations
&= fi(t,z) and &= fo(t,z),
respectively, where
filt,x) < falt,x), for t€a,b], —o0<a<b< +o0.
Assume that either f1 or fo satisfies the Lipschitz condition. If x1(a) = z2(a), then
x1(t) < 22(t)  for all t € [a,b)].

For A € R**" let A = My — N; = My — Ns be two different splittings. Corresponding to
these two matrix splittings, we compare the monotone convergence rates between two different
iterative sequences {2} and {y(®} defined by

#P)(t) + MyzP) () = NP0 () + £(1), 2P (0) = xo (6.1)
and

g (1) + Moy (8) = NoyP D (t) + f(1),  y'P(0) = a0, (6.2)
respectively.

Theorem 6.1. For A € R**"  let A = M; — N;(i = 1,2) be two different splittings. Assume
that £(© = y(©) ¢ R™ is an initial guess, and the iterative sequences {x®} and {yP} are
defined by (6.1) and (6.2), respectively. If M; € L™*™ and N; > 0 for i = 1,2, then

(1) a’;(p) Z y(p) (p — 0’ ]_, 2’ .. _)’ as .’L'(O) S a’;(l) or y(o) S y(l);
(2) a’;(p) S y(p) (p — 0’ ]_, 2’ .. _)’ as .’L'(O) Z a’;(l) or y(o) Z y(l)’
provided Ny > Nj.

Proof. We first prove (1) by induction.

For p =0, (1) is obviously true. Suppose that (1) has been verified for all p < k. Without
loss of generality, we assume that z(® < (1), Then, according to Theorem 5.1, {z(P} is
monotonously increasing. By subtracting (6.2) from (6.1) we obtain

D 4 ML (D = N2 (B) g (B) (6.3)
where we have used the notations
20 =20 g0 =k k+1) and u® = (Ny — Np)(zF+D) — 20y > 0.

We next show that
k1) — (k1) y(k+1) > 0.

To this end, we construct an initial value problem

Y L M) = Ny 3 (0) = 0, (6.4)
Let z(F+1)(¢) and Z(*+1(t) be solutions of (6.3) and (6.4), respectively. Since

A (0) = 20F1(0) =y (0) = w0 — w0 = 0 = 2F1(0)
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and u®) > 0, it follows from Lemma 6.1 that
2Dy > Z* () for > 0.

Therefore it is sufficient to demonstrate Z(*+1)(¢) > 0 for t > 0.
By the solution formula of ODE & = ax + b, we have

t t
FHh+1) () = / e(s=DM: N () () s 4 e=tMa3(h1) () = / (=M N () (5) s,
0 0

Here we have used the condition E(’““)(O) = 0. Because My € L™ and N> > 0, from the
proof of Lemma 5.2, we know that

eG=OM2N, >0 for s <t
Considering the induction assumption z(*) = z(*) — y(¥) > 0, we straightforwardly obtain
FED () >0 for t>0.

Hence 2t (¢) > 0, which implies that z*+1 () > y*+1) (¢) for t > 0.
By induction, we demonstrate the validity of (1).
Similarly, we can demonstrate (2).
Analogous to [5], we can immediately obtain the following results from Theorem 6.1.

Corollary 6.1. For A € R**"(L,), let A = M; — N;(i = 1,2) be two different pointwise
(blockwise) splittings. Assume that 2 = 4O ¢ R* s an initial guess, and the iterative
sequences {x®} and {y®} are generated by the PWR(BWR) method corresponding to the
above two matriz splittings, respectively. If 0 < 8 <1 and M; € L™, N; > 0 fori = 1,2, then

(2) x(p) S y(p) (p = 07 17 27 s ')7 as :I’.(O) Z x(l) or y(o) Z y(1)7
provided No > Nj.

Corollary 6.2. For A € R""(L,), let A = M(v;,w;) — N(vi,wi)(t = 1,2) be two different
pointwise(blockwise) splittings. Assume that (0 =y ¢ R" js an initial guess, and the itera-
tive sequences {x®} and {y®)} are generated by the PWAOR(BWAOR) method corresponding
to the above two matriz splittings, respectively. If 0 < v; < w;, 0 <w; <1 and 0 < B; <1 for
i =1,2, then

(1) :L-(p) Z y(p)(p = 07 1725 s -)7 as x(O) S x(l) or y(o) S y(l);
(2) :L-(p) S y(p)(p = 07 1725 s -)7 as x(O) Z x(l) or y(o) Z y(1)7

provided wy < w1, wiye < wsy1 and Bz < Fi.

Corollary 6.3. For A € £, Let 20 = y(© € R* be an initial guess, and the iterative
sequences {xP} and {yP)} be generated by the BWAOR and PWAOR method, respectively. If
0<w<1,0<y<wand0< B <1, then

(1) 2 >y®P(p=0,1,2,...), as 2 <z ory®» <yW;
(2) a’;(p) S y(p) (p — 0’ ]_, 2’ .. _)’ as .’L’(O) Z a’;(l) or y(o) Z y(l);

This shows that the BWAOR method converges faster than the PWAOR method in the monotone
sense.
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7. Numerical Results

We consider the heat equation in two space valuables which, through the finite difference
discretization, leads to a linear initial value problem of the following form (see [14])

z(t) + Az(t) =0, t>0,
where
T -I 4 -1
-1 T I -1 4 -1
A= .. . .. E]Rnxn T = .. . .. ER@X[
-1 T -I -1 4 -1
-1 T -1 4

n = ¢2, and I is the identity matrix of dimension /.

We solve the IVP (7.1) on interval [0,2] with £ = 10 and ¢ = (1,...,1)T € R*. Here we
assume that the integrals in the resulting equations are discretized by the implicit trapezoidal
rule with stepsize At = 0.01. We start with an initial vector having all components equal to
1,i.e,20() = (1,...,1)T € R for t > 0, and terminated once the current iteration z(*+1)(¢)
satisfies maxo< <o |21 (t) — 2(F) ()] < 1078, We list the numbers of iterations of PWSOR
and BWSOR methods in Table 7.1, and those of PWAOR and BWAOR methods in Table 7.2,
respectively.

Table 7.1 Iteration numbers of PWSOR and BWSOR methods

w 0.80 | 0.90 | 1.00 | 1.10 | 1.15 | 1.20 | 1.25 | 1.30 | 1.40 | 1.50 | 1.80
PWSOR 23 21 19 18 18 18 19 20 21 22 25
BWSOR 18 15 14 13 14 15 16 17 18 19 23

Table 7.2 Iteration numbers of PWAOR and BWAOR methods

w 1.00 1.07 1.10 1.25

¥ 1.0 10511121063 |10 | 1112|135 |10 |12 135 | 1.6
PWAOR | 19 19 18 | 19 18 18 | 18 | 18 19 20 | 19 19 20
BWAOR | 14 13 14 | 15 12 14 | 13 | 14 15 17 | 16 15 16

From Tables 7.1 and 7.2, we can see that the blockwise waveform relaxation method is more
effective than the pointwise one.

In order to show the monotone convergence behaviors of pointwise/blockwise Gauss-Seidel
waveform relaxation(PWGS/BWGS) methods applied to IVP (7.1), and to demonstrate the
convergence rates between PWGS and BWGS methods in terms of monotonicity, we further
investigated the first ten iterations of z(t) on the interval [0,2]. For simplicity, we only plot
in Figure 7.1 the values of x1(t), z25(t), z45(t) and z100(t) at ¢ = 2, where the solid line and
the dashed line denote the numerical solution starting from the initial vector #(®)(t) = (1 +
2t,...,1+20)7(0 <t < 2)and 20(t) = (1 —2t,...,1 - 2t)T(0 < t < 2), respectively, and
generated by BWGS method.
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Fig. 7.1. The first ten iterations of z(t) obtained by BWGS method, corresponding to the different
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Fig. 7.2. The first ten iterations of z(¢) obtained by BWGS and PWGS methods, respectively.
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In Figure 7.2, we plot z1(t), z25(t), £45(t) and z100(t) at ¢ = 2, where the solid line and the
dashed line denote the numerical solution obtained by PWGS abd BWGS methods, respectively.

Figure 7.1 shows the monotone convergence property of the BWGS method, and Figure 7.2
suggests that BWGS method converges faster than PWGS method. These numerical results
well coincide with the theoretical results in Sections 5 and 6.

8. Conclusions

We have studied the asymptotic and monotone convergence properties of the pointwise/
blockwise waveform relaxation methods under suitable conditions. Both theoretical and exper-
imental analyses show that the blockwise waveform relaxation methods converge faster than
their pointwise alternatives in the monotone sense.
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