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Abstract

This paper provides an convergence analysis of a fractional-step projection method
for the controlled-source electromagnetic induction problems in heterogenous electrically
conducting media by means of finite element approximations. Error estimates in finite
time are given. And it is verified that provided the time step 7 is sufficiently small, the
proposed algorithm yields for finite time T an error of O(h* 4 7) in the L?-norm for the
magnetic field H, where h is the mesh size and 1/2 < s < 1.
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1. Introduction

The numerical treatment of the controlled-source electromagnetic(CSEM) induction prob-
lems, which are widely applied in geophysical prospecting, have received much attention in the
last decades (see [5, 11, 16, 17, ?]). So-called CSEM problems are actually that electric and
magnetic fields at low frequencies (such that displacement currents can be neglected) satisfy
the diffusive Maxwell’s equations:

0H

VxH-oE=J,, (1.2)

where pg is the magnetic permeability of free space, o is the spatially varying electrical con-
ductivity of the geological formation being studied with 0 < & < o(x), and J4(x,t) is source
electric current density.

By equations (1.1) and (1.2), eliminating electric field E we obtain

uoaa—iI—FVx (07'V x H) =V x (0 *Jy). (1.3)

A constitutive equation B = uoH relates the magnetic induction and magnetic field vectors.
The divergence-free condition
V-B=0 = V-H=0 (1.4)

is also imposed, indicating that no magnetic induction exists inside the solution domain 2.
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For convenience of numerical treatment, we add a multiplier term V¢ to the left side of
equation (1.3) to obtain

uoaa—i[Jrv x (0 'V x H)+ V=V x (¢ 1J,). (1.5)

By equation (1.4), we take the divergence in two side of above equation to get
Vi =0. (1.6)

It can easily be founded that if we enforce a zero Dirichlet condition on ¢ along the boundary I
of the solution domain Q, then the multiplier function ¢ added in equation (1.5) is identically
zero value on that domain. Thus, equation (1.5) is equivalent to equation (1.3).

In following context we shall concentrate our attention on the finite element approximation
of the following initial-boundary value problem of equations (1.4) and (1.5):
(

uo%—?+v x (6 'V x H)+Vé=F, Qx(0,T),

V-H=0, Qx]0,T], W)
1.7

Hxn=0, 0Qx][0,T],

L H(,0) = Hy, Q.
Here vector value function F = V x (¢ 1J ) and Q is a bounded, simply-connected polyhedral
domain with connected boundary I' = 92 and n the unit normal vector to T'.

As is known to all, the fractional-step projection method of Chorin [6, 7] and Shen [22,
23] and Guermond [1, 12] has been successfully applied to solve the incompressible Navier-
Stokes equations in primitive variables in recent years. This method is based on rather peculiar
time-discretization of the Navier-Stokes equations, in which the convection-diffusion and the
incompressibility are dealt with in two different substeps and therefore the original problem is
converted into solving a convection-diffusion problem and a Poisson problem at each step. Thus,
the projection method has advantage of much lower amount of computation in comparison with
coupled techniques such as those that are based on the Uzawa operator (see [2, 3, 14] et al).

In view of above-mentioned virtues, the aim of this paper is to present and analyze a
fractional-step projection algorithm for the controlled-source electromagnetic induction problem
in heterogenous electrically conducting media by means of finite element approximations.

The remainder of this paper is organized as follows. Some preliminary results is stated and
the fractional-step projection scheme is proposed in Section 2. Section 3 devotes to the error
estimates with mild regularity assumptions on the solution of the continuous problems.

2. Fractional-step Projection Scheme

Firstly, we state some preliminary knowledge which will be frequently cited in the sequel.
Throughout this paper we assume that @ C R is a sufficiently smooth bounded, simply con-
nected polyhedral domain with connected boundary I' = 9Q and n is the unit normal vector
to ['. As usual, W# P(Q) denotes the real Sobolev space, 0 < s < 0o, 0 < p < 00, equipped
with the norm || -||s, , and semi-norm |- |5, ,. The space Wy ¥ is the completion of the space of
smooth functions compactly supported in Q with respect to the || - ||, , norm (see [8, 13, 20]).
For p = 2,we denote the Hilbert spaces W* 2(Q) (resp., W¢ *(Q)) by H®(Q) (resp., HE(9)).
The related norm is denoted by || - ||s. The dual space of H§(2) is denoted by H*(2). For a
fixed positive real number T', and a Banach space X, we denote by L?(X), H*(X) and C(X)
the space LP(0,T; X), H*(0,T; X) and C(0,T; X), respectively.
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Furthermore, we introduce the following Hilbert spaces

H(curl; Q) = {veL*(Q)®: VxwveL*N)?%},
Hy(curl;QY) = {v € H(curl;Q): v x n|r = 0},
H%curl;Q) = {ve H*Q)®: VxwveH*Q)? a>0},

where spaces H(curl; Q) and H*(curl; Q) are equipped with the following norms (see [9, 10]):
10115 curt = 10115 + IV x 0I5, [[0]13 cur = [l0]I5 + IV x ][5
For the sake of simplicity, we denote
X = Ho(curl;2), V={veX:V-.-v=0}
M=H;(Q), H={veIl*Q)?:V-v=0v nlp=0}
Then we have the following orthogonal decomposition of L?*(Q)? (see [15]):
L*(0)® = H ® V(H; (). (2.1)
Based on above discuss, the variational formulation of problem (1.7) reads as follows: Seek
(H, ) in the following spaces,
Hc L™(0,T;L*()*)NL*(0,T;X), H, € L*(0,T; X '), forall T >0,
¢ € L*(0,T; M), forall T > 0.
such that it satisfies the initial condition
H(z,0) = Hyo(z), € (2.2)
and the following equations

(0L )+ (¢ 1V x H, ¥ xw) + (Vé, v) = (F w), Y € X,
b1 (2.3)

(H, V) =0, Vo) € M

for a.e. t € (0, T'). Problem (2.2)-(2.3) has a unique solution (H, ¢) € X x M (see [10]).
Now we describe the finite element discretization of (2.2)-(2.3). Let 75 be a regular partition
of © into tetrahedrons with mesh h (see [19]). An element of 7} is denoted by K. Let S, be
the standard continuous piecewise linear finite element space and V}, be the Nédélec H (curl; Q2)-
conforming edge element space defined by
Vi = {vp € H(curl; Q); v, =ag xx + bk on K € Tp}, (2.4)

where ag and by are two constant vectors. It was proved in Nédélec [18] that any function v
in Vj, can be uniquely determined by the degree of freedom in the the moment set Mg (v on
each element K € Tj,. Here Mg (v is defined as follows:

ME:{/U-TdS; e is an edge of K},

where 7 is the unit vector along the edge e. We know that the integrals required in the definition
of Mg(v) make sense for any v € H*(K)?3, with a > 1/2. Thus we can define an interpolation
v of any v € H?(K)? such that IT,v € V}, and IT,v has the same degree of freedom as v on
each K in 7.

The following interpolation error estimates can be seen in [9], [10], [15] and [19]:

Lemma 2.1. There exists a constant C > 0 such that
= Taullo + 1V % (= Tye)llo < Ch® ulla cur (2.5)
for all u € H*(curl; Q) with 1/2 < a < 1.

Furthermore, the interpolation operator IIj, has the following property (see [10]):
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Lemma 2.2. Let v = V¢ with ¢ € H}(Q2). Then, if v is regular enough to ensure the existence
of v, we have II,v = V¢, for some ¢y, € S, N HL (D).

We now define two finite element subspaces of V}, and Sj, which will be used in the sequel:
X, = Vi N Hy(curl;Q), My, =S, N Hi(Q).
Introduce the linear operator By : X, — M}, and its transpose B,{ : M, — X}, so that for
every couple (vp,qn) € X, X Mj, we have

(Bron,qn) = (vn, Van) = (vn, B qn)- (2.6)

It is not difficult to verify that By, is surjective, that is to say, the mixed approximation satisfies
the LBB condition (see [3, 4, 10, 18, 19]):

inf  sup _(Buvn, @) >c, ¢>0. (2.7)
€M v, ex, [|Vnllo,curt|lgnllt
To build a discrete version of the Helmholtz decomposition of (2.1), we introduce an ad-
ditional discrete setting. Define Y} a finite dimensional subspace of L?(Q)% and endow Y}
with the norm of L?(Q)3. For the sake of simplicity we assume that X, C Y}. Denote by i
the continuous injection of X}, into Yj; the transpose zf is the L? projection of Y}, onto Xp,.
Furthermore, we assume that can build an operator Cp : Y, — M} such that we have the
following.
(A1) The operator C}, is an extension of By, and i} Cf = B]', that is to say, the following
commutative diagrams hold:

T
X, Bh M, X B, M,
in - ir
h
Y, Yy

Remark 2.3. Noticing that M}, is composed of continuous piecewise polynomial functions, so
we have My, C H'(Q). As a result, if we set Y}, = X} + V My, then Y3, C L?(Q)3. Furthermore,
it can easily be verified that C}, defined by

(Chon, qn) = (v, Van), Y(vn, qn) € Yn X Mp, (2.8)
is an extension of By, and c,{ is the restriction of V to Mjp,.

Recall that By, is assumed to be surjective, as a consequence, C}, is also surjective for Cp,
is an extension of Bp. The null space of C}, playing an important role in the sequel we set
H;, = ker(C's,. This definition enables us to build a discrete counterpart of the aforementioned
orthogonal decomposition L?(Q)? = H & V(H(Q2).

Corollary 2.4. We have the following orthogonal decomposition
Y, =H, & C}T(Mh) (29)
We also assume that C] satisfies the following hypothesis.
(A2) There exists C' > 0 such that Vg in My,

ICLanllo < Cllgnll:-
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Remark 2.5. Note that the assumption (A2) is automatically satisfied if we choose Y, =
Xp + VM, and Cf' =V (see [1, 12] for details).

We next introduce a partition of the time interval [0, T: ¢, = n7 for 0 < n < N where
7 =T/N. This section is concerned with the time scheme for computing approximations to the
magnetic field H and the multiplier function ¢ at each time step %,,.

To avoid the technical difficulty of the blowing up of the error estimates at initial time
induced by possible lack of regularity of the solution, we assume that the solution is as smooth
as needed at t = 0. o .

Hereafter we denote by H, € X, and ¢ € M}, an approximation to Hy and ¢(t = 0) such
that

IHo — H' llo + h(IV x (Ho — H )llo + IV(6(0) — #))llo) < Ch>. (2.10)

We are now interested in defining a fractional-step pgogection scheme for 1 <n < N. We
define two sequences of approximate magnetic fields {H, € X} and {H}} € Y} and one
sequence of approximate multiplier {¢} € M}} as follows:

e The fractional-step projection method

Step 1 (Initialization.) The sequences {H} € Y,} and {H, € X} are initialized by
H? = I?g = IAIZ and the sequence {¢}" € My} is initialized by ¢9 = ¢).

Step 2 (Time loop.) For 0 <n < N, seek {1::IZ € X} such that

H, —iTH! .
o TRy 4 (07 x H, VX vy)
T (2.11)

+(B,7L‘¢Zil, vp) = (F", vy), Yo, € Xp,
and find (H},, ¢}) € Y, x M}, such that
H} — i H,
0 T

(p

n +Ch (¢ = dh 1) =0,

(2.12)
CLHT = 0.

Remark 2.6. The problem (2.11) clearly has a unique solution and problem (2.12) is also well
posed thanks to Corollary 2.4. In addition, in practice we can set Y, = X + VM. Thus by
setting ng,:l = ¢9, the algorithm that is implemented read as follows for n > 0,

,op)+ (0 IV x H,, Vxuv
T w " ) (2.13)

= (F", vp) + (207 — ¢ ', V-vp), Yop € Xp,
and the projection step (2.12) takes the following form:

H' - H, -
po———L + V(g — ") =0,
T (2.14)

V- H} =0.

Remark 2.7. If we choose Y, = X}, + VM, then the projection step (2.12) is actually to
solve a discrete Poisson problem with zero Dirichlet boundary condition: find ¢} € M} such
that

(V(of = o), Vabn) = =C2(V - H}L, o), Ve € My (2.15)
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If needed, the magnetic field H7, is given by
n ~ n T _
n=Hy,——V(op -9, 1)- (2.16)
Ho
Next we list a discrete Gronwall’s inequality and some standard estimates on finite difference
schemes, which shall be used our subsequent analysis.

Lemma 2.8. ([21]) Let {w;} be a nonnegative sequence, and {B;} be a nonnegative and
monotone non-decreasing sequence. If {n,} is a nonnegative sequence such that

n—1
770350; UnSﬁn*‘Z%‘Uj; n>1,
=0
then we have the following estimate
n—1
M < Bnexp()_ w;).
=0
Lemma 2.9. ([9]) For B = H'(curkQ) or B = H*(Q)?, s >0, we have
I
0wl < 7 [ I Olfsde, we H(0.T: )
T tn1
I
02wy < 3 [ ()bt w e H0,73), (2.17)
tn—2

tn
|m?—&uW%sT/“|m%m@m,ueH%mﬂBx
1

tn—

where O;u™ = (u™ —u"1)/T.

3. Error Estimates

In this section, we shall derive error bounds on the magnetic field. Without loss of the
generality, we assume that pp and o ia a constant in the sequel. (It is straightforward to extend
the analysis to the non-constant or elementwise constant case by simply this coefficient inside
the integrals or norm and bounding it by taking its maximum or minimum value if necessary).

For convenience, we introduce the notations:

lwll, = (mow, w), |wll; = (0™ w, w), Yw e L*(Q),
We define projection operator (P, Q) : Ho(curl; Q) x H}(Q) — X}, x My, as follows:

a(Pru — w,vp) + b(vh, Qrg — q) =0, Yu, € Xy, 3.1)
3.1

b(Phu — U,T‘h) =0, Vry, € My,

where bilinear forms a(u,v) and b(u,r) defined by
a(u,v) = (07'V xu,V xu), blu,r)=(u,Vr).
It is clear that (P, Qy) is well defined in Hg(curl; Q) x H} (). And it is easy to see that ([10])

1Puee = ully et + 11Qar = Pl < Ch* (el curt + I7fl4-), (3.2)
where 1/2 < s < 1.
In addition, for the sake of conciseness we set
- ~ N
e, = Py H(t,) — Hy, €, =PH(tn,) — Hy, e = Qnd(tn) — oh,
We now turn our attention to the error analysis of the fractional-step projection scheme.
We have the following error estimates theorem.
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Theorem 3.1. Assume that time step 7 is sufficiently small and hypotheses (A1)-(A2) hold.
Moreover, assume that for some 1/2 < s < 1, the solution of the continuous problem (2.3) has
the following regularity:

Hc H'(0,T; X N H(curl,Q)), H e H*0,T;L*(Q)%), ¢c H'(0,T;MnNH'T(Q)).
Then the solution to the fractional-step scheme (2.11)-(2.12) satisfies:

max {[|H(tn) — Hilluo + [|1H(ts) - Hylluo} < C(h* + 7). (3.3)
<n<N

Proof. The whole proof is divided into the following five steps.

Step 1. For conciseness we denote H" = H(t,), ¢" = ¢(t,). The accurate solution of
(1.7) satisfies at time ¢

(uOHn%IInA, vy) + (07'V x H", V x vy)
+(BF¢", vy) = (F", vn) + (uoR™, vs), You € X, (3.4)
ByP,H" =0,
where
R = HH%HH _ %H(tn) - —% /:1(75 by ) Hu()dt.

Then by the Cauchy-Schwarz inequality we derive the following bound

tn
IR <7 [ I @R 0 =1 . (35)
tn—1

By subtracting (2.11) from the first equation of (3.4) and using the definition of the projec-
tion operator (P, @), we derive the following error equation:
én _ ,L-Ten—l
(Mowa Uh) + (071V X éZ> V x Uh) + (Bgez_lv Uh)
T (3.6)
= (ko0-(PyH" — H"), vp) + (R", vs),
where
0" = Que" — oy =70-Que" + e (3.7)
On the other hand, since B,P,H"™ =0, n = 1,--- ,N, and C}, is an extension of By, we

can obtain the system of equations that controls e} and €} from (2.12) and the second equation
of (3.4):
BZ — ihéz T/ n n—1
u07+0h(sh—0h ) =0,
T (3.8)

Cheﬁ =0.

Step 2. To get a bound on &}, we take v, = 27é} € X}, in (3.6). Using the relation
2(a, a—b) = |a]* + |a — b|* — |b|?, we have

IR 112, +11ef — ifen 12, — liTer |12,
120V x &R|I2 + 2 (B}, &)
— 27 (0, (P H" — H"), &) + 2r(R", &})

=: (Il) + (IQ)
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Note that, using (3.2) and (3.5),
() < Cyrllo-(PuH™ — H")I[, +7llER g,
< ~n Ten-i|2 | (1 p2s o H' (¢ Vo' ()12,
<mrlé; —ifer 5, +erllifer I, + (H' B2 o + IV )]110)dt,
tn_1

(I2) < Cyrl|R"[§ + ' Tl €RI[L,

tn
< irllén —inen 1, + vbrlliien I, + CW2/ =" (t)][3dt.
1

tn—

(3.10)

y (3.9) and (3.10) we obtain

legiiz, +1lep — iTer 2, — liTep |1
127V x &2 + 2r(BLOP, &)
(3.11)
< (o +A)TIIEE — T e M2, + (2 + )T el 2,
tn tn
+C, b2 / (L OI2 oy + V6 O )dt + C? / 1" (1) 2.
tn—1 tn—1
Taking time stepsize T such that
1
< 77
= 2 1))
then we have
1R, + 5l — e 12, — i e I3, + 2V x 12 +2r(BY6;~", &)
tn trn
< CrlliTen1|p, + Cyh2 / (DI (g + IVE I o)t + Cr / (1) 2.
tn71 ? tn—l

(3.12)

Step 3. To obtain some control on 27(€é}, B,Tﬁzfl), using Cre}! = 0, we take the inner
product of first equation of (3.8) by 2ug 'r2CF o1,

~2r(e}, BLOy) + 2 (Ol eh - Clon ., clep) = 0.
By relation 2(a — b, b) = ||a||* — ||a — b||*> — ||b]|?, we have
~27(&y, Byl ")+ po T ICh enlls — llef — &xll, = o ' T ICh 05 o (3.13)
By (3.7), we get

ICH 6,5 = I7CH 0:Qne™ + Cil el ™ II3

tn (3.14)
<licfer i+ 0 [ IV Qs @l
tn—1
Thus, combining (3.13) and (3.14) to obtain
—27(&y, Biop 1) +po TlICT RIS — llef — Exll7,
(3.15)

tn
< pg 2| CTen YR + O / IV Qnd (1) 2.

tn—1
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We have some control on e} by taking the inner product of (3.8) by 2re} and using Cre} =0
and relation 2(a — b,a) = ||a]|* + ||a — b||* — ||b]|?,

llexlls, + ller —érlly, — llerlly, = o. (3.16)

Step 4. After summing up (3.12) +(3.15) + (3.16) and noting that [|if e} |2, = lle; |2,

we get

lerllzo + 5 ||6h —ifen i, + 27V x &Ll + ug T ICYER I3

tn
<1 +Cr)llep 1%, + it T2||C{5271”(2)+Cv’72/t | H" (t)||5dt (3.17)
tn o
+th25/t [I1E(t )||s curl T IV N7 15]dt + CT?’/t IV Qnd' (t)[[5dt.

By taking the sum from n =1 to m(< N), we have

m
ey Zn iTer 2, + 27 YOIV x &2 + mg "PICT R 3
T
1 1
< e, +CTZIIeZ 12, + 15 " ICFZ + Cp 7 / || (t)|[2dt
0

. T
40 [ O + V6 OI it + €7 [ V@ 0l
From the initialization hypothesis (2.10) we infer that the term ||€(,)l||i0 + ,UO_1T2||CI{IS(I)7,||% is

bounded from above by C(h® + 7)2. As a result, we can apply the discrete Gronwall Lemma
2.8, which leads to

1 m m B
ller Iz, + 2 Z e —iner i, +27 ) IV xérll; <C(h*+7)>.  (3.18)

From this bound we deduce for n=1---,N

lerllu < C(h° +7) (3.19)
and
ller —iter Hlu < C(h* +7). (3.20)
Furthermore, we get forn=1,--- /N
1€xllo < [1€r, —iner~"llo +ller ™ llo < C(h° + 7). (3.21)

Hence we infer from (3.2) and (3.20)-(3.21) forn =1,2,--- N

| H"™ — Hijllo < |[H" = PyH"|lo + llegllo < C(h" + 1)
and .

IH" = Hpllo < |[H" = PoH"||o + [|€}]lo < C(h” + 7).

So for we have obtained the desired result.
Acknowledgements. The author express his heartfelt thanks to the anonymous referees
for many constructive proposals that improved the paper greatly.
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