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Abstract
This paper deals with #H-stability of Runge-Kutta methods with variable stepsize for
the system of pantograph equations. It is shown that both Runge-Kutta methods with
nonsingular matrix coefficient A and stiffly accurate Runge-Kutta methods are H-stable if
and only if the modulus of stability function at infinity is less than 1.
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1. Introduction

In recent years, much research has been focused on theoretical and numerical solutions of
pantograph equations. These systems can be found in variety of scientific and engineering
fields such as analytic number theory, nonlinear dynamical systems, collection of current by the
pantograph of an electric locomotive and so on, which have a comprehensive list in [7].

As far as we know the delay differential equations can be classified into two cases according
to time lag, one is those with finite time lags, and the other is those with infinite time lags.
There are remarkable differences, both analytically and numerically, between these two classes.
Theoretical study of the second class of equations can be found in [7]. The numerical methods
for this class have been studied by [2], in which the grid is uniform. However, this kind of
equation has unbounded time lags, it is usually difficult to investigate numerically the long
time dynamical behavior of exact solution due to limited computer memory as shown in [10].
There are two kinds of ways to avoid the storage problem. One is to transform the equation
into an equation with constant time lag and variable coefficients as shown in [9] and apply
a numerical method with constant stepsize h = % to it. As a matter of fact, it seems
like applying the numerical method with a grid which is not uniform, ¢, = ¢~ = and variable
stepsizes h,, = q*ﬁ(q’% — 1). Another way is applying a numerical method with variable
stepsizes to the equation directly, which are considered in [1,10]. The nonconstant stepsize
strategy is considered in [1], which is a special case of that introduced by Liu [10].

In this paper, we focus on the H-stability of Runge-Kutta methods with variable stepsize
applied to the system of pantograph equations. Some conclusions about the asymptotical sta-
bility of analytical solutions to the system are recalled. Furthermore, variable stepsize scheme
is given. Finally, Runge-Kutta methods with nonsingular matrix coefficient A and stiffly ac-
curate Runge-Kutta methods are applied to this system, respectively. The same sufficient and
necessary condition such that the methods are H-stable is presented.

2. Runge-Kutta Method with Variable Stepsize
In this paper, we consider the two-dimensional pantograph equations:

@(t) = Nz(t) + my(at),
{ y'(t) = Xoy(t) + pax(gat), t>0, (2.1)
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where A1, Ao, p1,p2 € C, 0 < g2 < ¢ < 1 with the initial conditions z(0) = zg, y(0) = yo.
The existence and uniqueness of solutions to the system (2.1) has been studied by [7]. It is
demonstrated in our another recent paper [11] that the solutions tend to zero (algebraically) if

|/1,1| < —RAq, |/L2| < —=RX> and X\ <0, R <O, (22)

where RA is the real part of A.

Definition 2.1. System (2.1) is called asymptotically stable if, for any q1,q> € (0,1) and any
initial values, the solutions xz(t),y(t) of this system tend to zero as t approaches infinity.

Thus the analytical stability region can be defined as S={(\1, A2, p1, 2) € C (A1, A2, i1, p2)
satisfies condition (2.2)}.

In the next two sections, we focus our attention on the numerically asymptotical stability
of Runge-Kutta method. Now we recall the method presented in [3] and the variable stepsize
schemes introduced in [11].

For the general pantograph equation:

2'(t) = f(t,2(t), 2(qt)),

where 0 < ¢ < 1.
The Runge-Kutta method, presented by [3], gives out the recurrence relation:

s
Zn+l = Zn + hn+1 E bzf(tn + cihn—i-la Zn,ia Zh(tn + cihn—i-l))a

=t (2.3)
Zn,i =2zn+ hn+1 E aijf(tn + thn_H, ij, Zh(tn + thn_H)),

Jj=1

where (4, b, c) denotes Runge-Kutta method, with matrix A = (a;;)sxs, vectors b = (b1, bs, ...,
bs)T, ¢ = (c1,¢2,...,¢5)T. And Z,, ;, 2"(t, + cihns1) can be interpreted as the approximation
to z(tyn + cihpy1) and z(q(tn + cihnt1)) respectively, for i =1,...,s.

Here, z"(t) is defined by the piecewise linear interpolation for ¢ > 0, i.e.,

t—1t; ti —t
2M(t) = "2 J z
ti—t 0t —t

i t; <t <tj.

Here, variable stepsize introduced in [11] is recalled.
For simplicity, without loss of generality, we assume that to = 1 and the numerical solution

is available till some point 5 > 0.

Let T; = %toz %aTH-l = ql%t(): #,wherel:O,l,Q,....

If we are interested in the values of z(t) at points t(1),+(2) .. t(m=1D with t() < +(2) <
... < tt™=1 then there must exist integers ki, ks,. .., ky_1 such that ¢* - () € [Ty, Ty), for
i=1,2,...,m—1and q € (0,1).

We define the grid points and variable stepsizes as follows,

to=To, tm=T1, t=q"t?

and
tkm+i = qikti; thrl = tn+1 - tn;
fork=1,2,3,...andi=1,2,...,m — 1.
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It is easy to see that for any n, we have

qtn =tnm, Qqhn="hpn_m and lim h, = oo, (2.4)

n—o0

and the stepsizes increase geometrically.

If hy = hy = ... = hyp_1, then the above definition about grid points and variable stepsizes
turns out to be that described in [1]. If t; = ¢~ = ,i =0,1,2,...,m—1, then the above definition
is shown in [10] and appears to be the constant step in [9], by a change of the variable.

Then we formulate the condition of numerically asymptotical stability. The condition will
depend on parameters A1, Ay and py, po, but turns out to be independent of ¢;, go and of the
constant m that defines the mesh H = {to,%1,...,tn,...} in (2.4) (see also Section 3 in [1]).

Definition 2.2. Let ¢1,q2 € (0,1) and H = {to,t1,...,tn,...} be an assigned mesh. The
asymptotical stability region of a numerical method for system (2.1) is the set S(H) of (A1, A2,
W1, f2), such that the discrete numerical solutions x,,y, tend to zero as n approaches infinity.

Definition 2.3. The numerical method applied to system (2.1) is called H-stable, if S(H) D S,
for any q1,q2 € (0,1) and H = {to,t1,...,tn,...}.

Moreover, for system (2.1), since 0 < g2 < ¢1 < 1, there must exist a positive integer [ such
that ¢! < ¢» <dqf.

Here, we choose g = ¢; in (2.4) for system (2.1), then ¢,,_(41)m + Cihnt1—+1)m < G2(tn +
cihn—i-l) <tpn-tim+ cihn—i-l—lm-

g _ q2(tn+cihny1)—(tn_(141ym+Cilnp1—(141)m)
Let 61 = e >1and = Tt ¥ eimt1—tm) - (n e et ym et hm a1 g 1ym) S [0, 1], then by (2.4),

we have
6 — (61 - l)ql
1—-q

which implies that § is independent of m and n.

)

3. H-stability of Runge-Kutta Method with Nonsingular A

This section deals with Runge-Kutta method with nonsingular coefficient A. Using the
above results of variable stepsize, we find for system (2.1), the Runge-Kutta method (2.3),
gives out the recurrence relation:

S

Tpt1 = Tp + hn+1 E : bi(Aan,i + UIYn—m,i)a
i=1
s

Xn,i =Ty + hn+1 Z aij(Aan,j + /Jllynfm,j);
it (3.1)
Ynt1 = Yn + hagr 30 bi[AeYni + p2((1 = 6) X 1ym,i + 6 Xn—im,i)],

=1
s

Yoi = Un+hngr 2 ai[AeYn i + (1= 0) X0 41ym,j + 6 Xn—im,j)],
\ Jj=1

where X, ;, Y, ; is interpreted as the approximation to x(t, + ¢ihnt1), Y(tn + cihnt1) for
1=1,2,...,s, respectively.
Let
Un+1 = (anrl;Xn,l; Xn,2; ceey Xn,s; Yn+1, Yn,l; Yn,2> e ;Yn,s)T;

then
Un+1 = ng) Un + ng)Unfm+1 + 6G§n) Unflm+1 + (]- - 6)G§,n)Un—(l+1)m+17
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n (n) n (n) n . n
whereGg)Z <M(1) Mgn)>,G§)= <g Nb >:G§): <N§") g) WlthMi():

Api O n 0 bTT,,

A A) 7 Ay =14 )\anTFn,ie for i = 1,2, and 0 is the matrix with appropriate dimension .
Let Vo = (UL, UL (s UL )7 then Vigy = QV,y + Q8" Viy g1, where

» Y n—Ilm

g™ o ... 0 o0
an)_ I 0 0 0 ’
0 0 I 0
ai™ o 5GLM 0 (1-6G™
o —| 0 0 0 0 0
0 0 0 0 0

Let W, = (V,', VL, ..., VL )T, then W, 1 = K,W,, where

Q"M 0o ... 00 QY
K.—| I 0 00 0
0 0 ...01 0

Let K = lim K,, Q; = lim Q\”, G; = lim G\, fori=1,2,j=1,2,3, then
n— 00 n— 00

n—o0

1-bT47% 0 0 0 0 0 O —ﬁ—ibTA_l
0 0 0 0 0 0 0 -
— — X
G = 0 0 1-tTale 0 |© @27 0 0 0 0 ’
0 0 0 0 0 0 O 0
0 0 0 0 Gy O 0
0 0 0 0 I 0 0 0
G = 0 _K; pTA-1 0 0 ) Ql = )
0 —i—;[ 0 0 0 0 I 0
Gy 0 ... 0Gs ... 0 (1-0)Gs Q1 0 ... 0 @
o 0 ... 0 ... 0 0 I 0 ... 0 O
Q2 = , K=
o 0 ... 0 ... 0 0 0 0 ... T O
Thus, the characteristic polynomial of K could be read
det[Cc ()] = det[CT — K] = det[(C] — Qi)™ — Qa, (3.2)

The following lemma is an immediate consequence of Corollary 1.2 in [5] (see also Lemma
2.11in [8)).
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Lemma 3.1. Assume that |( — (1 —bT A te)| # 0, and consider the following three statements:

(a) det][(I — Q1] # 0 for any |¢] > 1 and supje—,p[(CI — Q1) "' Q2] < 1;
(b) all roots of characteristic polynomial (3.2) lie inside the unit circle for any m > 0;

(c) deflCT — Q1] # 0 for any |(] > 1 and supyey1pl(CT — Q)= Qs] < 1,
where p(-) denotes the spectral radius of a matrixz. Then (a) implies (b) and (b) implies (c).

Theorem 3.1. Assume the matriz A is nonsingular, then Runge-Kutta method (A,b,c), applied
to the system (2.1) with condition (2.2), is H-stable if and only if |reo] < 1, where roo =
1 —bT A e is the limit of stability function of Runge-Kutta method.

Proof. Assume that |ro| < 1, it is easily seen that det((I — G1) # 0 for any |¢| > 1. This
implies that the matrix ((I — @) is invertible, whenever |(] > 1.
Moreover, after some calculations, we obtain

CI-Q1) Q2=
(¢TI —G1)71Gs 0 0 5(CI—G1)71G3 0 ... 0 (1—6)(¢I —G1)71G3
T¢I -GG 0 0 6¢CI¢I-Gy)7'Gs 0 ... 0 (1-=-6€)CCI-G1)7lGs
¢tm(¢r _ .Gl)*le 0 . 0 6§*lm(§I..—.G1)*1G3 0 o 0 (1- 5)(*“%& —G1)71G3
where
0 0 0 Ay 0 0 0 0
_ 0 0 0 —¢t&ar _ 0 0 0 0
CI-G)7'G2=| |, 4 o ¢ o I=G)TGa = gy, 0 0
0 0 0 0 0 74*1%1 0 0

with A; = —[¢ — (1 —bT A~ 1e)] L - %bTA_1 fori=1,2.
To study eigenvalues of matrix ((I—Q1)~1Q2, we just consider the characteristic polynomial

detl€Doamny(on) = (1 = Q1)+ Qs
= det[tlo(s11) — (CI — G1) 7' Ga] - det[€Dy(s11) — 6¢™I"I™(CT — G1) 7' Gl
det[ff2(s+1) -(1- 5)(*““(([ _ Gl)fng] . (det[§I2(s+1)])lm*2‘

where I is the unit matrix with appropriate dimension.

It can be proved that supp[(¢I — Q1) 1Q2] < 1, whenever [¢| = 1.

By Lemma 3.1, the above two conclusions imply that the roots ¢ of characteristic polynomial
(3.2) satisfy (] < 1.

According to Lemma 5.6.10 in [4], there exists a norm || - || such that ||K|| < 1. In view of
the definition of limit, for any fixed € with 1 — ||K|| > & > 0, there exists N; > 0 such that, for
0> N, [ — K| < 1= [K]| = & and [[Wogall < (K] + 1K = K]) - [Wall < (1 ) [Wall
which means nlLII;O zn, =0, TL]LII;Q Yn = 0.

Condition (2.2) ensures that the analytical solutions of system (2.1) can be asymptotically
stable. However, it is not used here in proving the H-stability of numerical solutions.

Conversely, assume that |ro| > 1. Then we choose p; = p2 = 0 and ®A;, RAy < 0, which
satisfies condition (2.2) and the system (3.1) reduces to 41 = r(An1)%n, Ynt1 = 7(An,2)Un,
where 7(Ap;) = 1+ Ap b7 (I — A\ ;4)"te and nlgr;o T(Ani) = Too-

If |roo| > 1, then for any e with |ro| — 1 > ¢ > 0, there exists Ny such that for n > Ny,

lzn] = |(reo + T(An,l) — To0)Tn
(Jroc] — |r(>‘n71) —Tool) * |Znl]

(Irool =€) - znl,

(AVARAY]
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which implies z,, does not vanish, and y,, also does not vanish.
If |roo| = 1, it is obviously seen that x,, and y, are bounded, but does not vanish.

Corollary 3.1. The Gauss-Legendre methods are not H-stable.
Corollary 3.2. The RadaulA methods, RadaullA methods, LobattoIIIC methods are H-stable.

Corollary 3.3. The one-leg 8-method is H-stable if and only if 1/2 < 6 < 1.

4. H-stability of Stifly Accurate Method

This part is concerned with the Runge-Kutta method with singular A. Here we just consider
the stiffly accurate Runge-Kutta method, i.e., a;; =b;, 1 < j <.
Since A is singular, without loss of generality, we assume that a;; =0, 1 < j < s, and write
0 O
A=\a 1
In fact, LobattoIITA methods and linear -method are typical examples of such RK method.
In [9], some properties of stiffly accurate method are given.

, where @ = (as1,a31,...,as1)7, A= (aij)ij:2 which is nonsingular.

Lemma 4.1. If the Runge-Kutta method is stiffly accurate and A is nonsingular, then lim r(z) =
Z—>00
—el' | A=ta, with es_1y = (0,0,...,0, )T € R*~! and r(z) = 1+ 20T (I — zA)Le.

Applying this special method to system (2.1), if the RK method is stiffly accurate, then
from pr(lof of Theorem 4.1 in [9], we have z,,11 = Xp s, Ynt1 = Yn,s-
Let Un+1 = (Xn,la Xn,Qa S 7Xn,s—la Tn+1, Yn,l: Yn,Qa s Yn,s—la yn+1)T; then

Oner = G0 + G0 —mis + 6G ™ Unctms + (1= §)GP T orymers (A1)

_ (n) _ (n) _
where G0 = (57000 6 = (5057 )68 = (g y ) win B -

0 1 (n) _ 0 0 BTy N1 A\ T AT .
(0 50 )8 = (e it )00 T = T=Xi) % B = Ao+ e
for i = 1,2, and 0 is the matrix with appropriate dimension.

Let Vo= (O7,..., 07 () O )T, then Voyy = Q1 ¥, + Q5" V1, where
g™ o ... 0 0
~ I 0 0 O
Q" = :
0 O I 0
G" o 5GLM 0 (1-6G™
an) _ 0 O 0 0 0
0 O 0 0 0
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Denoting J = lim J,, @; = lim Q, G; = lim G, R = R; = lm R, S; =
n— 00

n—o0 n—o0 n—o0

lim S, fori=1,2,j=1,2,3 then R=( o _; ),Si=<_%3@—1a _if)

n— 00 0 —-A'a i
Thus, the characteristic polynomial of J could be read

det[Cs(Q)] = det[(CI = Q)¢ = Q], (4.2)

Theorem 4.1. Assume the matriz A is nonsingular, then the stiffly accurate Runge-Kutta
method (A,b,c), applied to the system (2.1) with condition (2.2), is H-stable if and only if
|Foo| < 1, where oo, = —el_; A ta.

Proof. Assume that |Foo| < 1, we denote w = (=1,71,...,75-2)T with r; = el A='a, and
e; = (0,...,0,1,0,...,0)7 € R*~!, then det (¢ — R) = det < COI C+“; . > # 0, which means

that (¢I — Q1) is invertible whenever || > 1.
After some calculations, we have

I —Q1)7'Q2 = o o
I —-G1)"1Gs 0 ... 0 (¢TI —G1)"1G3 0 ... 0 (1 -06)(¢T —G1)"1G3
¢TI -G1)™ G2 0 ... 0 CT'I-G1)"'Gs 0 ... 0 (1-68)¢N¢CI—-G1)TIGs
¢Thmcr - 'G*l)—IGQ 0 ::: 0 5g—lm(g1':él)—lég 0 ::: 0 (1-— 5)g—lm{éi —G1)"1G3

Similar to the analysis of Theorem 3.1, we have supp[(¢(I — Q1)7'Q2] < 1, if |¢| = 1, and
p(+) denotes the spectral radius.

According to Lemma 3.1, it can be proved that stiffly accurate Runge-Kutta method is
‘H-stable.

Conversely, assume that |Fo| > 1, then we choose u; = p2 = 0 and R\, R\ < 0, which
satisfies condition (2.2), and the system (4.1) reduces to

Tnt1 =T(An,1)Tn,  Ynt1 =7 (An2)Yn,
Similar to the analysis of Theorem 3.1, it can be easily proved that |Fe| < 1.
Corollary 4.1. The LobattoIITA methods are not H-stable.
Corollary 4.2. The linear 6-method is H-stable if and only if 1/2 < 0 < 1.
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