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Abstract

A number of new results on sufficient conditions for the solvability and numerical algo-
rithms of the following general algebraic inverse eigenvalue problem are obtained: Given
n+1 real nxn matrices A = (ai;), A = (agj))(k =1,2,...,n) and n distinct real numbers

n
A1, A2, ..., A, find n real numbers c1, ¢2, . .., ¢y such that the matrix A(c) = A+ > crpdk
k=1

has eigenvalues A1, A2,..., An.
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1. Introduction

We are interested in solving the following inverse eigenvalue problems:

Problem A (Additive inverse eigenvalue problem). Given an n X n real matrix A = (a;;), and
n distinct real numbers A1, Ag, ..., Ay, find a real n x n diagonal matrix D = diag(c1, ¢, ..., ¢n)
such that the matrix A + D has eigenvalues A1, Az, ..., Ap.

Problem M (Multiplicative inverse eigenvalue problem). Given an n X n real matrix A =
(ai;), and n distinct real numbers Ai, Ag,..., A,, find a real n x n diagonal matrix D =
diag(cy,ca, ..., cn) such that the matrix DA has eigenvalues A1, Ag, ..., A\p.

Problem G(General inverse eigenvalue problem). Given n + 1 real n X n matrices A =

(aij), Ap = (agf))(k = 1,2,...,n) and n distinct real numbers A, Aa,..., Ay, find n real
numbers ¢y, cg, . . ., ¢y, such that the matrix A(c) = A+ Z cip Ay has eigenvalues A1, Aa, ..., \y.

Evidently Problem A and M are special cases of Problem G. The solutions of Problem G are
complicated. A number of results on sufficient conditions for the solvability, stability analysis of
solution and numerical algorithms of Problem G with real symmetric matrices can be found in
[1,3,11,12,14,16,19,20,21,22]. These results are all obtained by studying the following nonlinear
system

Az(A(C)):A’M 1=1,2,...,n (1)

where \;(A(c)) is the ith eigenvalue of A(c) , or
det(A(c) = \I) =0, i=1,2,...,n. (2)

Most numerical algorithms depend heavily on the fact that the eigenvalues of real symmetric
matrix are real valued and, hence, can be totally ordered™!. But non-symmetric matrices
have not the fact. Less results on non-symmetric problems can be found. In this paper, we
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use another approach to investigate Problem G. The main idea is to treat Problem G as the
following equivalent problem.
A(c)T =TA (3)

where A = diag(A1, A2, ..., \n) and T is a non-singular matrix. We see that the columns of T'
are the eigenvectors of A(c). (3) is equivalent to a polynomial system(see Section 2). It is not
necessary to consider ordering eigenvalues to solve the polynomial system.

In Section 2 it is proved that problem G is equivalent to a polynomial system. In Section
3 by studying the system with the help of Brouwer’s fixed point theorem we obtain some new
sufficient conditions on the solvability , which improve the results in[1,3,5,8,9]. In Section 4,
we propose a linearly convergent iterative algorithm and a quadratically convergent iterative
algorithm. Several examples are given in this paper.

Throughout this paper we use the following notation. Let R™*™ be the set of all n x n real
matrices. R™ = R™*!. Let

k k k k
B = 0 lagl b= K", H = (h") e R
j=1,#i k=1

Obviously, H is a nonnegative matrix. Let p(H) be the spectral radius of H.

For a permutation 7 of the n items {1,...,n}, let
k . L,
Sij = Qqj + Z()\Tf(k:) - aﬂ'(k),ﬂ'(k))argj)7 lt] = |Sij|a )= L,2,....n, 14 7é J (4)
k=1
li: lij, i:1,2,...,n (5)
=1,

2. Equivalent Polynomial System

Without loss of generality we can suppose that[1,3,8,9] a;; = 0(i = 1,...,n) in Problem A,
ai; =1(t=1,...,n) in Problem M, and agf) =0;x(i,k=1,...,n) in Problem G.
Theorem 1. Problem G has a solution cy,co,...,c, € R if and only if there exists a permu-
tation w of the n items {1,...,n} such that the following polynomial system
n n n
(Ar(j) — @i — ci)tiy = (ag; + kzl Ckagf)) + > (aa+ > ckaﬁf))tzj, hj=1,...,ni#]

I=1,#i,j k=1
n

Ae(y =i —ci = > (aa+ Y cxal e, i=1,....n
I=1,#i k=1
(6)
has a solution ¢; € R, t;; € R (4,5 =1,...,n, i #j).

Proof. Suppose Problem G has a solution ¢ = (c1,¢2,...,¢,)T € R™ Since the eigen-
values A1, Ag,..., A of A(c) are all different , the Jordan canonical form of A(c) is A =
diag(Ai, A2, ..., A\n), and therefore there exists a nonsingular matrix S = (s;;) € C™*" such
that

Ac) = SAS™H,

that is
A(e)S = SA. (7)

Noting that A(c) is a real matrix only with real eigenvalues, then the similarity matrix S can
be taken to be real. Notice that S € R™*" is nonsingular, hence detS # 0, then there exists a
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n

permutation 7 of the n items {1,...,n} such that [] s; ;) # 0. Without loss of generality we
i=1

can suppose that s; ;) = 1 (i = 1,2,...,n). Let

P = (pij) € R
where

Pr(i),j = 0ij, &7 =1,...,n.

P is a permutation matrix. Let
T = (tij) = SP, Ax = diag(Ar1), Ar(2)s - Ar(n))-
Clearly, tij = s; r(jy, tis = 1 (i, = 1,2,...,n), Ax = PTAP. Hence,
A(e)T =TAx. (8)

It is easy to show that (6) and (8) are equivalent.

Conversely, there exists a permutation 7 such that the system (6) has a solution ¢; € R, t;; €
R, 4,5 =1,2,...,n, i # j. Let t;; = 1 and Ax = diag(Ar(1), Ar(2)s--+sAr(n)). Then it is easy
to show that T = (t;;) € R™ "™, ¢ = (c1,¢a,...,cn)T € R™ satisfy (8), that is, \; (i = 1,...,n)
are all the eigenvalues of A(c). Hence ¢y, ¢a,. .., ¢, is a solution to Problem G.
Remark 1. Let

(El‘:Aﬂ.(i)—aii—Ci, i:1,2,...,n. (9)
Then (4) can be written as
n n n n
k k

Angiy = Aei)tis = 9 sty = s — D wwayy) —wityy — > x> alty, (10)

I=1,#i,j k=1 k=1 I=1#i

Z‘,j:172,---,n’i#j
n n (k‘) n .
x; + Z:L‘k Z a; ty; = Z Saty, t=1,2,...,n. (].].)
k=1 =1 I=1,#i

Applying Theorem 1 to the additive and multiplicative inverse eigenvalue problems, we get
the following corollaries.
Corollary 1. Problem A has a solution c1,ca,...,c, € R if and only if there exists a permu-
tation ™ of {1,2,...,n} such that the following polynomial system

n n
(Ar) = Ae)lis + 20 Gartry = —agi + (Y0 agti)ty, i,j=1,...,n, i # ]
k=1,#1j I=1,#i (12)

n
c; = /\71'(1') - > a;jtj, t=1,...,n
=Tt

has a solution ¢; € R, t;; € R, 4,7 =1,2,...,n, 1 # j.
Corollary 2. Problem M has a solution c1,ca,...,c, € R if and only if there exists a permu-
tation ™ of {1,2,...,n} such that the following polynomial system

n
Ay — ety = cilag + 32 aaty), i,j=1,...,n, i #]
n A (13)
)\ﬂ(i) =c¢(l+ E ajgty), i=1,...,n
=1,
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has a solution ¢; € R, t;; € R, 1,7 =1,2,...,n, i # j.

3. Sufficient Conditions for the Existence of Real Solutions

Theorem 2. For Problem G, suppose that

alf) =6y, i k=1,2,...,n (14)
and there exist a constant K > 0 and a permutation m of {1,2,...,n} such that
p(H) < 1/K, (15)
1 1 - (k)
[Aei) = Ax(y| = (E +1)o; + (E —1) [l + Z OKa;; (16)
k=1
= 1,2 i A
where o, 1 =1,2,...,n satisfy
n
oi =Kl + Ky oph™, i=1,2,...,n (17)
k=1
Then there exists ¢ = (c1,ca,...,cn)T € R™ with
|Ci—(/\7r(i)—a“‘)‘ <o, 1=1,2,...,n (18)

such that the eigenvalues of A(c) are A1, Aa, ..., Apn.

The proofs of Theorem 2 will be based on the following lemmas.
Lemma 1. Under the conditions of Theorem 2 there exists only one nonnegative vector
(01,02,...,00)T € R"™ satisfying (17).

Proof. Let 0 = (01,02,...,00)T € R", | = (I1,la,...,1,)T € R™. Then (17) is equivalent to

c=Kl+ KHo

that is
(I - KH)o = Kl
If p(H) < 1/K,p(KH) < 1, then I — KH is invertible and

(o)
(I-KH)'=> K"H"

n=1
Hence,

o0
o= Z K" Hm > 0.

n=1
Proof of Theorem 2. Let
27
t= (tlg,tlg, coytin, tor,to3, .oy ton, ooy tnl, tho, . - ,tmn,l)T € R" n,
c=(c1,c2,...,cn)T € R, 2= (21,29,...,7,)" € R".

Define ,
Q:{teR”_":|tij|§K,i,j:1,2,...,n,1'75j}. (19)
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Obviously, 2 is a nonempty convex closed set in R™~". Now let f be the map with

fiQ— R
and
f(t) = (Fia(t), Fis(t),. .., Fin(t), Foi(t), Fas(t), ..., Fan(t),
. 7Fn1(t)a an(t), Y Fn,n—l(t))T
with
M) = Ae) T2 Fiy = > (sa— Y axal))Fij = sij — Za?kagj)a (20)
I=1,%£i,j k=1
i?j:1,27"'7n7 Z’#j
where z;(i = 1,2,...,n) satisfy
a:z—i—Zxk Z alf 't = Z satu, i=1,2,....n. (21)
k=1 1=1,#1 1=1,#1

We show that f(2) C © and continuous. Let t € (, that is, |t;;| < K, 4,5 =1,2,...,n, i #
j. By (15) and (16), we have

|lzi| = Z Szltlz+zxk Z a Vi

l=1,#1 k=1 1=1,#1
< K Z zu+KZ|xk|h<’c> (22)
1=1,#1
Then we have
|z < Kl+ KH|x| (23)
where
|z = (|, |22, .., [2a])T

Noting that (I — KH)™! > 0, hence |x| < K(I — KH)~'l = 0. Suppose that p, q satisfy

tro|l = ||tl|lcc = max |t;i].
tpal = [1lloc = max|ti]
Then we have
n
An(@) = Aro) | Fpal - = Zxkam — TpFpq + Z sz—Zxka )Fiq
I=1,#p,q
k
< pq+z|xk||a<’f>|+|xp||qu|+ 3 <zpz+2|xk||a§,l>|>mq|
I=1,#p,q k=1
k
< pq+Zok|a<’f>|+ap|Fm|+ ST U+ > orlal D Fpl-

I=1,#p,q k=1
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Hence by (17) and (16) we can get

n
k
lpq + kzl Ok |a§>q)|

|F;0<1| S n n (k) (24)
Arg) = Ael —op— 22 (i + 22 Jk|a'pl )
1=1,#p,q k=1
- (k)
lpg + > oklapg |
= = T— (25)
|)‘7T(q) - /\W(p)| —(1+1/K)op + (lpg + kz1 Uklaz()q)D
< K.

Let t € Q. By (15), (21) and the implicit function theorem, the vector-valued function
x:Q—T={xe€R": |z|] <o} is analytic. By (20) (16) and the implicit function theorem,
the vector-valued function f: Q x I' — 2 is analytic. By the chain rule, f : 2 —  is analytic.

Then we have f(2) C Q and continuous. By Brouwer’s fixed point theorem, f has a fixed
point in €. Hence, by Remark 1 and Theorem 1, we can get Theorem 2.

Applying Theorem 2 to the additive and multiplicative inverse eigenvalue problems, we get
the following corollaries.

Corollary 3. For Problem A, suppose that

aiizo, iZl,Q,...,’I’L (26)
and there exist a constant K > 0 and a permutation w of {1,2,...,n} such that
- 1 - .
|>\7"(1)_>\7"(J)|Z(K+1) Z |ail|+(g—]—)|aij|, Za]:]-an"'vn? Z#] (27)
I=1,7i

Then there exists D = diag(cy,ca,. .., cn) € R™™ with

lei = Ae)| K Y agl, i=1,2,...,n (28)
j=1,#i

such that the eigenvalues of A+ D are Ay, Aa, ..., Ap.
Corollary 4. For Problem M, suppose that

ai=1,i=12,....n (29)
and there exist a constant K > 0 and a permutation m of {1,2,...,n} such that
< 1
gi = Z |aij|<}, i=1,2,...,n (30)
J=1#

and

ey = A = =L WK+ 1) Y Jaal + (= — Dlagl |, i.5=1,2,...,n, i#j (31)
1—ng l:l;éi K

Then there exists D = diag(ci, ca, ..., cn) € R™™ with

K| x)lgi

i_>\7r' < )
lc @l < 1~ Kg,

i=1,2,....n (32)
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such that the eigenvalues of DA are A1, Aa, ..., Ap.

Remark 2. In fact, K is the bound of the normalized eigenvectors in Theorem 2, Corollary 3

and Corollary 4. We can get many sufficient conditions on the solvability by choosing different

values of K. Especially, letting K = 1, we can obtain the results in [1,3,5,8].

Example 1. For \; =4, \a = -8, A= < 41 ) A = ( 102 ) Ay = ( 0 0.1 >
’ ’ 2 3 )° 81 0 ’ 02 1 )

consider Problem G. It can be verified that if 7(1) = 1, n(2) = 2, K = 0.8 then 01 =

0.4275, o9 = 3.4872. Applying Theorem 2, we know that Problem G in this example is solv-

able. In fact ¢; = —0.001787, co = —10.998213.

We can’t infer the solvability of Example 1 from the results in [1,3,5].

4. Numerical Methods

4.1. A Linearly Convergent Iterative Algorithm
Algorithm L.
1) Choose a starting value tl(.?) =0foralli,j=1,2,...,n, i #j. Form=1,2,3,...,

i) compute c( ), i =1,2,...,n by solving the linear system
2™ ™oy GPem = s g™ =12, (33)
k=1 1=1,#i 1=1,#i
ii)compute t(m), i,j=1,2,...,n, i # j by solving n linear systems
n
k k
Ot = + W = 3 =3 =y~ 3l
I=1,#14,5
i:1,2,...,n, 1#£ ] (34)
for j=1,2,...,n

2) Compute ¢; = Ar(;) — @iz — a:(.m), 1=1,2,....n

1
The following theorem is the main result of this section.

Theorem 3. For Problem G, suppose that

alf) =6y, i k=1,2,...,n (35)
and there exist a constant K > 0 and a permutation © of {1,2,...,n} such that
p(H) < 1/K, (36)
and
[Ar) — An(iy| = max (l—i—l)a (1— +Zaka(k)
7 (1) w(j) = K i Zj ;
n
oi — (lij + Z Ukagf)) (K+1)rm+(K-1) Zrka(k)} (37)
k=1
J=12 n, i #j
where o, 7; 1 =1,2,...,n satisfy

oi =Kl + Ky ophi™, i=1,2,...,n, (38)
k=1
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and
n
Ti:Ui/K+KZTkh§k), i1=1,2,...,n, (39)
k=1
Then (i) there exists ¢ = (c1,¢2,...,¢,)T € R™ with
|Ci—(/\7r(i)—a“‘)‘ <o;, 1=1,2,...,n (40)
such that the eigenvalues of A(c) are A1, Ao, ..., An, and (i) c1,ca,...,cn can be obtained with

Algorithm L. The iterates {t%n)}i# generated by Algorithm L converge linearly to the unique
solution {t;; }iz; of the eqution (6) with

+1

I?jx |t£;n : t(m)| m—k k+1 k

max [t;; — t(m)| < maxIt( +) tﬁj)l, (41)
i) 1-o0 1 —0 #j

k<m (42)

where

n

(K + 1)1 + (K - 1) z_jl Thals) — i/ K

0= mjx k —
T ey = Ayl — A+ 1/ K)oy — (Lj + 3 oklair])
k=1

Proof. We use the notations of the proof of Theorem 2. From the proof of Theorem 2, we
know that F'(2) C Q. It is sufficient to show that F' is a contraction operator mapping 2 into
itself.

Let tM ¢ € Q. We have

n
() = Anoy + D EGED) = 37 zl—zxz(cl)“(zk) 1 qu) FNCEY
1=1,#1,j k=1

Li=1,2,...,n, i #

where xgl)(i =1,2,...,n) satisfy

(1)+Z (1) Z (k)tl(il): Z Siltz(il)v i=1,2,....n (45)

k=1 1=1,#i 1=1,#i
and
2 2 k 2 k
Ay = Aoy + 2N F (02 = 37 (50— Z PalEy Zx” W (46)
1=1,#1,j k=1

=12, i#]

where :cz@) (1=1,2,...,n) satisfy

(2>+Z (2) Z (k>t(2> Z S”tz(f)» i=1,2,...,n. (47)

k=1 1=1,i 1=1,#i
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Subtracting (47) from (45), we can get

20— (2>+Z M _ 2y 3 B2

l1=1,#1
1 2 1 k 1 2
= Y sa)) —tP) - "D S P - 42,
1=1,#i k=1 1=1,#i
i=1,2,...,n
Then
1 2 1 2 1 k 1
o =2 < Y -] 3 ) + 3 Osal+ 3l el DI
k=1 I=1,#i =1,#1 =
n
< K> Ja) =2l 4 1D -t Z |su|+Zak|ad
k=1 I=1,%#1%

n
1 .
= K> |al) —aP | + 2oillt® =P, i=1,2,.m,
that is, we have

ol — 2P| - K fay) - a >Ih(’“)< otV 1|, i=1,2,...,n

(49) is equivalent to
1
(I — KH)|z® - 2®| < ?Ht“) — 1P| oo

(|x(11) - x(12)|7 |$(21) - $é2)|, ey |96511) — xg)I)T. Hence we have

where |z(1) — 2| =

2 — 2] < 2 (1 = KH) D = 1@ s = o) = 62 o

that is ,
o = 2P| < D =t |or, i =1,2,- m,

Subtracting (44) from (46), we can get

n) = Antiy + ) (Fig (40) = F (1))

1 k
- > (su- Zx?a‘l’ Fy (10 = F; (1))
I=1,#14,5

n n n

575

(48)

(50)

(51)

(52)

1 2 1 2 k 1 2 k
(@ =2 F )= 30 3 @ - a)a By(t®) =3 (@ - a)al (53)

1=1,#1,7 k=1 k=1

foralli,j =1,2,---,n, ,i# j. Suppose that p, g satisfy

1 2
By = B = max |FY = FP| = [FO = FO)lo
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By (53) and (52), we have
n
k
Me@) = A = D o Z Zakla( N IFY - F2)
I=1,#p,q I=1,#p,q k=1
< (Knp+ K Y S mlaly)+ ZTk|a<’f>| MIED = @)oo (54)
1=1,#p,q k=1
Hence
Kti+ K ZHZTkla |+ Z |a )|
IFO = F® o < max — o
Ariy = Axpl = 22 la—oi— DS orla;’|
1=1,2i,5 1=1,2i,5 k=1
(K+1)rm+(K-1) Z Tk|a | —0;/K
= max = [tV — @)
i#j (k) o
Ae() = Ar(ey| — (L +1/K)oi + (Lij + E oxla;’])
= ollt™ ¥«

From (37) and (43), we know that ¢ <
number o. Now the statements of the
theorem.

4.2. Newton’s Method
Algorithm N.
(0) t( )

1, it follows that F' is a contraction with contraction
theorem can be deduced from the Banach fixed point

1) Choose a starting value x; i g =12 ,n, 1#j Form=12,-- M compute
:cgm), tgm), i,j=1,2,--+ ,n, i # j by solving the linear system
m—1 m n n m—1 m m—1
Ar) = My + 2" = 0 (s = X 2" Vag)g 2™ e
I=1,7#i,j k=1
n k n k
A+ 3 )
I=1,#14,5
n n
= 555 +x(m RN TS R D DI
k=1 1=1,%i,j
m m n k n m—1) (k m
R T I o B o B e U1
=1 1=1,#i 1=1,#i
LA 1) (k 1
=3 3z (m ) il)t(m )
k=11=1,7i
i7j:1725"' ,’I’LZ#]
2) Compute ¢; = A\rg) — Gi; — ng) 1=1,2,---,n

Y

Remark 3. By a standard argument (see [18]), it follows that the iterates {cgm)} generated

by Algorithm N converge quadratically
sufficiently close to the solution of (6).

4.3. Numerical Examples

to the solution {c;} when a starting value {tl(.?)}i# is

We have tested Algorithms described in this paper with Matlab 5.3.
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Examples 2[22, This is a general inverse eigenvalue problem with symmetric matrices.
0 2 3 1 1 0.001 0.001 0
e 2 0 2 2 A — 0.001 0 0.001 0.001
“ 13 2 0 3|t | 0001 0.001 0 0.001 [~
1 2 3 0 0 0.001 0.001 0
[ 0 —0.001 0 0 0 0.002 0.002 0.002
A — —0.001 1 —0.001 0 Ao — 0.002 0 0.002 0.002
2 0 —0.001 0 —0.001 [’ 3~ | 0.002 0.002 1 0.002 |’
i 0 0 —0.001 0 0.002 0.002 0.002 0
[ 0 0.002 0.001 0
0.002 0 0.002 0.001
A= 0001 0002 0 0002 |[» A= 730 ~10,10, 30
i 0 0.001 0.002 1

Let w(i) =14, i =1,2,--- ,n. We have calculated this example with Algorithm L and Algorithm
N. We choose the starting point with zeros. After 10 iterations with Algorithm L or after 4
iterations with Algorithm N we obtain the numerical results as follows

c; = —29.58520425277408, —9.86261231114425, 10.10052215992911, 29.34729440398922
Ai(A(e)) = —29.99999999999999, —9.99999999999999, 10.00000000000003, 29.99999999999999

After 5 and 3 iterations with Algorithm L we obtain the numerical results as follows, respectively.

c; = —29.58520419590780, —9.86261215603080, 10.10052207002704, 29.34729477087801
¢; = —29.58516135604969, —9.86245726424444, 10.10038568489738, 29.34769336240272

With Algorithm N, after 3 and 2 iterations we obtain the numerical results as follows, respec-
tively.

¢; = —29.58520425277407, —9.86261231114415, 10.10052215992869, 29.34729440398965
Ai(A(c))

and

—30.00000000000000, —9.99999999999991, 9.99999999999963, 30.00000000000041

¢; = —29.58520420103676, —9.86261327912172, 10.10051855637134, 29.34729667155401
Ai(A(c))

—29.99999997334557, —10.00000098388054, 9.99999660557243, 30.00000209942053

Example 3. This is a general inverse eigenvalue problem with nonsymmetric matrices.

0 2 3 1 1 01 0.1 0
2 0 2 2 01 0 —-0.1 -0.1
A= 3 2 0 3 A= 0.1 0.1 0 —-0.1 |
1 2 30 0 0.1 0.1 0
I 0 —0.1 0 0] 0 02 0.2 02
A, — | 01 1 —-0.1 0 qe_ | 02 0 02 02
2= 0 —0.1 0 —0.1 (> 27102 02 1 02]°
0 0 —0.1 0 02 0.2 02 0
0 02 0.1 0]
—0.2 0 02 -0.1
Ay = 01 0.2 0 02 | A=—30,-10, 10, 30.
0 01 -0.2 1]
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Let w(i) =1, i =1,2,--- ,n. We have calculated this example with Algorithm L and Algorithm
N. We choose the starting point with zeros. With Algorithm L, after 50 iterations we obtain
the numerical results as follows

c; = —31.52522503488440, —10.33136021413202, 11.83846051944945, 30.01812472956697
Ai(A(c)) = —30.00000000000000, —10.00000000000000, 30.00000000000002, 10.00000000000000
and after 15 and 10 iterations we obtain the numerical results as follows, respectively.

¢; = —31.52522564150056, —10.33136115771607, 11.83845932001919, 30.01812525932049
Ai(A(c)) = —30.00000041187057, —10.00000083332667, 30.00000007996793, 9.99999894535239
and

c; = —31.52529877609995, —10.33147490525617, 11.83831472160383, 30.01818912765464

Ai(A(c)) = —30.00005006932031, —10.00010128545978, 30.00000972334760, 9.99987179933484

With Algorithm N, after 4 ,3 and 2 iterations we obtain the numerical results as follows,
respectively.

c; = —31.52522503488441, —10.33136021413202, 11.83846051944943, 30.01812472956700,

Ai(A(e)) = —29.99999999999999, —10.00000000000001, 30.00000000000002, 9.99999999999997,
c; = —31.52522493156483, —10.33135987825058, 11.83845983228851, 30.01812500596253,
Ai(A(e)) = —29.99999984320893, —9.99999942302649, 30.00000003698973, 9.99999925768129,

and

¢; = —31.52646043774289, —10.33591698793258, 11.83464175081756, 30.02176761727010,

Ai(A(c)) = —30.00009759704869, —10.00488735039668, 30.00209172947121, 9.99692516038639.

1],

Example 4! Consider Problem A with symmetric matrices. Let

0 -2 2
A=| -2 0 4|, \=6 3,3
2 40

It is easy to verify that ¢; = 2, —1, —1 is an exact solution of this problem. Applying Algorithm
N to this problem with the starting point with 2(*) = (=7.8,3.7,4.2)7 and tgg) being the (1, )
element of the eigenmatrix with diagonal elements being 1 of A 4 diag(1.8, —0,7,—1.2) we find

M ™ =[], A = XG0,

1 5.842469x10~2 | 2.451207 x 10~2
2 | 1.531832x 1073 | 6.446797 x 10~*
3 | 9.913302 x 10~7 | 4.171958 x 10—~
4 14122296 x 10713 | 1.736661 x 1013
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Here A(™) denotes the vector of the eigenvalues of A(c(*)). Observe that the speed of conver-
gence is slightly faster than Algorithm 4.6.2 in [11] and it is the same as Algoithm 4.6.1 in [11].
In Alorithm 4.6.1 in [11] all the eigenvecors of A(c™M)) have to be computed per step, which is
very time consuming. In Algorithm N in this paper and in Algorithm 4.6.2 in [11] only some
linear systems have to be solved per step, which is less time consuming.

From these examples we find that the convergent speed of Algorithm L is much slower than
Algorithm N, but it requires less operations in each iteration.
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