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Abstract

Properties of symplectic Runge-Kutta (RK) methods and symplectic partitioned Runge-
Kutta (PRK) methods with real eigenvalues are discussed in this paper. It is shown that
an s stage such method can’t reach order more than s + 1. Particularly, we prove that
no symplectic RK method with real eigenvalues exists in stage s of order s + 1 when s
is even. But an example constructed by using the W-transformation shows that PRK
method of this type does not necessarily meet this order barrier. Another useful way other
than W-transformation to construct symplectic PRK method with real eigenvalues is then
presented. Finally, a class of efficient symplectic methods is recommended.
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1. Introduction

A Hamiltonian system
) oH i _8H 1<i<d
bi = — y 4i = 131 s a,
9qi Opi

is a particular instance of the general systems of differential equations

d
L = F(y), withy = [p.q]" € R”,D = 2d, and, F = J"'VH,
where, J = { —Old % is the standard symplectic matrix.

When an s stage RK method (4, b,¢), i.e. ,

Ct | @1 - Q1s
Cs Qg1 T Qss
| by - bs

applied to system (2), it advances the numerical solution from time ¢, to time t,+1 = t, + h

through the relation

yn-i-l — yn _‘_hzblF(Y;),

i=1
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where the stage vectors Y; are given by
Yi=y"+hY a;F(V;),1<i<s. (4)
j=1

If the method is implicit, (4) provides a coupled system of s x D algebraic equations for the
s x D components of the stage vectors. The computational cost per step of an implicit RK
method is then definitely great, especially if s or D in large scale, and has become an obstacle
to the application of those methods in practice. But a technique due to Butcher and Bickart
can remarkably reduce the computation. We simply explain their idea as follows.

First, we introduce the increments

Zi =Y —y",
then (4) can be rewritten as
71 Fy™+ Zy)
C | =h(A®I) : , (5)
Zs F(y™ + Zs)

where the symbol ® denotes the Kronecker product.
The simplified Newton iteration for (5) reads

(I —hA® Jp)AZP = —Z®) 4 h(A o F(Z®), Z¢*+D =78 L AZKE) (6)

Here, Z=[Zy, -+, Zs), F(Z) =[F(y"+ Z1)T, - - ,F(y"+ Z*)T|T, Jp = ZE(y™). If A is invertible,
then the technique mentioned above is to premultiply (6) by (hA)~! ® I and transform A~*
into a matrix D with a simpler structure (for instance diagonal, block diagonal, triangular)

T 'A™'T =D.
In the transformed variables
W= (T"'®I)Z,

the iteration (6) reads

(h'DRI -1 Jp) AWK = _ =Y (Do HWH® +(T~' @ HF(T @ )W®),

WD) = W) 4 AW ) @
In the case where D is a diagonal matrix with diagonal entries );, the eigenvalues of A~1, the
matrix (h 1D ® I — I ® Jr) to be factorized is now block diagonal with s blocks h=t\;I — Jp.
Hence now it is only necessary to factorize s D x D matrices with an operation count sO(D?).
This is to be compared with the facterization of an sD-dimensional matrix in (5) with a count
O((sD)?). So it is much computationally efficient if ); are all real, i.e. , A has real eigenvalues
only. Two particular cases of implicit methods, called SIRK (Singly Implicit Runge-Kutta
method) and DIRK (Diagonally Implicit Runge-Kutta method), occur, respectively, when A
has an unique non-zero real eigenvalue A, i.e., 0(A4) = A and a;; = 0 for ¢ < j, and they have
almost the same efficiency as the multi-step methods. As is known, symplectic RK methods
and symplectic PRK methods for non-separable Hamiltonian systems must be implicit. In this
paper, we mainly focus on the symplectic RK methods and symplectic PRK methods with real
eigenvalues for Hamiltonian system(1). Firstly, we show that an s stage RK&PRK method
with real eigenvalues can not reach order more than s+ 1. It is then proved that no symplectic
RK method with real eigenvalues exists in stage s of order s+ 1 when s is even. But symplectic
PRK methods of this type don’t necessarily meet this order barrier, and this is shown by an
example constructed by using W-transformation. An useful way other than W-transformation
to construct symplectic PRK methods with real eigenvalues is then presented. The conclusion
we make is that, in high order level, composition methods due to Yoshida (see[5]) are of our
advantage in consideration of the efficiency for these algorithms. Finally, a class of symplectic
efficient methods of low order is recommended.
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2. Properties and Construction of Symplectic RK&PRK Methods
With Real Eigenvalues

In order to give the properties of RK methods with real eigenvalues here we quote a result
in [4],
Theorem 2.1. Let R(z) be the stability function of an s stage RK method with coefficient
(A,b,c) and suppose that it be an approximation to € of order p with real poles only. Then
p<k+1<s+1, where k is the degree of R(z)’s numerator.

Now, we can obtain
Corollary 2.1. Let (A,b,¢) be an s stage RK method of order p with real eigenvalues only,
thenp<k+1<s+1.

Proof. Notice that R(z) = Plz) _ detU_zAtzebl) g the reciprocals of the poles of R(z)
Q(z) det (I—zA)

are the non-zero eigenvalues of A, and vice versa, it is a straightforward deduction from theorem

2.1.

Corollary 2.2. Only one stage Gauss method, i.e., midpoint method has real eigenvalues only.

Radau IB, Radau IIB methods(see [10]) can’t have real eigenvalues only, if s > 2. Meanwhile,

the stage of Lobatto ITTA,IIIB and I11S methods with real eigenvalues can only be s = 2.

Proof. For Gauss methods, p = 2s, by p < s+ 1, we have s < 1. For Radau IB and
Radau IIB methods, p = 2s — 1, by 2s — 1 < s + 1, we have s < 2. Further, we can see
from theorem 2.2 below, 2-stage Radau IB and Radau I1B methods, which are of order 3
can’t have real eigenvalues only. In the case of Lobatto ITTA,IIIB, and IIIS, R(z) are all
Padé(s-1,s-1)-approximation and p = 2s — 2, hence by 2s —2 < s — 1+ 1, we have s < 2, i.e.,
s = 2 since there doesn’t exist 1 stage method in Lobatto family.

Corollary 2.2 shows that most of higher order symplectic RK methods based on quadrature
formula are not of this type in discussion. In fact, we have the following order barrier for
symplectic RK methods with real eigenvalues.

Lemma 2.1. Let (A,b,c) be an s stage Runge-Kutta method with coefficients a;;,bj,¢; (i,j =
1,...,8) and (A*,b*,c*) be its adjoint method. If (A,b,c) is symplectic, then (A*,b*,c*) is also
symplectic and the two methods have the same stability function.

Proof. The coefficients of the adjoint method (A*,b*, c¢*) is (see[3], I1.8, theorem 8.3)

*
¢ = 1—csp1-
* — b . R )
Qi = Ust1—j = Qsl—i,s+1—j
* — .
b] — bs+1_].

Now, the symplecticity of (A*,b*,¢*) can be seen by verifying the symplecticity criterion for
RK methods (see [3], I1.16, theorem 16.6),
biaj; + bjaj; —bjb;
bs+17i(bs+1fj - as+17i,s+1fj) + bs+17j(bs+17i - aerlfj,erlfi) - bs+1fjbs+17i
= bep1—ibst1—j — bsr1—iOst1—i,541—j — Us1—jAst1—j,s+1—; = 0.

Let R(z) and R*(z) be the stability function of the methods (A4,b,c) and (A*,b*,c*), re-
spectively. In order to prove R(z) = R*(z), we firstly prove that R*(z) = (R(—z))~!. In fact,
applying (A, b, ¢) to the linear system y' = Ay yields

yn(z + h) = R(2)yn(z),z = Ah, (8)
and R*(z) = (R(—z)) ! can be seen by replacing h — —h and then x — = + h in (8).
Next, applying the method to the linear Hamiltonian system
pP=2Ap,  {=-X\ (9)
yields
p1 = R(2)po, 71 = R(—2)qo-

By the symplecticity, we have
dpo A dgo = dp1 A dgi = R(z)R(—z)dpo A dgo.
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Hence R(z)R(—z) = 1 and therefore R(z) = (R(—z))"! = R*(z). The proof is completed.
Lemma 2.2. Let p; be the exact flow of y' = f(y),y(to) = yo and let &, be a one-step method
of order p satisfying

@1 (y0) = n(yo) + C(yo) k" + O(h"*?).

The adjoint method ®; then has the same order p and we have
@5 (yo) = pn(yo) + (—1)PC(yo) WP+ + O(hPT?).

Proof. Put y1 = ®} (yo) and let e* denote the local error of ®;, i.e.,

e”" =y1 —¢n(yo) = ®p(Yo) — ¥n(yo),
Let e denote the local error of @ _y,, i.e.,

e=® n(y1) —vo,
then from the first equation of the lemma, we have
e = (=1)P"1C(pn(yo))hP™! + O(hPF2).
Because
Yo =®_n(y1) = ®_n(¢n(yo)) + (I+ O(h))e”,

hence,
e=—(I+0O(h))e".

Notice that ¢n(yo) = yo + O(h), so
e’ = (-1)PC(yo)hP™ + O(hP*?).

The proof is completed.

Theorem 2.2. No symplectic RK method with real eigenvalues exists in stage s of order

p=s+1 when s is even.

Proof. Let the method be (A,b,¢) and R(z), R*(z) have the same meaning as above. We
take f(y) = A\y,yo = 1 in lemma 2.2 and can have

R(z) = e* + C(1)hP*T! + O(hPT?), R*(2) = € + (=1)PC(1)hPT + O(hPT2).
Because R(z) = R*(z) by lemma 2.1 implies C'(1) = (—1)?C(1), and therefore C(1) = 0 since
p=s+1and s is an even number. So, R(z) must be an approximation to e* at least of order
s+ 2. A contradiction to theorem 2.1, which complete the proof.

In theorem 2.2, we in fact proved that the stability function R(z) of a symplectic RK method
must be an approximation to e® of even order.

Iserles[6] constructed symplectic RK methods with the help of perturbed collocation and
Hairer and Wanner[2] constructed a family of stage 3, order 4, symplectic RK method based
on W-transformation(see[4]). By theorem 2.2, no symplectic RK method with real eigenvalues
exists of stage 4, order 5, but the PRK methods of this type do exist. Now, based on W-
transformation, we construct a family of symplectic PRK method with real eigenvalues of order
5 in stage 4.

Theorem 2.3. Let ¢;(i =1,2,3,4) be the (real) zeros of
9 - E[i+k
M(z) = Py(z) + 0P (z), where § < ——, P.(z) = _IM['H i ] 10

() = Pue) + 8Ps(o) where 6 < 2 PuGe) = = | |76 e a0
and b; # 0(i = 1,2,3,4), the weights of the corresponding quadrature formula. Further, let
a, B,7v,n be four numbers satisfying

70a + 7T1ln =0, (11)
70(a —t) + 71 = 0, where t = ufvy,u = 23:1 ba Ps?(z;). (12)
In| > 117.3, (13)
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17ulhe7re 117.3 is the largest root of ¢*+p* = 0,p = - x (’7+35) +’71t1?)5,q = %(%)3(%‘38)—%
—7n

<10 - Lhen a symplectic PRK method with coeﬂ?czent (A, A,b,c) of order 5 with real eigen-
values is obtained by,

I =& 0 0
T _ & 0 =& 0
W*BAW = 0 & o uf |’ (14)
0 0 uy un
% —& 0 0
Tpiw— | & 0 =& 0
W*BAW = 0 & —a —uy | (15)
0 0 —uf -—uny

where & = ;W:éb = ﬁ,wzj = Pj_1(c;)(i,j = 1,2,3,4), and B = diag (b, b2, b3, bs).

Proof. Formulas (10), (14), (15) imply conditions B(6),C(2), D(2) of Butcher (see[4], Lemma
5.15 and Theorem 5.11), which mean order 5 for the PRK method, and they also conform to
the criteria for symplecticity of the PRK method (see[9]),

X+ X' —eje;T' =0, whereX = WIBAW, X = WIBAW, e, = Wb,
If we put J = WTBW = diag(1,1,1,u), then the eigenvalues of A and A are those of

(3 =& 0 0
_ -1 _ -1y T & 0 =& 0
Y = W AW =J W"BAW = 0 & o uB |’ (16)
L 0 0 uy un
(3 & 0 0
and ¥ = WlUAW=J'wTpaw=| & 0 & 0 (17)
0 & -  —uy
L O 0 —uB -—uny

We pre-require that P(\) = [\I — A] and Q()\) = |\I — Y| have a same root A\; = 1 which leads
o (11) and (12). Then the roots of the cubic polynomial P;(\) = PA are all real iff

A—1
1 1 1 n+35., 7n+35 n+35., n—58 Tl—Tn
D:_3 _3< [ — 2 = — 3
10 t o S0p =3 x () 20 =270 ) T ) T s

where D denotes the roots discriminant for the cubic equation P;(A) = 0. A straightforward
computation leads to:

n < —87.459 or 4.644 < n < 45.666 or n > 111.73.
An analogous procedure applied to Q1(\) = (j‘) =0 leads to :
n > 87.459 or — 45.666 <n < —4.644 or n < —111.73.
Combining all these restrictions on 7 leads to (13). The proof is completed.
Next, we will give an example constructed as theorem 2.3.
Example 2.1. Taking 6 = —%, a=—-538 73— 71‘ﬁ, v = 93‘ﬁ, n = 156, then we can

735
obtain an 4 stage 5th order symplectic PRK method with real eigenvalues

0 713 5860—7999/5 5860479995 _ 13859
28 84 84 84
5—v/5 | 3481-4879/5 655394595 —87341—-1445v5  11779—14637/5
10 280 840 840 840
545 | 348144879v5  —8734141445V5 65539—59v5 11779—15938V5
10 280 840 840 840
1 2803 5251472895 5251 —72895 520
14 ] ] 21
1 5 5 1
12 12 1 12
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0 _ 533 —10373+14637v5  —10373—14637\5 12505
21 168 168 84
5—v5 | —528547999/5 —65189—59/5 —87691—1445/5 —5216—7289/5
10 420 840 840 420
5+v5 | —5285—7999\5 —87691+14455 —65189+595 —5216—7289\/5
10 420 840 840 420
1 2311 —3903-5313V5 —3903+5313v5 691
14 56 56 28
I 5 5 1
12 1 12 12

A simple analysis can show that it more efficient than 3-stage Radau IB and Radau I7B
methods, which are also of order 5(see[10]).

Theorem 2.3 shows that symplectic PRK method with real eigenvalues doesn’t necessarily
meet the order barrier in theorem 2.2. The following property of symplectic PRK methods with
real eigenvalues may provide another way other than W-transformation as used in theorem 2.3
to construct such PRK methods.

Theorem 2.4. Suppose (A,b,c) is a symmetric RK method with distinct nodes ¢; and b; # 0
(i = 1,....8), then (A,b,¢c) (ay; = bj(1 = %), ¢ = Y5y aijpi,j = 1,2,...,5) is also a
symmetric one, and they have the same stability function, 1.e.

_det (I +2zA)  det (I + zA)

R(2) = = =, 18
() det (I —zA) det (I —zA) (18)
Further, A and A have the same eigenvalues.
Proof. By the symmetry of (A,b, c), we have a;; + as41—i,s+1—j = bj = bsy1—j. So,
Qi Qs41—j,s+1—i
Gij + o1 ior1j = bl —=L) by (1 — L (19)
b bs1—i
_ b bst1-j
= bj+bep—; — (i + s41—j,s+1—i) (20)
b; bot1—i
b; b;
= 2bj = 17(aji + aspr—jsr1-i) = 2bj — 17 X bi = bj = bsya—j, (21)
holds for j = 1,2,..., s, which means that (A, b, c) is also symmetric.

Obviously, (A, A,b,¢c) is a symplectic PRK method according to the symplecticity criterion
for PRK methods (see[9]), and when it is applied to the linear Hamiltonian system (9), it leads
to

p1 = R(2)po, R(z) = Joitza),

_ _ _:A
@1 = R(—2)qo, R(—2) = 7338%&;7

z = Ah.
By the symplecticity, B
B dpo A dgo = dp1 A dgqy = R(2)R(—2)dpo A dqo,
thus R(z)R(—z) = 1, which implies (18), i.e., R(z) = R(z). Since the reciprocals of the poles

of R(z) and R(z) are the non-zero eigenvalues of A and A, respectively, and vice versa, so A
and A have the same eigenvalues.

Remark 2.1. Theorem 2.4 provides a way to construct symplectic PRK methods with real
eigenvalues. For any given symmetric RK method (A4, b, ¢) with distinct nodes ¢; and non-zero
b;, we can obtain a symplectic PRK method (A4, A,b,¢c,¢) as we did in the theorem, and if A
has real eigenvalues only, then (A, A, b, c,¢) also has real eigenvalues only.

The construction of the symmetric method (A,b,c) can see [1]. About the order of the
obtained PRK methods, we refer to [10] theorem 2.2 in high order level and in lower order
level, this can be verified easily.

Example 2.2. In [7], a family of singly implicit collocation method with one parameter A is
given by

A2~ V2) ) A1 - 22)
AM2+v2) | A1+ 22) A1+ ¥2) (22)

1-v2+ 2;\/5)
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Here A is the unique eigenvalues of A, i.e., 0(A) = A. It is easy to know that a collocation
method is symmetric iff the collocation nodes are symmetric, i.e., ¢; + ¢s41—; = 1. So, taking
A= 1 such that A(2 — v2) + A(2+ v/2) = 1, i.e., the above method is symmetric and compute
A, then we can get a symplectic PRK method,

2—/2 4—/2 4-3V2 442 4—/2 4432
4 16 16 8 16 16 (23)
24v2 | 443v2 442 4—v2 | 4-3V2 442
4 16 16 8 16 16
| 2 2 2 2

Obviously, this is a method of order 2 due to its symmetry. But here we would like to point
out that the 2 stage 2nd order Lobatto I1IS method (see[1])

[
[ =
(I
~~
[\
g
N

2 2

is superior to method(23) when applied in practice.

As is shown in this section, no symplectic RK method with real eigenvalues exists of order
s + 1 in stage s when s is even, and though we can resort to PRK methods in this case, the
complexity of such methods in high order level can be partially seen in example 2.1. When the
stage s is odd, the most often used methods include the 1 stage 2nd order midpoint formula (see
Table 3.2(2), Sect. 3) and the 3 stage 4th order symmetric composition of midpoint formula
(see Table 3.4, Sect. 3), but in higher order level, even we can find such RK method of order
s+ 1, e.g., 5 stages 6th order symplectic RK method with real eigenvalues, its computational
efficiency can not be comparable to that of the 7 stages 6th order symmetric composition of
midpoint formula(see [5], V.3.2). So, for efficient symplectic methods of high order for system
(1), we recommend composition methods(ref. [5,8,11]).

3. A Class of Efficient Symplectic Method

In this section, we will recommend some symplectic RK and PRK methods with real eigen-
values from order 1 to order 4. We also give some analysis for some of these methods when
they applied to system (1) in practice. In higher order level, as has discussed in the final part
of section 2, we recommend composition methods (ref.[5,8,11]).

Table 3.1 Order 1

0‘0 1‘
E |

Symplectic Euler method
Only one d-dimensional equation is needed to solve when applied to system (1).

1
1

Table 3.2 Order 2
0|0 O 0 % 0
1]+ 2 132 0
B B

2 2 2 2

1). Lobatto IITA-Lobatto IIIB method (see [9])
Two d dimensional equations are needed to solve. It’s one of the most efficient methods among
methods of order 2.
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2). Implicit midpoint formula
A 2d-dimensional equation is needed to solve.

Table 3.3 Order 3

3+v3 | 3+V3 0 34+v3 | V3 3+2V3
6 6 6 6 6
3-v3 | _V3  3+V3 3—v3 1 _V3
6 3 6 6 2 6
| I I | L I
2 2 2 2

A PRK method constructed directly
Table 3.4 Order 4

i1+a| t+a 0 0
5 |14+2¢ —(5+2a) O
1—a|l1+2a —(14+4a) 1+a

|1+2a —(1+4a) 1+2a

1 1
1). Symmetric composition of implicit midpoint formula, where a = 2542 51

0 0 O 0 0 0 O a a 0 0 0 0 O
2a a a 0 0 0 0 a a 0 0 0 0 O
2a a a 0 0 0 O 1 a a L-2a 0 0 O
1-2a|a a -2 1—-2¢ 0 0 ; a a i—2a 0 0 O
1—-2a|a a i—2a i—2a 0 O l—a|a a i—2a 1 92 a 0
1—-2a|a a g—Qa §—2a a a l—a|a a g—Qa %—Qa a 0
a a %—2(1 %—Qa a a a a %—Qa %—Qa a a

=

1
2). Symmetric composition of 2-stage LobattoIITA-LobattoITI B method, where q = 2242 342
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