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EXTRAPOLATION FOR SOLVING BIE OF STEKLOV
EIGENVALUE PROBLEMS *V

Jin Huang Tao Li
(Mathematical College, Sichuan University, Chengdu 610064, China)

Abstract

By means of the potential theory Steklov eigenvalue problems are transformed into
general eigenvalue problems of boundary integral equations (BIE) with the logarithmic
singularity.Using the quadrature rules!!, the paper presents quadrature methods for BIE
of Steklov eigenvalue problem, which possess high accuracies O(h*) and low computing
complexities. Moreover, an asymptotic expansion of the errors with odd powers is shown.
Using h®— Richardson extrapolation, we can not only improve the accuracy order of ap-
proximations, but also derive a posterior estimate as adaptive algorithms. The efficiency
of the algorithm is illustrated by some examples.
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1. Introduction

Consider the following Steklov eigenvalue problem:

~_ 2~_ .
{ Al —a?i =0, in Q, (1.1)

94 = i, on T,
where « is a constant. 2 is a bounded domain with the boundary I', and % is the outward
normal derivative on I'. This problem arises from many applications, e.g., the free membrane
and heat flow problems.

Courant and Hilbert[®! studied the problem (1.1). Bramble and Osborn!®! gave finite element
method and its error estimate for solving the equation (1.1). Liu and Ortizl?! gave finite
difference methods and Tao-Method. Obviously, the problem (1.1) is easily converted into the
eigenvalue problem of the boundary integral equation, so the boundary element method (BEM)
solved (1.1) is more advantageous. Using a new variational formula of BIE, Han, Guan and
Hel%"], and Tang, Guan and Han!'¥l derived a new BIE of the problem (1.1) and obtained its
approximate BEM, which can keep the self adjoint property of the original problem. Although
their approximate methods are very efficient, however, there exist two disadvantages: (1) each
element of the discrete matrix as full has to calculate a double improper integral; (2) the order of
accuracy only is O(h?). In [10,11], the mechanical quadrature methods for solving the boundary
integral equations are constructed, where the convergence and asymptotic expansion with h?
are proved by the collectively compact and asymptotically compact theory!™24],

In this paper Steklov eigenvalue problem will be transformed into a general eigenvalue
problem of BIE with the logarithmic singularity. Applying Side’s quadrature rules!'?!, we
present the mechanical quadrature methods of BIE for solving Steklov eigenvalue problem,
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in which the generation of the discrete matrix is without any calculations of integrals. Since
the asymptotic expansions of the errors with the power h* are shown, our methods imply that
using h3—Richardson extrapolation not only improves the accuracy order of approximations,
but also a posteriori estimate as adaptive algorithm is got. The numerical examples show that
our methods have the accuracy order O(h?). The extrapolation and a posteriori estimate are
very effective.

By the potential theory, the problem (1.1) is easily transformed into the following eigenvalue
problem of BIE

0

%ﬂ(w) - /Fﬂ(y)a—nyfﬁ(x,y)dsy = —A/Fﬂ(y)(I)(m,y)dsy,m er, (1.2)

where @ = (21,22), y = (y1,92), |z — y[2 = (@1 — y1)? + (22 — o)’
®(z,y) = { —Ko(alz —y|)/(27), for a >0

(2r)~tlog |z —y|, fora =0
is the fundamental solution of equation (1.1); Ky (z) is the modified Bessel function with
Ko (2) = —logz+1log2 -7, z—0;
and v ~ 0.5772 is Euler constant.

2. Mechanical Quadrature Methods

Assume that T' is a smooth closed curve described by the parameter mapping z(t) =
(w1(t), z2(t)) with (2,())? + (z5(t))*> > 0. Let C™[0,27] denote the set of m times differen-
tiable periodic functions with periodic 27. Define the following integral operators on C"™[0,27]

(Ku)(s) = ; i k (t,s) u(t)dt, (2.1)
and )

(Bu)(s) = ; b(t, s)u (t) dt, (2.2)
where u(t) = a(z(t), z2(t)). k(t,s) = %(@(m(t),m(s))ﬂx’ (t)|/m is smooth function; how-

ever, b(t,s) = ®(x(t),z(s))|z (t)|/= is with the logarithmic singularity. The equation (1.2) is
equivalent to the operator eigenvalue problem
{ (I - K)u = —\Bu,

2
lullg.r = Jo " u(s)ds = 1.

(2.3)

Take a mesh width h = 27 /n, and t; = s; = jh, j =0,---,n — 1. By the trapezoidal and
quadrature rulel*?! we construct the approximate operators of K and B

{ (Knu)(s) = h Y120 k(ty, s)u(t;),

(Buu)(s) = h S0 bu(ty, s)ult;), (24)

where
b(t,s), for |t — s| > h;

nlt:s) = { hllog = +1logla’ (s)| +alle’ (s) |, for [t — s| < h

is a continuous approximation of b(t, s) and

[ —log(2a) — 1, for a > 0;
Fa = 0,for a = 0.
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From (2.4) we derive an approximate eigenvalue problem of (2.3): find A, and u;, € CJ0, 27]
satisfying

{ up — Kpup = — A Brup, (2.5)

Y250 (un(t)” = 1,
which can be solved as follows: first solve an algebraic approximate eigenvalue problem
un(ts) = b Y 12g k(tj, t)un(ty) = —M{h Y72y o, O(t5, ti)un(t;)
+hllog e’ (t)/(2m)| + al o/ () un (8}, = 0, =1 (2.6)
h 32720 (un(ty)? = 1,

then use Nystrom iterate

un(s) = b kty, $)un(ty) — Ak 3 ba(ty, shun(ty).

3. Error Analysis of Quadrature Methods

Suppose that the eigenvalues of both K and K, are without 1, then the problems (2.3) and
(2.5) can be rewritten as follows: find p and u € C[0, 27] satisfying

Au= (I — K) 'Bu = pu, and ||ullor = 1; (3.1)
and find pp, and up € C[0, 27] satisfying
n—1
Ahuh = (I — Kh)il Bhuh = UnpUp, and hZui(tJ) = ]., (32)
j=0

where yu = —1/\, up, = —1/\p. In order to prove that (up,up) converges to (i, u), we first prove
the following lemmas.
Lemma 1. The approzimate operator sequence { Ay, : C|[0,27] — CI0,2r]} is the asymptotically
compact convergence to A, i,e.

Ap A,

Proof. Since k(t, s) is a continuous kernel, it means that K, is collectively compact con-
vergence to K, i,e. Kj =5 K, as n — oo (see [1,4]). On the other hand, because by(t,s) is a
continuous approximation of b(t, s), from [1,2], the approximate operator By, is the asymptot-
ically compact convergence to B, i,e. By, =5 B, as n — oco. It implies that for any boundary
sequence {y,,} there exists a convergent subsequence in {Bry,,} . Without loss of generality
we assume By, — 2z, (m — 00). By the properties of collectively compact convergence, we
have

[Anym — (I = K) 2|l < ||(I = Kp) "' Buym — (I = K) " '2]|
< = Kn) M| Baym — 2]
+I(I = Kp) ™" (K — K)(I — K)

where || - || is the norm of £(C[0,2x], C[0,2x]). It shows that {4 : C[0,27] — C[0,2x]} is an
asymptotically compact operator sequence. Moreover we shall show that A, =5 A, as n — oo.
In fact, since B, % B, for Vy € C[0, 2] we get

||Bry — By|| — 0. (3.4)

~2|| = 0, as m — 00, and h — 0, (3.3)

From (3.4) we derive
14ny — Ayll <1I(I = Kn) "'l Bny — Byll
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+||(I — Kp) Y (Ky — K)(I — K)"'By|| = 0,as h — 0, (3.5)

which get the proof of Lemma 1.
Corollary 1. Under the assumption of Lemma 1, it holds that

1(Ap — A) A > 0 and ||(An — A) Ap|| = 0, as b — 0, (3.6)

where || - || s the norm in £(C]0,2x], C[0, 2x]).
Lemma 2. If ¢ (s) € C*™[0,2x] and k (t,5) € C*™[0,27], then it holds the asymptotic expan-

sion
m—1

(An = A)pls) = 3 i () BT+ 0 (W) (3.7)

Jj=

where 1; (s) € C*™=[0,2x], j = 1,...,m — 1, are functions independent of h.
Proof. First we substitute the asymptotic expansion of the error of the quadrature rulel!2]

m—1

(B=Bn) o= a;(s)h* " +0 (™) (3.8)

Jj=1

with a; (s) = %((p (s) |z’ (s)]) into the identity

(Ap —A)p =
(I=K)™' (Bu=B)o+ (I - Ky~ (Kn—K)(I-K)™ (By—B)g
+(I - Kp) "t (Kn — K)(I - K)™' B, (3.9)

then let 9; (s) = (I — K)™* a;(s). Thus using the remainder estimate of the trapezoidal of the
periodic function

max | (K — Kp) ¢(s)| = || (K — Kp) ¢l| = O(h*),Y¢ € C*[0, 2], (3.10)

0<s<2m

we get the proof of (3.7).
We all know that if u is an isolated eigenvalue of (3.1), then the dimension of its eigenspace
is finitel and the conjugate complex number i of y is also an eigenvalue of conjugate operator

A*. Let V, :span{Jl, ey U*x} and V,, =span{u, ..., u,} be the eigenspace of A* and A,
respectively, which construct a biorthogonal system
<Ui7Jj> :6ij7 iajzla"'7Xv (312)

with |lus|lo =1, i =1, ..., x. Let up and V,;, be the eigenvalue and the eigenspace of Ay, which
correspond to p and V,,, respectively. By [4] , there exists dim V,,;, = x1 < dim V,, < x. Assume

that {up;} and {up;} are such the approximate eigenfunctions of u; and u; (t=1,..x1), that
satisfy the following normalized conditions

<uhiau);Lj> = 61]7 7/7.] = 17 Tty X1
<uhi,’in> = ].,i = ].,...,Xl.
Theorem 1. Under the hypotheses of Lemma 1, (3.13) and (3.12), then

(3.13)

|lui = unillo = O (|| A (A = Ar) o) -

Proof. Taking the inner product by u} on the both sides of the identity
(I — A) (u; — upi) = —pup; + Aup;
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= (un — p) wni + (Aun; — Apuni) (3.15)
and using (3.13) and (3.12), we get

0= <(,u — A) (g — uny) u>
= (pn — p) <Uhia'lji> + <Auhi - Ahuhiadi>

=pup—p+ <A(A—Ah)uhi,1fi>/ua
ln — | = O(J|A (A = An) [[o)- (3.16)

Define the subspace
Vlf = {U : <v,1fj> =0,7= 1,...,X}.

Obviously, under the restriction of the subspace VHJ-, (ul — A)f1 is existent. Since u;—up; € VHJ‘,
from (3.15) we deduce that there exists a constant ¢ > 0 satisfying

cllui — unillo < || (I — A) (ui — uni) llo
< pn = plllunillo + 1[(A — Ar) Anllol|unillo/|pnl (3.17)

Using (3.17), (3.16) and ||upi|lo < [|ui — wnillo + ||willo, we complete the proof of (3.14).
Corollary 2. Ifu;,u} € C*[0,27], j = 1,..., X, then

lun — p| = O(h?), (3.18)
||ui — unillo = O (h?) (3.19)

and
|luj — upillo = O (R?) . (3.20)

Proof. Since (3.18) and (3.19) are true (see [4,8,11]), we only give the proof of (3.20).
Define the subspace

Vu*hL ={ve L?[0,2n] : (v,upn;) =0, j=1,..,x1}-

Note that under the restriction of the subspace VM*hL, (nl — A;;)_1 is existent and uniformly
bounded. Since u} —uj, € VJ,f‘ by (3.13), from
(An = AR) (uf —up;) = finuy — Aju;
_ 1 o
= Bt - Ajup = —(Ba - A A,
fi i

1
= E(A* — A A*u; + O(h?) = O(h?)

we get the proof of (3.20).

4. h3-Richardson Extrapolation and a Posterior Error Estimate

Theorem 2. Under the hypotheses of Lemma 2 and Theorem 1, if {u,u;} and {pp,un;} are
the eigenvalue and eigenfunctions of (3.1) and (3.2), respectively, then there exist a constants
c1 and functions v;; € C*[0,27], i = 1,..., x1, independent of h, such that

pn — p=c1h® + O (h*), (4.1a)
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uni —u; = v h® + 0 (h*). (4.1b)
Proof. From Lemma 2 we obtain

Ay (U,i + Ui1h3) - (/L + Clh3) (U,i + Ui1h3)

= (Ah — A) u; + h3 (Ahvil —C1U; — /J,Uil) — clvilhﬁ

= h3 (Avy — pviy — crug + 1) + O (h4) . (4.2)

Choose the constant ¢; and the function v;; satisfying the following operator equations:
Avip — pvin = cru; — o, (4.3a)
(cru; — 11, 0) =0, Vo € V- (4.3b)

Obviously, under the restriction of (4.3b), there exists a unique solution v;; in (4.3). Taking
¢ =uj, we get

a = (1, u3).
Thus (4.2) becomes
Ap (ui +vah®) = (+ 1 b®) (ug + v h?) = O (h*). (4.4)
Since {pp, up;} satisfies
Apun; — praun; =0, (4.5)

by (4.4) and (4.5) we get
Ap (uni — i — v h®) — i (uni — ui —vah®) —
(n — pp — c1h®) (u; +vih®) = O (B'). (4.6)
Taking the inner product on the both sides of (4.6) by uj, and using (3.12)- (3.14) and

(wisup;) = (wisui) + (ui, up; — ug)
= 14+ (u; —upj,up; —ui) =1+ O(h"),

we get
pn —p—crh® =0 (h'), (4.7)
Substituting (4.7) into (4.6) we have
(Ah - ,uhI) (’LLM —U; — hB’Uil) = O (h4) (48)

Obviously, under the restriction in the invariant subspace
V,fh = {v : <U,uhi> =0, = 1,...,X1}

the operator (A, — up 1) is invertible and (A, — pp )" is uniformly bounded. Generally speak-
ing up; —u; — h2vy =g ¢ Vulh, but g — Prg € Vulh, where

X1

Prg = Z <g, U2z> Uhi (4.9)

i=1

is a projection of g on V,,;.By means of (3.13) we get the estimate

<9,U2i> = ‘<97U7n - 'Jz>

* * * *
Uhi — Ui, Upi — Ui )| + |(Vil, Ui — U4

<

n* =0 (h'),
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which means || P,g|lo = O(h*). However, from (4.8) we have

O(h") = |[(An = ) gllo > || (An = unl) (9 — Prg)llo — O(h*)
> Cllg— Pug)llo — O(hY),
ie., lg — Prg)llo = O(h*). Therefore we get g = up; — u; — v = O (h*), that is, (4.1) is
shown.

Let (un, up) and (pp 2, up/2) be the solutions of (2.6) according to mesh widths h, h/2,
respectively. Then from (4.1) h3—Richardson extrapolations

ftn = Bpins2 — wn)/7, (4.10)
and
Up, (tl) = (8uh/2 (tl) — up, (ti))/7,ti =th,i=0,...,n—1 (411)
have the error estimates: |un, — p| = O(h*) and |an(t;) — u(t;)| = O(hY).
Moreover from the asymptotic expansions (4.1), we shall derive the following a posterior
error estimates

lns2 — wl < 18/Twn2 — 1/ Tpn — g2 + O (h*)
<lpns2 — mal/7T+ O (B*) (4.12)
and
unya(t) = w(ts)| < 18/ Tupsz (t:) = 1/Tun (£:) = unys (t) | + O (h?)
< 1/Tlupya (t) — un (t) | + O (B), (4.13)

which can be used to construct adaptive algorithms.

5. Numerical Example

Assume that the boundary I' of the problem (1.1) is the unit circle and a = 1, then its
eigenvalues are as follows!'3]

o T2 IR+ DY
O L 2T RIR]

where \g is simple and A, (n > 0) is double.

Table 1 and Table 2 show the errors of the approximate eigenvalues by using (2.6) and the
methods in [13], when n=4, 8 and n=16, 32, respectively. It is easy to see that the error of
the first eigenvalue in [13] is smaller than our’s, the others bigger than our’s. Moreover the
order of accuracy of our methods is O(h?); the extrapolations and a posteriori estimate are very
effective.

L D2k )[Rk + )
T S 2 IR+ )]

Table 1. the errors E; = |A\; — Api|(n =4 and n =8)

n 4 4 8 8 8 8
method | [13] (2.6) [13] (2.6) extra. pos err
Ey 4.7e-6 9.13e-3 | 8.0e-7 5.61e-4 | 6.92e-5 | 1.13e-3
E, 8.3%9e-2 | 5.9e-2 4.09e-3 | 7.7e-3 3.74e-4 | 7.33e-3
E> 9.83e-1 | 5.77e-1 | 9.69e-2 | 8.54e-2 | 1.15e-2 | 7.02e-2
E; 7.17e-1 | 3.91e-1

E, 1.6352 1.11
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Table 2. the errors E; = |A\j — Api|(n =16 and n = 32)

n 16 16 16 16 32 32 32
method | [13] (2.6) extra. pos err | (2.6) extra. pos err
Ey 3.0e-7 1.42e-4 | 1.9e-6 1.5e-4 1.91e-5 | 2.0e-7 1.89%e-5
E, 3.26e-4 | 9.66e-4 | 3.8e-6 9.6e-4 1.07e-4 | 2.0e-7 1.2e-4
E> 5.71e-3 | 1.07e-2 | 3.14e-3 | 1.06e-2 | 1.39e-3 | 3.0e-6 1.34e-3
Es 4.03e-2 | 5.08e-2 | 2.24e-3 | 4.86e-2 | 6.32e-3 | 3.0e-5 6.36e-3
E, 1.76e-1 | 1.56e-1 | 1.96e-2 | 1.37e-1 | 1.95e-2 | 5.77e-5 | 1.96e-2
Es 9.05e-1 | 3.76e-1 4.72e-2 | 3.25e-4 | 4.69e-2
Eg 1.6645 | 7.62e-1 9.76e-2 | 2.70e-3 | 9.49e-2
Er 2.5396 1.3773 1.80e-1 | 1.10e-2 | 1.69e-1
Eg 3.3717 | 2.2270 3.07e-1 | 3.32e-2 | 2.74e-1
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