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Abstract

In this paper, we convert the linear complementarity problem to a system of semismooth
nonlinear equations by using smoothing technique. Then we use Levenberg-Marquardt
type method to solve this system. Taking advantage of the new results obtained by Dan,
Yamashita and Fukushima [11, 33], the global and local superlinear convergence properties
of the method are obtained under very mild conditions. Especially, the algorithm is locally
superlinearly convergent under the assumption of either strict complementarity or certain
nonsingularity. Preliminary numerical experiments are reported to show the efficiency of
the algorithm.
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1. Introduction

Counsider the following linear complementarity problem (LCP)

y:M$+Q7 (1)
z>0,y>0, 27y =0,

where M € R™" x,y € R" and > 0 means that x; > 0 (i = 1,...,n). In this paper, we
assume that the solution set of (1) is nonempty. Let X denote the solution set of (1).

LCP has many applications in economic and engineering, see [16] for a survey. A few
experts have studied the problem and numerous algorithms were proposed for the problem,
for examples, interior methods (see [37] and references therein), nonsmooth Newton methods
(see [12, 15]) and smoothing methods (see [27] and references therein). Among these methods,
some algorithms are superlinearly (quadratically) convergent under one of the following group
of conditions:

(i). M is P matrix and one of the cluster points of the sequence generated by the algorithm
is nondegenerate;

(ii). M is Py matrix and certain nonsingularity is satisfied at one of the cluster points of the
sequence generated by the algorithm.

So we ask whether there exists a method which is superlinearly convergent without assump-
tion of strict complementarity and nonsinguarity at the limit point. In this paper, we give a
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method which is superlinearly convergent under the assupmtion of that M is Py and either
strict complementarity or nonsingularity.

As we known, only the method in [21] is convergent superlinearly/quadratically under the
assumptions of either that M is P matrix and strict complementarity or that M is Py and
certain nonsingularity. Our method is convergent superlinearly under each of the following
group conditions simultaneously: (i). M is P, matrix and one of the cluster points of the
sequence generated by the algorithm is strict complementarity; (ii). M is Py matrix and
certain nonsingularity is satisfied at one of the cluster points of the sequence generated by the
algorithm. So the results in this paper is stronger than the results in [21].

Levenberg-Marquardt method (LMM) is a classical algorithm for solving the following sys-
tem of nonlinear equations

F(z) =0,

where F' is a mapping from R™ to R™. At each iterative point zj, the search direction is
obtained by solving the following linear equation system

(F' (@) " F'(xr) + prd)d = —F'(z) T F (),

where F'(z) denotes the Jacobian of F(z) and pp > 0 is a parameter. It is well known that
the method is superlinearly convergent if pj is updated by an appropriate rule and certain
nonsingularity of F'(z) is satisfied at a limit point. Recently, Yamashita and Fukushima [33],
Dan, Yamashita and Fukushima [11] proposed a new update rule for ug, i.e., ux = || F(z1)]|° and
proved that LMM is superlinearly(quadratically) convergent under local error bound condition
without nonsingularity. Then they applied their method to the linear complementarity problem
and obtained an algorithm which has superlinear (quadratical) convergence properties under
the conditions that M is Py matrix and there exists a cluster point being nondegenerate. This
result is very interesting.

In this paper, we convert LCP into a system of semismooth nonlinear equations F(z,y,7) =
0 by using smoothing technique and by viewing the smoothing parameter as an independent
variable. Then LMM type algorithm is proposed to solve this semismooth system. It is similar
to [11, 33] that u* = ||F(2*,y*, 7%)||°. We can prove that our algorithm is globally convergent
and the algorithm is superlinealy (quadratically) convergent under the assumption of either
strict complementarity or certain nonsingularity. Note that there is an essential difference
between our algorithm and the ones in [11, 33] since here we shall keep 7, > 0 at each iterative
point (:rkT, ykT, )T, Therefore, our algorithm is not a simple application of Yamashita and
Fukushima’s algorithm.

Now we explain our notations. Throughout the paper, all of the vectors are column vector.
RY denotes n-dimensional nonnegative orthant, ie., r € R} <= z; > 0,i =1,...,n, and

' . denotes the n-dimensional positive orthant, i.e., z € R}, <= z; > 0,5 = 1,...,n.
Sometimes we use (w,7) for (wl,7)T and w = (z7,y?)*. || - || denotes 2-norm and || - ||
denotes oco-norm.

The paper is organized as follows. In Section 2, we give some basic results on smoothing
reformulation. The algorithm model and its global convergence are stated in Section 3. In
Section 4, we show the local convergence properties of the algorithm. In Section 5, some
preliminary numerical results are reported. In section 6, some discussions and conclusions are
given.

2. Some Basic Results

Let ¢ : R — R be Fisher-Burmeister function

Y(a,b) =a+b—a?+ b2
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Define

®(w) = B(z,y) = ( MZ(;qy)_y )

where
¢(w,y) = (¢(m17y1)7 s 7¢(wnayn))T € R".

Since ¢ is a NCP-function, i.e.,
¥(a,b) =0 <= a>0,b>0,ab=0,
the following observation is a direct result of the definition of mapping ®
w* = (x*,y") solves (1) <= w" solves ®(w) =0.

However, the system ®(w) = 0 is nonsmooth. Therefore, let ¢, : R> — R denote the smoothed
Fisher-Burmeister function

Yr(a,b) =a+b— a2+ b+ 272,

where 7 > 0 is a smoothing parameter. Then define

o) = oty = (M EV Y,

Where ¢T (1‘7 y) = (1/}7-("'[:17 y1)7 R 1/17—(','[:”7 yn))T E Rn'
So far we view 7 as a parameter. In what follows, we will view 7 as an independent variable.
In order to make this clear, let us write

p(av b, T) = 1/’7'(@) b):

0(z,y,7) = - (z,y).
Moreover, we use mapping F' : R x R™ x [0,4+00) = R" x R™ x R defined by,

Flw,7) = Fla,y,7) = ( 0(@,y.7) ) |

T

Obviously, since F(z,y,7) = 0 can deduce 7 = 0 automatically, we obtain the following equiv-
alent reformulation

w* = (z*,y") solves (1) <= (w*,0) solves F(w, ) =0.

In this paper, we are interested in developing method for F'(w,7) = 0. Let the solution set
of F(w,7) =0 be Q.
Now we give some properties of p(a,b, ), 8(z,y,7) and F(w, ).

Lemma 2.1. [14, 27, 26] Function p(a,b,T) has the following properties:
(i). p(a,b,T) is continuously differentiable on R? x Ry, ;

(ii). p'(a,b,7) = 1- W ;
T
G



738 J.L. ZHANG AND J. CHEN

(Z”) |¢(a) b) - p(a> b: T)| < \/§T fOT any ((l, b)T) € R? x R++7.

). a,b,T) is strong semismooth at any (a,b,7) € R?> x R, i.e.
( ) p( s Uy ) g Y ( s Uy ) + i
pla+ Aa,b+ Ab,7 + A7) — p(a, b, 7) — VT(Aa, Ab, A7) = O(]|(Aa, Ab, AT)||?)

for any V € dp(a+ Aa,b+ Ab, 7+ A1) and (Aa, Ab, A7) — 0, where Op is the generalized
gradient of p in the sense of Clarke .

Lemma 2.2. [26] Function F(z,y,T) has the following properties:

(1). Function F(x,y,T) is continuously differentiable on R™ x R™ x Ry, and

M -I 0
F’(l‘,y,T) = ( Da,‘r Db,r dr )

0 0 1

where 9 9
D, .= diag(a—Z(ml,yl,T), ey 8—2(1‘”,%,7)) € R™*",

- a a nxn
Dy, = dmg(a—lg(whyhr),---,a—lg(wn,ynﬁ)) € R™",

Op

0
d‘r = (_(xlaylar)a'"7_p(xn7yn77-))T € Rn:
or or

(i1). F(x,y,7) is local Lipschitz continuous and strong semismooth on R™ x R™ X Ry, i.e., for
any (z,y,7) € R™ X R™ X Ry, there exist L1 > 0, Ly > 0 and by > 0 such that

|F(z+ Az,y + Ay, 7+ A7) — F(z,y,7)|| < L1]|(Az, Ay, AT)|| (2)

IF(z + Az, y + Ay, 7+ A7) = F(z,y,7) = T (Az, Ay, A7)|| < Lo||(Az, Ay, A7)||* (3)

V(Az,Ay,At) € N(0,b1) = {(Az, Ay, A7)|||(Az, Ay, AT)|| < b, 7+ A7 > 0}, T €
OF (x + Ax,y + Ay, 7+ A1), where OF (x,y,T) is the generalized gradient in the sense of
Clarke;

(#i).  For any solution (w*,0) € Q, there exists a neighborhood N ((w*,0),bs) = {(w, 7)|||(w, T)—
(w*,0)]] < by, 7 > 0} of (w*,0) such that ||F(w, T)|| provides an error bound for F(w,T) =
0 on N((w*,0),bs), i.e., there exists a constant c; > 0 such that

dist((w,7),Q) < c1||F(w,7)||, Y(w,7) € N((w*,0),bs),

where dist((w,7),) = min(g,0)c{ll(w,7) = (w,0)[}.

Proof. (i). This is a direct result of Lemma 2.1.

(ii). It is similar to [22, 28] that we can prove that F is locally Lipschitz continuous. And
it is similar to [26] that we can prove that F' is strong semismooth on R™ x R"™ x Ry.

(iii). From [29, 32, 17], we know that there exist b, > 0, ¢ > 0 such that when w €
N(w*,b2) = {wlllw — w*|| < ba}

dist(w, X) < || ®(w)]| (4)

Let
dist(w, X) = ||lw — @|| where w € X (5)
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It follows from Lemma 2.1(iv) that

@) = |2+ (w)[]| @ (w) = @7 (w)]]

i V2nr. (6)

By (4), (5) and (6), we obtain

dist((w,7),Q) < ||(w,7) — (@,0)]
< lw—wf+7
< elow)] +r (7)
< 2ll®, (w)] + vaner +7
< (Vane+ )|, (w)]] + 7).

On the other hand,

2

o[

1E(w, T[] = V@ (w)[|* + 72 >

Let ¢; = v/2(v/2né + 1), then by (7) and (8), we obtain

(@7 (w)[| + 7). (8)

dist((w,7),Q) < c1||F(w, 1), YV(w,7) € N((w*,0),b=).

3. Algorithm Model and Global Convergence

In what follows, we apply Levenberg-Marquardt type Method to solve F(w,7) = 0. The
Levenberg-Marquardt Method (LMM) is classical but still one of the most popular methods for
solving nonlinear equation system

F(w,7) =0. 9)

LMM is a kind of Newton-type method and at each iterative point (w*, 7%), the search direction
is the solution (Aw*, AT*) of the following system of linear equations

(k)P )+ ) ((RF) = —F b Tt ), (10)

where p, is a positive parameter and I € R(Z7+t1D)x(2n+1) g the identity matrix. Since the
coefficient matrix is a positive definite matrix, (10) has the unique solution, which is a good
property comparing with pure Newton method or Gauss-Newton method. Moreover, the search
direction (Aw*, A7*) is a descent direction of the merit function ¥ : R?"*! — R

W(w,7) = | Pw, )|

Therefore, combining LMM with Armijio step based on the merit function ¥, we may expect
that LMM is globally convergent. In particular, we can show that any cluster (w*,7*) is a
stationary point of ¥. In this case, if M is Py matrix, we can prove that 7* = 0 and w* solves
(1). Namely, we have the following theorem.

Theorem 3.1. Suppose that (w*,7*) is a stationary point of ¥(w, 7). If M is Py matriz, then
7 =0 and w* solves (1).

Proof. By Proposition 2.1 in [36] and Lemma 2.1 (ii), we can prove that if M is Py matrix
and 7 # 0 then F'(w, ) is nonsingularity. If (w*,7*) is a stationary point of ¥(w, ), then



740 J.L. ZHANG AND J. CHEN

F'(w*, 7*)TF(w*,7*) = 0. Hence F(w*,7*) = 0. So 7* = 0. Then w* is a stationary point of
||®(w)]|]?>. From Theorem 11 in [15] we know that w* solves (1).

As for convergence rate of LMM, it is well known that LMM is superlinearly convergent
if F'(w*,0) is nonsingular and py is updated appropriately. This implies that (1) has the
local unique solution. Recently, Dan, Yamashita and Fukushima [11] showed that LMM is
superlinearly convergent if uj, = || F(w*, 7%)||° (0 < § < 2) and F(w, 7) provides an error bound
in a neighborhood of (w*,0), and LMM is quadratically convergent if u = ||F(w*, 7%)||%. In
this paper, uy is updated by py, = ||F(w*,7%)||°(0 < 6 < 2).

However, we note that 7% > 0 must be satisfied if we propose an iterative method for solving
F(w,7) = 0. Hence we can not apply general LMM to the system F(w,7) = 0 directly. We
must modify the method to meet the requirement. Noting that the search direction (Aw, Ar)
given by (10) is the solution of the following optimization problem

Aw
(37)

in order to ensure that 7% > 0 V&, we obtain search direction by solving the following optimiza-
tion problem

2 2

" 1
2/%

)

1 Aw
. Aw. A7) = = | F' (w* +* F(wk. %
(Aw,AHrl)lgRQ"Hek( w, A7) 2 H (") ( AT > R

min(Aw7AT)eR2n+1 ek(A’w, AT)
s.t. AT < Tt (11)

Clearly, (11) has the unique solution and (Aw*, A7¥) is the solution of (11) if and only if
there exists a real number A*¥ > 0 such that

P (wh YT F (ko T (90 Aw® \ ok BT Rk kY (12
(w,r) (’U),T)-F,U,k + 0 1 ATk (w,r) (waT )7 ( )

1
|ATH| < Hukr’“, (13)

1
Ak <|A7‘k| 1 Tk> =0, (14)
AF>0. (15)

From (12), we know that (w*, 7*) is a stationary point of ¥ (w, 1) if (Aw*, AT*) = (0,0).
Note that there is only bound constraints on A7 and there is no constraint on Aw, we can
solve (11) as follows:

Set \* = 0 and solve (12). If [A7*] < 7%, we obtain the solution (Aw*,A7*) of

(11). Otherwise, if Ar* > 1+1uk 7k set ATk = 1+1Hk 7%, Solve (12) with respect to unknown

variables (Aw*, A\¥). Then we obtain the solution (Aw*, Ar*) of (11). If A7F < —2-7F, set

A7k = — 7. Solve (12) with respect to unknown variables (Aw*, \*). Then we obtain the

solution (Aw*, AT*) of (11).
Now we state our algorithm formally.
Algorithm 3.1.

Step 0. Choose parameters a € (0,1), 8 € (0,1), v € (0,1), § € (0,2], and initial point
(w®, %) = (2°,4°,7°) € R" x R™ x Ry . Let pg = ||F(w®, 7°)||° and set k := 0;

Step 1. If (2, y*, 7%) satisfies termination condition, stop;
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Step 2. Solve (11) to obtain (Awk, A7*). If
|F(w* + Aw®, 7% + ATF)|| < ~||F(w*, )], (16)
then w*t! = wk + Aw*, ¥+ = 7% + A7* and go to Step 4. Otherwise, go to Step 3;

Step 3. Let my be the smallest nonnegative integer satisfying

k
B+ 57 Auk, 7 4 A7) — Wk, ) < asnTut T (1Y),
set whtl = wh 4 gmewk 7+l = 7k 4 gme A7k,
Step 4. Set pgy1 = |[|F(w** 75+1)||19 k == k + 1, go to Step 1.

Remark. (i). In Step 1, we do not give terminate rule clearly. In practice, we can use

ATk

Aw* . . . . L
< v > H < eor ||F'(wk, 7%)F(w*,7%)|| < € (e is the precision prescribed) as the termination

rule;
(ii). Since

Aw*
k o k\T
V¥ (w®, %) < Ak >
—1
= Pt k) (Pt T 3 (] )

F'(wk, 78T F(w*, %)
< 0,

the linesearch procedure in Step 3 can be carried out.

Now we analyze the convergence of the algorithm. In order to prove that the algorithm is
globally convergent, we need the following assumption:
Assumption 3.1. The sequence {(w*, 7%)} generated by Algorithm 3.1 is bounded.

It is easy to prove that the sequence {r%} generated by the algorithm is bounded. For
convenience, we assume that Assumption 3.1 holds. In fact, if we assume that X is bounded,
then {w"} is bounded by Lemma 2.4, Lemma 3.2 in [17] and the fact

1@(w™)|| < 1@ (w")[| + 2vnme < 2V + D|F(", 7)|| < 2v/n + D)I|F(w®, °)]
for all k.

Theorem 3.2. Suppose that the sequence {(w*,7%)} is generated by Algorithm 3.1 and As-
sumption 3.1 holds. Then any cluster point of {(w*,7%)} is a stationary point of ¥(w,T).

Proof. Since V¥ (w*, 7%) # 0 can imply that (Aw*, AT*) # 0, we have
Aw*
k o k\T
veh 7 (3% )
_ (AT KNT [ (o k k\T k .k g( 0 0 Awk .
= (Aw"" ) AT?) (F(w,T)F(U},T)+MkI+>\ (0 1>><A7’k
< 0.

By Step 2, we know that {¥(w*,7%)} is a monotonically decreasing sequence. Hence py, is
monotonically decreasing and has a limit point. If gy — 0, then F(w*, 7%) — 0. Therefore, any
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cluster point of {(w*,7%)} is a solution of F(w, ) = 0, hence it is a stationary point of ¥(w, 7).
If limg 0o ptx = @ > 0, then we have

Awk
k k\T
veh 7 (3% )

_ kT A _kNT [ Fr(, ke —k\T k ok e[ 0 0 Aw*
= (Aw"" | ATF) <F(w,7) F(w”®, 7%) + upI + A <0 1>><A7‘k
. Aw*
< H ATk

It is similar to the standard arguments that we can prove that any cluster point of the sequence
{(w*,7%)} is a stationary point of ¥(w, 7).

2

4. Local Convergence

In order to analyze the local convergence properties, we need the following assumption:
Assumption 4.1. (i). {(w*,7%)} = (w*,0), where w* is a solution of (1).

(ii). w* is a strict complementarity solution, i.e., z} +y; >0,Vi=1,...,n.

First we give the following lemma, which says that {||F’(w"*, 7%)||}is a bounded sequence.And
it is easy to prove the following lemma.

Lemma 4.1. Suppose that {(w*, %)} is generated by Algorithm 3.1, then there exists My > 0
such that

| (w", )| < My, V. (17)
In what follows, let @* denote a vector such that
[(@",0) — (w*, )| = dist((w*,7"),9), @* € X. (18)

Note that such @w* always exists even though the set  is nonconvex. Obviously, we have, by
the definition of (2,

|@* — w*|| = dist(w*, X).

First we show that unit stepsize is accepted for all k sufficiently large. Now we give several
lemmas.

Lemma 4.2. Suppose that Assumption 4.1 holds and {(w*, %)} is generated by Algorithm 3.1.
Let b= min{b;/2,bs} where by, by are defined in Lemma 2.2. If (w*,7%) € N((w*,0),b), then

Awk . wk
(35 )< ((50) 2)
wk 143
<ecg (dist(( ok ),Q) ),

e = [ (2L3e 0 + ML + 1)),

k
Pt ) (3% )+ Pk )

where

e = /(213020 + (M L300 + 1) L),

and Ly, Ly are defined as in Lemma 2.2.
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Proof. Note that (0" — w", _fuk

Bk(Awk,AT’“) < t‘)k(u_)k —

Since (w*, %) € N((w*,0),b), then
o* — w* w* 3 ,wk
0 0 Tk
w* o\ wk
0 r*

IN

IN

k

, —

1

1+ pk

)0
N0 ) -

Hence (w*,0) € N((w*,0),b;). By Lemma, 2.2 and (18), we know that

).

)~

By the definition of 6, Lemma 2.2, (20), (21), (22) and (17) we have

2

Awk
ATk

20, (Aw”, ATk)

< ik
S ﬁek(wk - wka _1+1Hk Tk)
1 H ( k k) I( k k) ’wk—wk ’ ’wk—wk
= —_— F’LU , T +F w", T < 1 k > —|—,uk ( 1 k
. T Tren T
ok — wk 2
< ul_k QHF(wk,Tk)-i—F’(wk,7'k)< Lk >—F(wk,0)
k k 2
w" —w
F2M2 TR < 1 k> )
_1+ukT
1 2 wk —wk ! 27818 wh — wk ’
< el 2L ok + (2M7LIb + 1) ok

2 6726 27616 wh w
< (2L3c56°70 + (2MPLSD + 1)) o )

Hence let ¢y = \/

k

T

)

kol

w
T
w
T

EolE S~

7F) is a feasible solution of (11), then

(2L3c562 % + (2MELSH + 1)), we obtain the first inequality.

)

)

743

(19)

~—~~

21)

~—~~

22)

Now we prove that the second inequality holds. In a way similar to proving the first in-

equality, we can prove that

Awk
‘F’(wk,T’“) ( Ak ) + F(w*, %)
< 20, (Awk, AT
—k k 1 k
< 20y (w — W, =T )
2 @k —wk || 27070
< 212 o + (2M2L2Y + 1)y,
—k
< (2020 + (2M2LV 4+ 1)LY) < v

2

Tk

")

("

(2+

)
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Let c3 = \/(2L%b2 + (2M?LS° + 1)L3), we obtain the result.

Lemma 4.3. Suppose that Assumption 3.1 and Assumption 4.1 hold and {(w*, %)} is gener-

k k k *
ated by Algorithm 3.1. If ( 1:,6 > , < ikiifk > eN (( u[)) > ,b), then

k k k 1+3
dist(( tkiﬁfk >Q> < ey (dm(( Y >Q>>

s s
where ¢4 = ¢1(c3 + L2clJr2 20)?). Especially, there exists a positive constant bs > 0 such that
2

, w* + Awk . wh + Aw* 1. w*
dzst(( ko Ak >,Q> §b3:>dzst<< k4 Ak >,Q> §5d23t<< " ),Q).

Proof. By Lemma 4.2, we have

Awk . wk
|( 3% )] <ewse (%) ).
k k 1+3
HF’(wk,Tk) ( i:l_)k ) —l—F(wk,Tk)H <cs3 (dist (( 171_),C ) ,Q)) .

Then it follows from Lemma 2.2 (ii), (iii) that

and

k A k
Cidist w o+ Aw , >
1

™+ Ak

< |IF(w* + Aw*, 7% + ATF)||
. . Awk Awk ?
< “F(wk,Tk)+Fl(wk,Tk)< ATk >H—+—L2 < ATk >
s
<

& 1+3 k I+3
csdist (( 171_)k > ,Q) +Lgcé+g(2b)%di8t (( 171_)k > ,Q)
5

1+3 3 wk 1tz
< (es+ Lacy 2(2b)2)dist (( Tk ),Q) .

s
Let ¢4 = ¢1(c3 + L2c;+2 (2b)g), then the conclusion holds.

Lemma 4.4. Suppose that Assumption 3.1, 4.1 hold and {(w*, %)} are generated by Algorithm
3.1. Then there exists positive integer k such that my = 0 for all k > k, i.e., the iteration

formula is as follows
whtl wk Awk -
()= ()0 (3) o

Proof. Let r = min{ b L }, where b = min{by /2,bs,b3} and by, bo are defined as

14+2¢27 2¢4
*

Lemma 2.2 and b3 is defined as Lemma 4.3. Since ( u())

there exists a positive integer k£ > 0 by Assumption 4.1 such that

) is a solution of F'(w,7) = 0, then

||F(w’_“,7"_“)||% < %,7 is chosen as in Algorithm 3.1 (23)
C1 2C4L1
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()3

Now we prove that the following hold for all & > k:

and

(i). (16) holds;
o (o) (s ) e (7))
i ()= () (3

We prove these results by induction.
When k = k, since

wk + Awk w* < wk w* Awk
7k 4+ ATk N 0 = Tk N + ATk

("
k
< r+02dist<< 171_}1@ >,Q>
wk w*
< rea(5)-(%)]
< (I+e)r
< b

So (ii) holds.
,uA)k
Let ( > € (1 be such that

0
wh + Awk wk . wh + Aw*
(s ) - (9 )= (5255 ) ).
It is similar to (20) that we can prove that (@w*,0) € N((w*,0),b;). Then by Lemma 4.3,
Lemma 2.2 (ii) and (iii) and (23), we have

IF(w + Awk, 7k + Ark)|

|IF(w* + Aw*, 7% + AT%) — F(w*,0)]|

. wk + Aw¥
< lezst<< k4 Ak ,Q
k 143
< L1C4dist<< fk )Q) (25)
s
< Liesey ?||F(wk, 74|+
< AlIF @, )]

So (i) holds. Hence (iii) holds by the definition of Algorithm 3.1.
Now we assume that (i), (ii) and (iii) hold for k = k,k +1,...,1. We need to show that (i),
(i) and (iii) hold for £ =1 + 1.

wh+! w* . o
Obviously, ( eS| > eN << 0 ) ,b> ,Vk=k,k+1,...,]l by assumption.
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It follows from (ii), (iii) and Lemma 4.3 that Vk =k + 1,...,1,1+1

IN

[N
U
o~
Vo)

IN
—~
[N
SN—

T

< r(s

Therefore, by Lemma 4.2 we obtain that Vk =k +1,...,[,1+1

Awk . wh 1\ FF
(50 oo ) ) <o)

l+1+Awl+1
(e 25 )= ()]
—k

It follows that

< J(%)-(% (3]
< rter Y k(%)

< r+oer Zk:() (%)

S £1+02)T

< b

Then (ii) holds.
Note that {F(w*,7*)} is a monotonically decreasing sequence, we have that

_ y
IF @ Y < < F @, 78 € ——-
2
C4L101

Similar to the proof of (25), we can show that
[F (™ + Aw'™ 77 AT || < 5| P 7).

Hence (i) holds. Then (iii) holds by the definition of the algorithm.
Combining Lemma 4.3 and Lemma 4.4, we have the following theorem.

Theorem 4.1. Suppose that Assumption 3.1 and Assumption 4.1 hold and {(w*,7*)} is gen-
k
erated by Algorithm 3.1. Then {dist (( 171_),C ) ,Q)} converges to 0 superlinearly. If § = 2,

k
then {dist << 1:,» ) ,Q)} converges to 0 quadratically.

Proof. Tt follows from Lemma 4.4 that for all k£ sufficiently large, the iteration formula is as

follows
whktl wk Awk
() (2)+(2)
wk wk + Awk w*
(5 ) (miam e ((7) ),

and
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From Lemma 4.3, we know that the conclusion is true.

Remark. Here we assume that (w*,7%) is convergent for simplicity. In fact, we need only
assume that one cluster point of the sequence (w”, ") is a strict complementarity solution of
(1). The we can use the technique in [33] to prove that that the whole sequence {(w*, %)}
converges to the cluster point.

Now we study the superlinear convergence of the algorithm from the other hand.
Assumption 4.2. {||(F'(w*,7*))~!||}is bounded above.

This assumption is used in many literatures to prove the superlinear convergence of their
algorithms [2, 6]. It is noticed that this assumption implies that the solution set of (1) is
singleton but not necessarily a strict complementarity solution.

From Assumption 4.2, we have that there exists a constant ¢j > 0 such that for sufficiently

large k
He = ||F(w T
e ("ol )
2 WH(”J‘) Lol
(wk;w*> 0

(")
From (26), it is simlar to Lemma 4.2, 4.3, 4.4 and Theorem 4.1 that we can obtain

> L

Lemma 4.5. Suppose that Assumption 4.2 holds and {(w*, %)} is generated by Algorithm 3.1.
There exit ch, > 0,c5 > 0 such that if (w*,7F) € N((w*,0),b), then

wk — w*
|3 ) <]l
Aw* wk — w*
1,k _k E _k

“F(w,r)(ATk>+F(w,T) ( ok )

Lemma 4.6. Suppose that Assumption 3.1 and Assumption 4.2 hold and {( w",Tk)} s gener-

wk
ated by Algorithm 3.1. There exists ¢jy > 0 such that if < Lk >, <w +Aw ) eN ) )

h ATk
then
w® + Aw® — w* </
™" £ ATk =G

)
144
!
<cg

,wk —w* 1+%
Tk
Especially, there exists a positive constant b3 > 0 such that

w* + AwkF — w* w* + AwkF — w* 1 wk — w*
H < ™+ ATE <bs = ™ + ATk < 9 Tk ’

Lemma 4.7. Suppose that Assumption 3.1, 4.2 hold and {(w*,7%)} are generated by Algorithm
3.1. Then there exists positive integer k such that my = 0 for all k > k, i.e., the iteration

formula is as follows
whtl wk Awk -
()= ()0 (3w
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Theorem 4.2. Suppose that Assumption 3.1 and Assumption 4.2 hold and {(w*,7*)} is gen-
erated by Algorithm 3.1. Then

5. Implementation and Numerical Experiments

In this section, we test our algorithm on some typical test problems. The program code
was written in MATLAB and run in MATLAB 6.0 environment. The internal function QP
in optimal toolbox is used to solve subproblem (11). The parameters are chosen as follows
=09, a=0.1, =05, 5 =1, 79 = 0.1. The stop criterion is [|(Aw*, A7¥)|| < 10710, The
numerical results are summarized in Table 1 and the test problems are introduced as follows.

LCP1: M = < } } >, g = (—1,—1). This problem is given in Cottle et [10], the initial
point is (0,---,0).
0 0 10 20
0 0 30 15 . . .
LCP2: M = 020 0 0 |27 (=1,—1,—1,—1).This problem is given in Cottle
30 15 0 0
et [10], the initial point is (0,---,0).
1 2 2 .- 2
01 2 2
Lep3: M= 0 01 2 , ¢ = —e, n = 16.This linear complementarity problem
000 --- 1

is one for which Murty has shown that Lemke’s complementary pivot algorithm is known to
run in a number of pivots exponential in the number of variables in the problem (see [23]). The
initial point is (0,--- ,0).

1 2 2 2 2
01 2 2 2
001 -~ 2 2
LCP4: M = . . . |,g=—(1,---,1,0). This problem is given in Chen
000 --- 1 2
000 --- 00
and Ye [8], the initial point is (0, -- ,0).
4 -1 0
LCP5: M=| -1 4 -1 |,q=(1,0,—1). This problem is from Yamashita, Dan and
0 -1 4
Fukushima [35]. The initial point is (0,--- ,0).
0 0 0
LCP6: M =| 0 4 -1 ],q=(0,—1,0). This problem is from Yamashita, Dan and
0 -1 4

Fukushima [35]. The initial point is (0,--- ,0).
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4 2 2 1
2 4 0 1 . . .
LCP7: M = 9 0 2 9 |"97 (—8,—6,—4,3). This problem is from Yamashita
-1 -1 -2 0
and Fukushima [36]. The initial point is (0,--- ,0).
0 1 0
LCP8: M =| 0 0 1 |,q=(0,0,1). This problem is from Chen and Ye [8]. The
0 -1 1
initial point is (1,---,1).
01 0
LCP9: M= 0 0 -2 |,q=(0,0,1). This problem is from Zhao and Li [38]. The
0 2 1
initial point is (1,---,1).
4 -2 0 0 O
1 4 =2 0 0
o 1 4 .-~ 0 0
LCP10: M = . . . ] . . , ¢ = —e. This problem is from Ahn [1]. The
0 0 O 4 -2
0 0 O 1 4
initial point is (0,--- ,0).
4 -1 0 0 O
-1 4 -1 0 0
o -1 4 -~ 0 O
LCP11: M = . . . ) . . , ¢ = —e. This problem is from Geiger
o o 0 -+ 4 -1
o o 0 -+ -1 4

and Kanzow [18]. The initial point is (0, - ,0).
LCP12: M = diag(1/n,2/n,---,(n —1)/n,1), ¢ = —e. This problem is from Zhao and Li
[38]. The initial point is (0,--- ,0)

Table 1. Dim. is the dimension n of the problem, No. of the iter. is the number of the iterations and
Residual is ||¥(z,y)||. Last 1(Last 2, Last 3) means the first (second, third) backward the terminate
iteration and ||F|| = ||F(z,y, 7)||-

Problem | Dim. | No. of Iter. | Residual T Last 3 ||F'|| | Last 2 ||F|| | Last 1 ||F||
LCP1 2 7 3.5e-34 1.2e-20 1.5e-5 2.3e-10 2.6e-17
LCP2 4 7 2.4e-22 9.2e-13 0.002 5.5e-6 2.2e-11
LCP3 16 23 0.02 7.7e-12 0.229 0.223 0.217
LCP4 100 21 1.9e-7 7.0e-15 0.002 0.001 6.2e-4
LCP4 300 28 7.8e-8 3.0e-14 0.001 6.0e-4 4.0e-4
LCP4 500 30 9.9e-8 1.8e-15 0.02 0.001 4.4e-4
LCP5 3 7 6.3e-33 2.8e-22 7.0e-6 2.3e-10 1.1e-16
LCP6 3 7 1.2e-25 2.5e-13 8.3e-5 1.5e-8 5.0e-13
LCP7 4 20 3.4e-25 1.1e-16 9.1e-4 8.7e-7 8.2e-13
LCPS8 3 11 3.2e-26 4.0e-14 6.8e-4 4.8e-7 2.5e-13
LCP9 3 8 6.1e-24 1.1e-12 0.001 1.9e-6 3.5e-12
LCP10 300 18 2.0e-28 1.1e-15 3.7e-4 1.4e-7 2.0e-14
LCP10 500 21 3.7e-25 4.4e-14 9.7e-4 9.2e-7 8.6e-13
LCP11 300 20 6.3e-30 1.0e-17 1.1e-4 1.2e-8 3.5e-15
LCP11 500 24 7.0e-31 6.0e-21 1.8e-5 3.1e-10 1.2e-15
LCP12 20 56 0.82 3.0e-12 1.296 1.287 1.277
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From Table 1, we see that the algorithm can solve these problems efficiently. From Column
6-Column 8, we know that ||F|| tends to 0 rapidly at the end of the algorithm. This shows the
superlinear convergence behavior of our method. However, there is no common knowledge on
the choice for §. For some problems, the lager ¢ is , the better the algorithm performs, whereas
for other problems, the smaller § is , the better the algorithm performs.

6. Conclusions

In this paper, we combine the smoothing technique and LMM to propose a new algorithm for
LCP(M,q). The global and local superlinear convergence of the algorithm are obtained under
very mild conditions. Especially, the algorithm is locally superlinearly convergent under the
assumption of that M is Py and either nonsingularity or strict complementarity. This property
is interesting. Therefore the conditions are very weak comparing with the existing algorithms.
Numerical experiments show that the algorithm is efficient. Furthermore, these experiments
demonstrate the superlinear (even quadratical) convergence. However, we need to solve (11)
exactly for the algorithm in this paper. This is expensive for large scale problems. How to
improve the current version of the algorithm and to propose a more practicable algorithm is an
interesting topic. Furthermore, to develop a method which is superlinearly convergent without
assumption of nonsingularity and strict complementarity is a interesting topic. We are going
to study the problems further.

Acknowledgement: The author gives indebted thanks to Professor Naihua Xiu and two
anonymous referees for their valuable suggestions and comments.
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