Journal of Computational Mathematics, Vol.22, No.4, 2004, 593—-604.

LONG-TIME BEHAVIOR OF FINITE DIFFERENCE SOLUTIONS
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Abstract

The three-dimensional nonlinear Schréodinger equation with weakly damped that pos-
sesses a global attractor are considered. The dynamical properties of the discrete dynamical
system which generate by a class of finite difference scheme are analysed. The existence of
global attractor is proved for the discrete dynamical system.
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1. Introduction

The three-dimensional nonlinear schrédinger equation with weakly damped

0
ia—qz+Au+g(|u|2)u+i'yu:f €N t>0 (1.1)
where i = /-1, Au= Ele %,’y > 0,0 = (0,L;)x(0,L2)x(0, L3), together with appropriate

boundary and initial conditions, is arisen in many physical fields. The existence of an attractor
is one of the most important characteristics for a dissipative system. The long-time dynamics is
completely determined by the attractor of the system. J.M. Ghidaglia [2] studied the long-time
behavior of the nonlinear Schrédinger equation (1.1) in dimension one and proved the existence
of a compact global attractor A in H' which has the finite Hausdorff and fractal dimension
under some conditions. The equation (1.1) in dimension three were studied by P. Laurencot[6],
S. Y. Wu & Y. Zhao[9], and obtain also the existence of a compact global attractor A in H!
under conditions (1.4)-(1.6). Guo Boling[3] construct the approximate inertial manifolds for the
equation (1.1) and the order of approximation of these manifolds to the global attractor were
derived. At the same time, a semidiscrete finite difference method of the equation was discussed
by Yin Yan[10] and we studied also long-time behavior of completely discrete finite difference
solutions of the equation in dimension one in [11]. In this paper, a completely discrete scheme
is discussed by finite difference method for the equation (1.1) in dimension three with initial
condition

u(z,0) =up(z), x € Q (1.2)
and Dirichlet boundary condition:
ulag =0,t € RT, (1.3)
where f € C(Q2), g(s)(0< s< 00) is a real valued smooth function that satisfies
G
lim ﬁ =0, (1.4)
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and for some w > 0

) — wG(s)
slg{loo sup o <0. (1.5)
g(s) <M, seR* (16)
where h(s) = sg(s = [, 9(o)do and G (s) = maz{G(s),0}.

In this paper we make the followmg assumptions on g(s) besides the above conditions (1.4)—
(1.6)

im G _ g, (1.4)’

§—=+00 g3

g(s) and ¢'(s) do not change sign in R*. (1.7)
Finally, let us denote the first difference quotient of G(s) by G[ss, s1] on points s, s9, i.e.

G(s2)—=G(s -
Gls2,51] = { SEe l.f 275
g(s1), if s2=s1.

The paper is organized as follows. In §2 we prove embedding theorems and interpolation
inequalities for discrete(grid) functions, which are the analogues of the embedding theorems and
interpolation inequalities for the Sobolev space W™ P (), and a discrete system is established
by finite difference method for the continuous system which is generated by the nonlinear
Schroédinger equations (1.1) with Dirichlet boundary condition (1.3) and initial condition (1.2).
In §3 we study the existence of absorbing sets and attractor for the discrete system.

2. Finite Difference Scheme

First, let us divide the domain  into small grids by the parallel planes z; =ih;(0 <i <
J1),22=7h2(0<j < .Jo) and w3 =kh3(0<k <.J3), where hy, hs, hs are the spatial mesh lengths,
Ji, s, J3 are positive integers, and Jihy = Ly, Johs = Ly, J3hg = L3. Denote the real or the
complex value discrete functions on the grid point set Qj, = {(ih1,jha, kh3);0<i < J;,0<5 <
J2,0< k < J3} by ¢,1,---, and let Q, = Q, N Q,00, = Q, NINQ. We employ Ay, Ay,
and dp, to denote the forward difference, the backward difference and the forward difference
quotient operators respectively in z;(1< [ < 3) direction, and Ay, to denote the discrete Laplace
operator, i.e.

3

A _ VAN VAR

hijk = Z —
=1 l

We let At denote the temporal mesh length, J = (J1 + 1)(J> + 1)(J3 + 1), h = maxi<i<3 i,
and assume that there exists a positive constant d € (0, 1], such that 0h < hy(I = 1,2,3).
We introduce the discrete L? inner product

P A
(6, ) = Z Z Z Gijk s j kb hahs

i=0 j=0 k=0
and the discrete H' inner product

J1—1Ja—1J3—1

3
h = Z Z(shlqsz]k&hl l]kh1h2h3;

i=0 j=0 k=0 I=1

together with the associated norms

l6lln = (6,808, 18lln = (6,81
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In addition, we can define the discrete LP norm and the discrete L° norm as follows
Ji J2 Js3 1
P
lollog = (3D D" I6usalhanshs)”, 9]l = max|ou sl
i=0 j=0 k=0 b

It is convenient to let LY and H ,1L denote respectively normed vector spaces

{CJvH ||Lﬁ} and {0(3]7||||17h}

where Cf = {¢ € C7; ¢|oq, = 0}.
We easily obtain by a simple calculation

Lemma 2.1. For any discrete functions ¢, which are defined on Qy,, and ¢,|sq, = 0, there
is the relation

J1—1J2—-1J3-1 Ji1—1J2—1J3—-1 3

SO ikt jehnhohs==>"> "> " " 64,1k Ontli gkl hohs.

i=1 j=1 k=1 i=0 j=0 k=0 I=1

Lemma 2.2. Let discrete function ¢ be defined on Qy, and ¢|aq, = 0. Then we have

f 11 I6nl} < LEl1gl

16llrg <

Proof. From ¢|sq, = 0 we can see easily the relations

j—1
3 2 2
gk Z( ima1k T Pimt 1,k Bimk + G5 k) Oho Biom kh2,
m=0
3 2 2
ik = Z (D5 mt1.k T Pimt1,kPismk + D k) Ohs Bism kP2
m=j

By Cauchy’s inequality, we have

3J2—1 .]2—1 1 .]2 1
206150l <2 3 (a2 ) il <3( S Vb1l ) (3 1Bnaimiha)
m=0 m=0 m=0
or 3 Jo—1 % Jo—1
Jmax (604" < 5 (D0 160 el *h) (Z Braimal?ha) . (2.1)

m=0

Multiplying both sides in (2.1) by hs and summing up for k from 0 to J3 — 1, then using
Cauchy’s inequality, we have

Js—1 J3—1J2—1

1 J371J271 1
2 2
> max |6l s <3 (30 I6imel hohs) (32 D 6ns6mPhas)”
k=0 k=0m=0 k=0m=0
Similarly
Jo—1 Jo—1J5-1 1 Jo1J31 1
2 2
Zog}gf, |¢z]k|3h2<_(zz|¢zjn|4h2h3) (Z Z|5h3¢i,j,n|2h2h3) :
Jj=0 j=0n=0 j=0 n=0
Hence
Jz—1 Jo—1
i sl ) (O s, 0uslhe)

7j=0
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Jo—1J3—1 J3—1 Jo—1 1 Jo—1J3—1
_4(ZZ|¢1,] k| h2h3)(22|6h2¢zmk| h2h3) (ZZ|6h3¢z,] n| h2h3) .
j=0 k=0 j=0n=0

Multiplying both sides the above inequality by h; and summing up for i from 0 to J; — 1, then
using Cauchy’s inequality, we have

Jlfl Jg*l J271

max h )( max h )h
Z ( Z 0<j< s | Bigl*hos 0<k<J3 | Bi.gl*hea
=0 k= j=0

Jo—1J3z—1 J1—1Ja—1J3—1

2(02% Z Z |54 h2h3)( Z Z Z |5hz¢i7j,k|2h1h2h3)

i=0 j=0 k=0

[N

1J3 1

(i: > 2 |5hs¢i,j,k|2h1h2h3)

=0 j=0 k=0

[N
—
[\
[\
~

However
1 Ji—1
ikl < 3 Z |(¢z2+1,j,k + ¢z2,j,k)(¢l+1,j,k + 1,5, 1)| 0, D15,k | P
1=0
Ji—1 1 Ji—1 1
2 2
2( > |¢l,j,k|6h1) ( > |5h1¢z,j,k|2h1) ;
1=0 1=0
thus
Jo—1J3—1 J1—1Jo—1J3—1 1 J1—1Jo—1J3—1 1
2 2
Ogll%lz Z|¢w k| h2h3<2(z > ikl h1h2h3) (Z ' Z|5h1¢l,j,k|2h1h2h3) :
J=0 k 1=0 j=0 k=0 1=0 j=0 k=0
Substituting the above inequality into (2.2), we have
J1—1Js—1J3—1 Ji—1 Jo—1Jz—1
S>30 ¢kl Phahohs = Z (Z > ikl |¢uk|3h2h3)
i=0 j=0 k=0 i=0  j=0 k=0
Jlfl Jz*l J371

<2 (X g, Wuaalhe) (3 mas, Wouselho )

J1—1Ja—1J3—1 J1—1Ja—1J3—1

1 3 1
g( Z Z Z |¢z,J k|6h1h2h3) ’ H ( Z Z Z |5hl¢i,j7k|2h1h2h3) 2,

i=0 j=0 k=0 =1 i=0 j=0 k=0

dividing both sides by (Ejl ! ZJ2 ! st Y gk O h2h3) the lemma is proved.
By Lemma 2.2, Holder’s inequality and the define of the discrete L norm and the discrete

L*° norm, we have _
Lemma 2.3. Let ¢ be defined on Qy,, and ¢|39h =0, then for q € [2,6]

161l <2 ||¢>|| wllell

where p = % — % € [0,1], and
6
4 _
202

9l < == 2[Ill1.n-
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Remark 2.1. The analogous results can be extended to the case of variable step size and the
case of general convex domain 2 C R? by almost the same procedures as the proof of Lemma,
2.1-Lemma 2.3.

We construct the finite difference system

At n+1 -3 At n
ezl —emz gk 1 LN A
i 4,4,k oy 4J, +§Ah( t¢n]k+e t?]k)
’At¢n+1 ef’At(b
-1 k gk
FGlleF AT, e 3ol )tk Tk g (2.3)

i=1,2,---,1—-1,j=1,2,--- | Jb—-1,k=1,2,--- ,J3—1,n=0,1,---
The finite difference boundary condition is as follows
¢"loq, =0,n=0,1,---. (2.4)
The initial condition is as
@7k = uo(ihy, jha, khs),i =0,1,--- , J1,j =0,1,--- , o,k =0,1,---, Js. (2.5)

Now we are going to prove the existence of the solutions ¢"*! for the finite difference system
(2.3) with the boundary conditions (2.4). For any discrete function ¢ that define on p, and
?loq, =0, let us define a discrete function ® as follows

o —1 1 7 3

Z(egAt‘Pi,j R—e 20T )+ —Atﬁh(egm@g‘,k +e 2T L)

+5 AtG[|€2 At(bm k|2 le” gAt(an k| ](62 Atd)z gkte 2 Eh ?3 K)=Otfi gk,
= 1727"' 7J1 _17.]: 1727"' 7J2_17k: 1727"' 7J3_1'

where ®|pq, = 0. It defines a mapping & = T'(¢) of H} into itself. Obvious, the mapping
T(¢) is continuous for any ¢ € Hi. In order to obtain the existence of the solutions for the
finite difference system (2.3) with boundary conditions (2.4), it is sufficient to prove the uniform
boundedness for all the possible fixed point ® for the mapping A T" with respect to the parameter
0 < X <1 by Leray—Schauder fixed point theorem. Then the fixed point ® of the mapping AT
satisfy that

1
1(62At<1> ik — e 2Ot o, e) —AAtAh(e%At‘bi,M +e 3O i c)

+5 AAtGH@zAt‘I’ ik 7 €T P13 A @y ke E AR )= AALfi ks
1_1727"'”]1_17.].:1727”'a 2_17k:1727"'7j3_1'

Multiplying the both side of the above equalities by (e2{®; ;5 + e“m(b” «)h1hahg, then
summing them up for i from 1 to J; — 1, for j from 1 to J> — 1 and for k from 1 to J3 — 1, then
taking the imaginary part, we have

T MBI = (A= De 32 Re(®,¢")n + Ae™ T A7 + AATm(f, & + e A1),
By Cauchy’s inequality and e-inequality, we have

el _a n n — n

eI <em EAY@|lull¢"ln + e T A" 2 + At(IF @l + e A alle" 1n)

1 _ 8y ¥ At
€ el + e F AR + S ALl + g”f”%

<=||®|?
_2|| % + 5
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At

At -yt —Z At 4|2
+ At A TFA g 4+

X
e 22IfII7,

it implies that

_ 20t
1@[]7 < 3e™72¢"|I7 + Tllflli-

This means that 7%, jiozk{320|q)i7j7k|2h1h2h3 is uniformly bounded with respect to the
parameter 0 < X\ < 1. Thus the solution of the finite difference system (2.3) with boundary
conditions (2.4) exists. The uniqueness of the solution of the finite difference system is proved
by lemma 3.4 in section 3.

3. Long-time Behavior of Discrete System

In this section, let us put (2.3) with boundary conditions (2.4) in framework of dissipative
dynamical systems. For fixed h1, h2, hs and At let us define operator Sy a¢ : Hj. — H} by

¢1 = Sh,At¢0)

hence, by (3.17) in the follow, for every n > 0, the family of solution operators {(Sn A¢)" }n>0
defined by ¢" = (S, at)"¢°, forms a continuous semigroup on H}.
New we turn to prove the existence of absorbing sets in L} under the discrete system

(Sh,at)™.
Lemma 3.1. For the solutions ¢" of the discrete system, there is priori estimate as follows

19" 7 < e ™ A1@°l5 + 2SR (L — e, n=0,1,2,--
in particular
_ aJ
sup 16" ln < max {[|¢°[ln,y '€= (| flln} = Co.
n7

Furthermore, there ezists a constant py > %e%AtHth such that the ball

By = {¢ € Ly; | ¢lln < po}

is a absorbing set in L} under the semigroup (Sh at)".

Proof. Multiplying relation (2.3) by At(e%mazzllc +67%A%2j7k)h1 hohs, and summing them
up for i from 1 to J; — 1, for j from 1 to J — 1 and for k from 1 to J3 — 1 respectively, then
taking the imaginary part, we have

Re(e%At¢n+1 _ e_%At¢)",e%At¢n+1 + e_%Ath")h
- %Atfm(Ah(e%%"“ +em BN, e 3BT 4 T3 Ag),
=Athn(f,e? Mgt +em 20, (3.1)
It is easy to see that
Re(eF2!g" 1 — e 280g7, e320gm T e 7806, = [|e2 g — [le™ 2200”5

By Lemma 2.1

Im(Ah(e%Atqﬁn'H + e—gAt¢n),e%At¢n+1 + e_%Ath")h —0.
Therefore, (3.1) can be rewritten as follows

ol _ 3y _
e2 ¢ HE = e 2 Ao |7 + AtIm(f, o™ + e 7B G,
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It follows that
3 — n
eFA L2 <em T A2 + AH(f, ")l + Dte A (f, )l
3y -
<e” TG + At Ialle™ lln + Ate™ A £ lnll¢" 1

“B At 2 Y n At
<e” T [IF + S ALl + 2—7||f||}i

NI At
+ Ate ”Atie 2At|l¢”|li+ge 221 £117s

it implies that

- At
1" 17 < e 2 lg™ 17 + 7||f||%

1
< e A0 + ;ewtllflli(l —e 1A = 0,1,

The proof is complete.
Lemma 3.2. Under the condition (1.4)', for every € > 0, we have

10 4
[(G(1e”2 @), Dl < ees P2 0llF wllellz + CLIQ.

Where (3 is a arbitrary real number, C. is a constant only dependent on € and g(s), and |
denotes the volume of the domain 2.
Proof. From (1.4)" one know that for every € > 0, there exists a constant C! > 0, such that

IG(s)| < es? +C!, s> 0. (3.2)
By Lemma 2.3 , we have

(G(”2Ep?), )] < (ele?®o] T + CL 1)
10
"+ CQ

h

10 4
<ee s gl yllelli; + CLIN.

< e 8 PA|y||
L

From this we can obtain the conclusions of the lemma.

Now we turn to prove the existence of an absorbing set in the space H} under the discrete
system (Sp,at)™.
Lemma 3.3. Under the conditions (1.4)', (1.5) and (1.7), there are priori estimates for the
solutions ¢™ of the discrete system as follows

16712, <267 AH(E + [|¢°[[7) + e 7 A (w + 1)CL, + CL)|Q(1 — 7741
+2CL 19| + 2IIf1I7 + %ewtﬂfﬂi(l —e A, (3-3)
In particular
sup 671 <maz {287 + 27|}, 46341 (@ + 1)C, + )10 + S SR )
7 201, 19] + 2|2 = Ci. (3.4)
Furthermore, there exists a constant p; > (46%At((w+1)0;1 +C)|Q+2CL 19 +4p0||f||h)%

such that the ball
Bl ={¢ € Hy;|¢lln < p1}
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is a absorbing set in H} under the semigroup (Sp,at)™. Where E° is deﬁned by (3.6), eg =

1 4 _a 4
mm{4(w+1)c e T A 3G, ® At}, g1 = min{mpo 36*%“,%% At}, and C!_,
Cl' are decided respectively in (3 2) and (3.7).

Proof. Multiplying the relation (2.3) by (ezAtng” —e” 2At¢)” w)hihohs, and summing
them up for i from 1 to J; — 1, for j from 1 to Jo — 1 and for k from 1 to J3 — 1, then taking
the real part, we have

AN — (Gle2 21" P), Dn + 222 Re(f, ™)
= e "I — (G(le™ 22567 ), 1) + 2¢7 22 Re(f, 6™,
or
2 A" IE , — e EANG (e "), D + 2Re(f, 6" )
=e 78 (e 2" T, — 22 (G (le 2" ), D) + 2Re(f, 7)) (3.5)

We take that
E" = ¢"[13, —e 22H(G(le 224" *), 1)1, + 2Re(f, ¢" )i (3.6)

In the case of g(s) > 0, It follows from (3.5) that

En+1_+_(e%At_1)||¢n+1”ih < e*ﬂ/AtEn_'_e ;At( (|62At¢n+1|2) (|€ 2At¢n+1| ),1)h_

We infer from (1.5), (3.2) that, for every € > 0, there exists a constant C!' > 0, such that
h(s) < wG(s) +es3 + C"
< (w+1)ess +wCl +C". >0 (3.7)

According to (1.7), g(s) is a monotone function in R*. By Lemma 2.3, (3.7) and the inequality
1+ z < e, Vz € R, when g(s) is a monotone increasing function in R, we deduce that

(GUIFAG™IP) = Glle 3041 ) 1), < (91306 2) (740 — e 20 gm 2, 1),
< 2yAt(g (|€2M<25”+1|2)|€2A%”“l2 D
< 2yAH(w + 1)ee T2 E 4+ wC! + OV, 1),
< 2y At(w + 1)eT el ¢, l6mH
+ 2y At(wCL + C)|9,
when g(s) is a monotone decreasing function in R, we have
(Gl 3™ ) =Gl 12491, D < (glle T4 )7 — e |62, 1)
< Y ALPTAY (e B2 g (| 3Bt gL 2) 1),
<2y AP (Wt 1)ee™ T A g™ |5 4w CL+CY 1),
< 28w+ e FAegm R 74
+ 2yAte® T2 wC! 4+ C1)|Q).
Therefore, in the case of g(s) > 0, we derive that

7y 4
E™M 4 (3% — 1)]|g"H 1], <eTTAET + 29At(w + 1)es M| "7 L llem 2
+ 27Ate T A (wC! + O (3.8)
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In the case of g(s) < 0, by Lemma 3.2 and the inequality 1 + z < e* < 1+ ze®, Vz € R, It
follows from (3.5) that

Bl < MET — e FOUEA )¢+ e A e FA —eEAN(G (e F A" ), D

SeTVALEN — T F AN A 1)}, + yAteTEA(=G(|eTEAG), 1)),

3 _ 13y n n 4
Se AR —em F AN e A —1)[|9"[F v Dte” w Ael|g"I7 4llg7 1 +vACLR. 59)
3.9

Choosing ¢ = g9 = min{mq) 36_%“,%0[;%6%7At} in (3.8) and (3.9), g(s) is either

greater than zero or less than or equal to zero, we always derive that
Entl < e 7AtEm 4 27Ate%m((w +1)CL, +Cl)Ql, n >0,

or
E" < e "ME 42y Ate T A (w + 1)CL, + C1) 19, n > 0. (3.10)

Using frequently the inequality (3.10), we derive that

En < e 7AtpnTl g 27Ate%m((w +1)CL +Cl)Q
< eTPAENT2 L 2y At T A ((w + 1)CL + O ) [2]e™ 72t + 2y AteE AU wCL, + C1L )0

S ......
< e MMALEOD 4 27Ate%m((w +1)CL, + Cé’o) |Q|(677(”71)At +o e VAT
< eMAEY £ 20T (W 1)CY, + CL)|QI(1 = e, 1> 0. (3.11)

By Lemma 3.1, Lemma 3.2 and the definition of E™, it follows from (3.11)

16712 = B" + e 281G (e 2410" ), 1) = 2Re(f, 6"
< e AR 4 26T A ((w + 1)CL, + Ol ) Q)(1 — e A
134

4
+eoe™ T AT 0" 17+ wOL, 100+ 211 Fllnle" |
1
< A 20T A (w4 1O, + C)IAIL— e + L0 + w0
1
+ IR +e 0 + ?ewmﬂfﬂi(l —e A, >0,
it implies (3.3).

If initial value ¢° satisfied that ||¢°||, < R. Then by Lemma 3.1, there exists a positive
integer N = N(R), such that

l¢"[ln < po, n > N(R). (3.12)
Hence, choosing ¢ = g1 = min{mpg%e_%m, %pg%e%“} in (3.8) and (3.9), g(s) is either

greater than zero or less than or equal to zero , we always derive that
E™TL < e TMET 4 27Ate T A ((w + 1)CL, + C1) 9], n > N(R),

or
E" < e "ME 4 2yAte T A ((w+1)CL + C1)|Q, n > N(R) + 1, (3.13)



602 F.Y. ZHANG

Using frequently the inequality (3.13), we derive that
E" < e "AtpnTl gy 27Ate%m((w +1)CL +C")IQ
< e*ﬂmE”ﬁ+27Ate%m((w+1)0£1 +Cé’1) |Q|e*“’M+27At¢e%At((u)—kl)C’é1 +Cé’1) 19]
< e—'y(n—N—l)AtEN+1+27Ate%At((w+1)cé1 +C!1) |Q|(e—'y(n—N—2)At+_ . _+e—’yAt+1)
< e 1mN=DALENTL L 90 T A (0 4 1)C!, +C" )9, n> N +1, (3.14)

By Lemma 3.2 and the definition of E™, it follows from (3.14)
167117, =E" + e~ 244G (le” 229" ?), 1)n — 2Re(f, 6" )n
Ty _ 13y E
<eVTNEDAENT 1 2e T8 (0 + 1)OL, + O 10| +erew A" 1T 4l
+ CL Q0+ 2/ llal|6" (|
o 1
Se—’Y(n—N—l)AtEN-H + Qe%At((w + I)Cél + Céll)|ﬂ| + §||¢n||ih
+ LI+ 200/ flln, n>N+1,

thus
- n Iy
T (612, < 4674 (@ + 1)CY, +C2) 102 +2C% 192 + 4poll

The proof of the lemma is new complete.

Now we prove the uniqueness of the solution of the finite difference system (2.3) with bound-
ary condition (2.4). Let € = ¢ —¢™, where ¢™ and )" be two solutions of the difference scheme
with initial value ¢° and ¥° respectively, and ¢° and ° satisfy

161w < R, [[¥°]lin < R

By Lemma 3.3, there exists a constant C (R), such that
sup [|¢"[11, < C1(R), sup[[9"][F ), < C1(R).
n>0 n>0

Then €™ satisfies that
IAL, nt+1 ~IAt.n
ez Pl —e 28t 1
. 3,5,k 4,5,k 1AL n+l —IAt n
i N, + iAh(GQ €k T€ 2 em.’k)

A —IA IA _AA
+Gllez 2P e 2 Mgy Pl(ex Mol +e 2 e )

2 _y 1 _y
= 5Glez SR e 2 AR P (e Al e A ) = 0, (3.15)

i:1727"' 7J1_17j:1727"' 7J2_17k:1727"' 7‘]3_1777’:0717"' .
Because of
IA _IA IA _IA
Glle2 2o 117 e 220t kP12 201, + e 22007 1)
aJ _x aJ _x
= Glle STl le ™2 S P e YTy + e A )

2,
:GHG%A%ZI}CR e~z 4 ?,j,k|2](e%At€?,;r,llc + 6_%&523‘,1@)

7 _
+(Glle2 2% e 2200 4]
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1 _x 1 _x
— Gllez 2t e 2 800 P (e Ml + e 280 ),

and by the property of difference quotient, there exist constants (Z”J*,i, vk =0, such that

2 _y 1 _x
Gllez®'or L% le 2200 1 2T = Glle= 2ty i1, e 2 207 7]

7‘7 2
1 in LN 1 -1a -31A
=50/ (s) (e ZHr T — e T ) + 50/ (€05 (™ i l” = 1e™ M0 ul).

. _2 X X
where ¢]'f/ lies between the largest and smallest of [e™2 2f7 |2, [e 2 ¢ T |? and |e2 At F 2,

and £7'; ;. lies between the largest and smallest of [e=32f¢, | |7, |e=2 Ay |2 and |3 Aty |2,
Multiplying the relation (3.15) by At(e%ME:.lj:,lC + e’%AtE?’j’k)hlhghg, and summing them up
for i from 1 to J; — 1, for j from 1 to J, — 1, for k from 1 to J3 — 1, then taking the imaginary
part, we have

1
||6%At€n+1||i _ He—%Ath”% + 1At[Tn({gl(gn-‘rl)(|6%At¢)n+1|2 _ |6%At,¢}n+1|2)

=0.
(3.16)

+gl(£n)(|ef%At¢n|2_|67%At¢n|2)}(e%At¢n+l+67%At,¢}n),e%AtenJrl +67%At€n)h

Under the hypothesis (1.6) and Lemma 2.3, Lemma 3.3, we have
|the third term of the left-hand side of (3.16)]

M

< At (" [ TIDIE ] + (107 + DI, (9 + [ D + €MD),
M n n n n n n n

< At ([ oo + 10 ||oo){(3||¢ oo + 308" oo + 16" loo + (18" 0o) 1" 17
+ (311" loo + 3l1¢" oo + 16" flo + IIw"“IIm)IIe"IIi}

M, _
<z IAte““(llzb"“||1,h+IIZZJ"II1,h){(3||¢>"+1||1,h+3||1/1"+1||1,h+||<i>"||1,h+||1/J"||1,h)IIG"HIIi

+ (3l1¢" [, + 318" 0 + 6" ln + ||¢”+1||1,h)||6"||i}
<2MCy(R)e 21 h= At (|7 + e HI7)-
Substituting the above estimate in (3.16), we have
eI < e 2 e[ + 2M O (R)e? 210~ A At (|le™ 17 + e I7)-

If 2MCy (R)e™ 57 h=t At < 1, that is that At < we derive that

dh
2MCq (R)e“’At ?

1+2MCy(R)e??t 6 th=1 At

n+112 < n||2
||6 ||h =1_ 2MC’1(R)67At(s_1h_1AtH6 ||h

(1 +2MCy(R)e"A 6 h L At
1 —2MC,(R)evAt6—1h=1 At

IN

n+1
)l =01, (3.17)

Hence we obtain

Lemma 3.4. Under the conditions (1.4)', (1.5)-(1.7), and At < Wh. Then the

solution of the difference scheme (2,3) with boundary conditions (2.4) and initial condition
(2.5) is unique, where C1(R) is defined by (3.4).

Now we prove the existence of attractor Aj a; for the discrete system on Hj. Obvious, a
family operators (Sp,a¢)™ satisfy the semigroup properties

(Sh,at)™(Sh,at)™ = (Sh,ae)™ ", ¥Vm,n >0, (Sh,at)’ = 1.
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According to (3.17), for every n > 0, (Sh,at)™ is a continuous operator from the finite dimen-
sional space H} into itself. By Lemma 3.3, there exists a bounded set B! which is absorbing
in H} under (S, a¢)". Using theorem 1.1 in [8], we obtain the main result as follows

Theorem 3.1. We assume that (1.4)", (1.5)-(1.7) are hold, and At < 21\4’01((5%' Then

the discrete dynamical system associated with the finite difference system (2.3) with boundary
condition (2.4) possesses a global attractor Ap ay on H}, and

Ah,At = ﬂ U (Sh7At)mB{’.

n>0m>n

Remark 3.1. As the parameter v > 0, the discrete system can remain well dissipative prop-
erties of the original system, and as the parameter v = 0, the discrete system can also remain
well conservation properties of the original system.
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