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Abstract

Exponential time differencing schemes are time integration methods that can be effi-
ciently combined with spatial spectral approximations to provide very high resolution to
the smooth solutions of some linear and nonlinear partial differential equations. We study
in this paper the stability properties of some exponential time differencing schemes. We
also present their application to the numerical solution of the scalar Allen-Cahn equation
in two and three dimensional spaces.
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1. Introduction

For many time dependent partial differential equations with smooth or regularized solutions,
spectral and pseudo–spectral methods have been shown to provide remarkably effective spatial
discretization. The application of these discretization methods often results in systems of stiff
ordinary differential equations (ODEs) in time and thus make the efficient and stable time
integration scheme very essential.

The subject of solving stiff systems has been well studied in the literature [11], including,
for instance, linearly implicit methods [1], semi-implicit methods [4], time-splitting methods,
projection methods [8], multiscale methods [7, 9], integrating factors (IF), and the exponential
time differencing (ETD) methods [6, 12]. In this paper, of particular interests to us are the ETD
schemes and their modifications which have been shown to perform extremely well in solving
various one dimensional diffusion type problems [12]. ETD schemes have also been used by other
authors under different names [2, 15]. In essence, for nonlinear time dependent equations, the
ETD schemes provide a systematic coupling of the explicit treatment of nonlinearities and the
implicit and possibly exact integration of the stiff linear parts of the equations, while achieving
high accuracy and maintaining good stability.
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It is natural to expect that ETD like schemes can be very useful in phase field computations
that involve more complex physics [4, 16]. In fact, some preliminary numerical studies conducted
jointly by us and by a group of material scientists at the Penn State University have indicated
that the higher order ETD based schemes can be several orders of magnitude faster than the
low-order semi-implicit methods in some simulations of microstructure evolution [17]. This
further motivates our theoretical investigation on the various properties of the ETD schemes
while carrying out more extensive computational studies for real application problems. As
an initial attempt, the work reported here mainly contains an analytical examination of the
stability and monotonicity of the ETD type schemes for some model parabolic equations. Until
now, the stability of ETD schemes is only studied in [6] for ODEs, while the stability of the
modified ETD scheme has not been touched upon in [12]. Using techniques ranging from
spectral decomposition, energy estimates, and maximum principles, our study here provides
a more detailed theoretical analysis of the ETD schemes. Due to the page limit, we do not
include any discussion on the modified ETD schemes proposed in [12], though similar analysis
can also be performed. As one of the main applications we are working on, we conduct numerical
studies of the the ETD scheme for the solution of a time dependent scalar Ginzburg-Landau
equation (also named as the Allen-Cahn equation) in the two and three dimensional spaces.
Such a study is often the first step towards a more realistic model for many phase transition
problems [3]. Again, only some preliminary two and three dimensional numerical simulation
results are provided here to conserve space. Our short presentation merely serves as a hint to
the techniques and applications of more detailed theoretical and numerical investigations on
the ETD schemes to be carried out in the subsequent study [5].

The rest of the paper is organized as follows. In Section 2, we introduce the original and
modified ETD schemes. We then turn to discuss the asymptotic L2–stability and L∞–stability
of those schemes for some model problems in Sections 3 and 4. Some numerical experiments
will be given in Section 5.

2. The Exponential Time Differencing Schemes

Given a linear elliptic operator L, we consider the partial differential equation (PDE) for a
scalar function u defined in a spatial domain Ω = [0, 2π]d⊂R

d and for time t > 0:

ut = Lu + N (u, t, x), (1)

along with suitable initial and boundary conditions. Here, N denotes a generic nonlinear term.
A particular case of our interests in this paper is the dimensionless time-dependent Ginzburg-
Landau (Allen-Cahn) equation where N (u, t, x) = u(1 − u2)/ε2 for some interfacial parameter
ε, and ∆ being the Laplace operator. It is also convenient for us to introduce a related linear
equation of the type

ut = ∆u + λu . (2)

where λ can either be a constant or a function of the time and the spatial variables. In the latter
case, λu can represent an approximation of a nonlinear term through either linearization or by
frozen coefficients techniques. For most of our discussion, initial boundary value problems with
either periodic or homogeneous Dirichlet boundary conditions are considered for the equation
(2).

Discretizing the PDE (1) in the spatial variables, for instance, by spectral approximations
or by finite element approximations, a system of ordinary differential equations (ODEs) is often
obtained

ut = Lu + N (u, t) . (3)

The exponential time differencing (ETD) methods can be described in the context of solving
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(3). Integrating the equation over a single time step from t = tn to tn+1 = tn + h, we get

u(tn+1) = eLhu(tn) + eLh

∫ h

0

e−LsN(u(tn + s), tn + s) ds. (4)

The equation (4) is exact, and the various ETD schemes come from the approximations to the
integral [6].

Denote the numerical approximation to u(tn) by un, the first order scheme ETD1 is given
by

un+1 = eLhun + L−1(eLh − I)N(un, tn). (5)

Higher order ETD schemes, for instance, the second, third and fourth order ETD Runge-Kutta
schemes (which we refer as ETD2RK,ETD3RK, and ETD4RK respectively) can also be found
in [6, 12]. For completeness, we give below the formulae for a fourth–order scheme (ETD4RK):

an = eLh/2un + L−1(eLh/2 − I)N (un, tn), (6)

bn = eLh/2un + L−1(eLh/2 − I)N (an, tn +
h

2
), (7)

cn = eLh/2an + L−1(eLh/2 − I)(2N(bn, tn +
h

2
) − N (un, tn)), (8)

un+1 = eLhun + h−2L−3
{
[−4 − Lh + eLh(4 − 3Lh + (Lh)2)]N (un, tn)

+ [4 + 2Lh − 2eLh(2 − Lh)](N (an, tn + h/2) + N(bn + tn + h/2))
+ [−4 − 3Lh − (Lh)2 + eLh(4 − Lh)]N (cn, tn + h)

}
. (9)

The above formulae may look complicated at the first sight, but the implementation can
be carried out efficiently if L is easily diagonalizable. To overcome the vulnerability of error
cancellations in the higher-order ETD and ETDRK schemes, and to generalize the ETD schemes
to non–diagonal problems, in [12], modified ETD schemes is proposed by using the complex
contour integrals

f(L) =
1

2πi

∫
Γ

f(z)(zI − L)−1 dz (10)

on a suitable contour Γ to evaluate the coefficients in the update formula for ETD4RK. For
more detailed derivations and applications of the ETD and modified ETD schemes, we refer
to [6, 12]. Let us note that our recent study has discovered that that only very few nodes are
needed in the numerical quadratures in order to preserve the good accuracy to the contour
integration and the time integrator. Moreover, the contour integration based modified ETD
schemes enjoy even better stability properties than the original ETD schemes. Due to the
page limit, these kinds of results are not presented here, and we refer interested readers to our
subsequent work [5] for more details.

3. L2–stability Analysis

For simplicity, we here mainly present results concerning the application of the first order
ETD scheme to the equation (2), with no spatial approximation is made.

Given the solution un at the time step tn, the first order ETD scheme applying directly to
(1) is equivalent to solving⎧⎪⎨

⎪⎩
∂

∂t
w(x, t) = �w(x, t) + N (un(x), t, x),

w(x, 0) = un(x)
(11)

with the corresponding boundary condition in a time interval (0, τ) and setting un+1 = w(·, τ),
tn+1 = τ + tn. Here, we use τ to denote the time step size (same as the h used in the earlier
section).
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Corresponding to (2), the ETD scheme is reduced to:⎧⎪⎨
⎪⎩

∂

∂t
w(x, t) = �w(x, t) + λun(x),

w(x, 0) = un(x)
(12)

with the corresponding boundary condition and un+1 = w(·, τ). For the spectral approximations
of equations (1) and (2), the resulting equations are modified by simply replacing N (un, t, x)
and λun in (1) and (2) respectively by their Galerkin projections onto the finite dimensional
Fourier spaces. In the context of spectral approximation to the nonlinear Allen-Cahn equation
(also called the time dependent Ginzburg-Landau equation), the resulting first order ETD
scheme becomes very close to the semi-implicit scheme used by [4]. Similarly, for finite element
approximations, the operator � would have to be replaced by its discrete approximations as
well.

We recall some technical terms. Let B denote a Banach space, and un denote the numerical
solution at the time step n, we call a marching scheme asymptotically B stable, if ‖un+1‖B ≤
‖un‖B for all n. If no restriction needs to be imposed on the time step τ = tn+1 − tn to achieve
such stability bound, then the scheme is called unconditionally asymptotically B stable. For
more discussion on the stability of numerical schemes, we refer to [11, 14].

We now proceed with a stability theorem concerning (12). In the case λ being a constant,
using a spectral decomposition, the stability issue is related to an analysis of the stabilities of
the corresponding system of ODEs for the spectral (Fourier) modes.

Theorem 3.1. For the first order ETD scheme (12) for the equation (2) with constant λ and
periodic boundary condition, we have

(i) if |λ| = 0, it is unconditionally asymptotically L2–stable.

(ii) if |λ| �= 0, it is asymptotically L2–stable ⇐⇒ �λ < 0 and τ ≤ −2�λ

|λ|2 .

Proof. Using Fourier expansion let un(x) =
∑

k∈Zd

ûn,k eik·x, where

ûn,k =
1

(2π)d/2

∫
Ω

un(x) eik·x dx k ∈ Z
d,

and let w(x, t) =
∑
k∈Zd

ŵk(t) eik·x for any time t, we get

⎧⎪⎨
⎪⎩

d
dt

ŵk(t) = −|k|2ŵk(t) + λ ûn,k,

ŵk(0) = ûn,k

(13)

for all k ∈ Z
d. By the variation of constants formula,

ŵk(τ) = ûn,k e−|k|2τ +
∫ τ

0

λ e−|k|2(τ−s)ûn,k ds .

Define, for any k ∈ Z
d,

gk(τ) =

⎧⎪⎨
⎪⎩

1 + λ τ if |k|2 = 0,

1 +
1 − e−|k|2τ

|k|2 (λ − |k|2) if |k|2 �= 0,
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then we get ŵk(τ) = gk(τ) ûn,k, for all k ∈ Z
d. Therefore,

w(x, τ) =
1

(2π)d/2

∫
Ω

∑
k∈Zd

gk(τ)un(y) eik·(x−y) dy (14)

and ‖w(·, τ)‖2
L2(Ω) =

∑
k∈Zd

|gk(τ)|2 |ûn,k|2.

To get the asymptotic L2-stability, we need |gk(τ)| ≤ 1 for all k ∈ Z
d, i.e.,

|1 + λ τ | ≤ 1, (15)

and
|1 + rk(λ − |k|2)| ≤ 1 ∀k ∈ Z

d, |k|2 �= 0, (16)

where rk = (1− e−|k|2τ )/|k|2. Note that the above two inequalities hold trivially when |λ| = 0,
we then turn to the case when |λ| �= 0.

First, (15) is equivalent to τ |λ|2 + 2�λ ≤ 0, and one must have

�λ < 0 and τ ≤ τ̄0
def=

−2�λ

|λ|2 . (17)

Next, direct computation shows that (16) is equivalent to

rk(|λ|2 − 2�λ |k|2 + |k|4) + 2(�λ − |k|2) ≤ 0, (18)

which holds if |k|2 ≥ |λ|. Now for those k ∈ Z
d, |k|2 < |λ|, and |k|2 �= 0, the equation (18) is

equivalent to

e−|k|2τ ≥ |λ|2 − |k|4
|λ|2 − 2�λ |k|2 + |k|4 ,

namely,

τ ≤ τ̄k
def=

1
|k|2 ln

(
1 +

2(|k|2 −�λ)|k|2
|λ|2 − |k|4

)
= f(|k|2) (19)

Let b = |λ|, a = −�λ, x = |k|2, we have

f(x) =
1
x

ln
(b2 + 2ax + x2

b2 − x2

)
Notice that b > x > 0, and b > a > 0, we get from a direct computation that f ′(x) > 0 which
implies that f = f(x) is an increasing function of x. Moreover, since lim

x→0+
f(x) = 2a/b2, we

get that τ̄k is an increasing function of |k|2, and τ̄k < τ̄0. This proves the theorem.
Clearly, the above analysis can be adapted to more general domain and boundary conditions.

A suitable eigen-decomposition corresponding to the differential operator can be used in place
of the Fourier series. We omit the details.

Before we move on, let us consider a slight variation of the above theorem. Since for the
spectral approximation of the ETD schemes, a linear shift in the operator L can be easily
implemented, we thus establish in the following the fact that a good shift, or a suitable operator
splitting, can improve the stability. For α > 0, consider the ETD scheme with L = ∆−α which
is equivalent to solve⎧⎪⎨

⎪⎩
∂

∂t
w(x, t) = (�− α)w(x, t) + (λ + α)un(x),

w(x, 0) = un(x)
. (20)

Following similar discussions as that given in the above theorem, we can show that:
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Corollary 3.1. The first order ETD scheme with splitting (20) is unconditionally asymptoti-
cally L2–stable for the equation (2) with constants α > 0, λ and periodic boundary condition if
either |λ| = 0 or if �λ < 0 together with α ≥ −|λ|2/(2�λ).

This is a particularly useful fact when solving nonlinear equations. With a suitable splitting of
its linear part, stability can often be improved for ETD likes schemes.

We can easily extend the stability conditions to the first order ETD scheme applied to
problem (2) with homogeneous Dirichlet boundary conditions:

w(x, t) = 0 x ∈ ∂Ω, (21)

Corollary 3.2. For the first order ETD scheme (12) with (21),

(i) if |λ| ≤ 1, then it is unconditionally asymptotically L2–stable.

(ii) if |λ| ≥ 1, then it is asymptotically L2–stable if and only if �λ < 0 and

τ ≤ ln
( |λ|2 − 2�λ + 1

|λ|2 − 1

)
.

Proof. Note that with homogeneous Dirichlet boundary conditions (21), the Fourier series
becomes sine series, and we have the Fourier mode k ∈ Z

d\{0}. Hence, if |λ| ≤ 1, then (18)
holds; if |λ| ≥ 1, then (18) holds if and only if �λ < 0 and (19) holds. Noting that for all τ̄k’s
defined in (19), where k ∈ Z

d\{0}, the minimum is obtained at |k|2 = 1; and then the corollary
follows.

Concerning the stability of the actual numerical scheme, we note that same conclusions
can be drawn when solving the model problem (12) with periodic or homogeneous Dirichlet
boundary conditions (21) using the first order ETD scheme in the time variable and spectral
or pseudo-spectral methods in the space variables. The method of finite Fourier (or sine) series
can still be used; and it is not hard to see that all the assertions in the above theorem still
remain true for constant λ.

For the case that the coefficient λ is a function dependent on the spatial variables, we have
the following sufficient condition for the stability in a modified energy norm.

Theorem 3.2. For the first order ETD scheme with operator splitting (20) for the equation
(2) with the periodic boundary condition or (21) and λ be dependent on x, if maxx�{λ} ≤ 0
and 2τ(maxx�{−λ} − α) ≤ 1, then,∫

Ω

(
|∇w(τ)|2 −�{λ}|w(τ)|2

)
dΩ ≤

∫
Ω

(
|∇wn|2 −�{λ}|wn|2

)
dΩ . (22)

Proof. Multiplying the equation (12) by w∗
t , integrating in both space and time, taking the

real part and using integration by parts, we get∫ τ

0

∫
Ω

|ws(s)|2dΩ ds +
∫

Ω

(1
2
(|∇w(s)|2 + α|w(s)|2) −�{λw(τ)∗wn}

)
dΩ

=
∫

Ω

(1
2
(|∇wn|2 −�{λ}|wn|2)

)
dΩ . (23)

We multiply the above by 2τ and take note that,∫ τ

0

∫
Ω

τ |ws(s)|2dΩ ds ≥
∫

Ω

|w(τ) − wn|2dΩ .

Rearranging terms, we get∫
Ω

(τ�{λ} + τα + 2)|w(τ) − wn|2dΩ +
∫

Ω

(
τ |∇w(s)|2 − τ�{λ}|w(τ)|2

)
dΩ

=
∫

Ω

(
τ |∇wn|2 − τ�{λ}|wn|2

)
dΩ .
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Thus, by the assumption on λ and the α, (22) follows.

Remark 3.1. The above theorem also holds for the spatial discretization of (12) via either
spectral or finite element Galerkin approximations since the relation (23) remains valid in such
cases.

4. L∞–stability

Next, we turn to study the point-wise behavior of the first order ETD scheme. When
modeling phase transition problems, point-wise estimates are usually desirable so that a proper
physical interpretation of the solution can be made.

Recall that the equation (2) often shares maximum principle. We thus examine similar
properties of the ETD scheme. This part of our discussion is limited only to the one space
dimensional case and with no spatial discretization.

First of all, let us establish the monotonicity property for linear equations. In order to
extend to some nonlinear problems, we again allow λ to vary with respect to x but not to t.
Moreover, we only consider the case λ being real.

Theorem 4.1. For the initial Cauchy value problem (12) with max λ ≤ 0 on the real line, we
have

i) if 1 + 2τ min λ ≥ 0, and un ≥ 0 for all x, then w(x, t) ≥ 0 for all x.

ii) if 1 + τ min λ ≥ 0, then |w(x, τ)| ≤ sup
x∈R1

|un(x)|.

Proof. First, we have

w(x, t) =
∫

Rd

un(x − y)
(∫ t

0

λΦ(y, s) ds + Φ(y, t)
)

dy, (24)

where Φ(y, s) =
e−|y|2/4s

(4πs)d/2
. Since

∫ t

0

Φ(y, s)ds = (2π)−
d
2

∫ ∞

|y|√
2t

ud−3|y|2−de−
u2
2 du. (25)

If d = 1, then integrating by parts shows∫ t

0

Φ(y, s) ds =
1√
2π

|y|
(
|y|−1

√
2te−

|y|2
4t −

∫ ∞

|y|√
2t

e−
u2
2 du

)
≤ 2tΦ(y, t),

therefore, if maxλ ≤ 0, we have

(1 + 2min λt)Φ(y, t) ≤
∫ t

0

λΦ(y, s) ds + Φ(y, t) ≤ Φ(y, t). (26)

Hence from (24) and (26), depending on whether 1 + 2minλτ ≥ 0 or 1 + 2minλτ ≥ −1, we get
respectively either 0 ≤ w(x, τ) ≤ un(x) if un(x) ≥ 0 or |w(x, τ)| ≤ |un(x)|. Thus, the assertions
of the theorem follow.

We can also obtain similar results for the linear equation (12) with periodic boundary
conditions.

Corollary 4.1. For the initial boundary value problem (12) with periodic boundary condition,
if λ is also periodic with maxxλ ≤ 0, then

i) for 2τ minx(λ) ≥ −1, w(x, τ) ≥ 0 for all x ∈ (0, 2π) if un ≥ 0 in (0, 2π);
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ii) for τ minx(λ) ≥ −1, sup
x∈(0,2π)

|w(x, τ | ≤ sup
x∈(0,2π)

|un(x)|.

Proof. Extend un and λun periodically (with period 2π) to ũn and λũn to the whole space;
and notice that supx∈R1 |ũn(x)| =supx∈(0,2π)|un(x)| the assertion follows exactly from the proof
in Theorem 4.1 with un replaced by ũn.

L∞ stability analysis can also be carried out for semi-implicit schemes that use a time
difference to replace the time differentiation. In fact, such analysis for semi-implicit schemes
are generally valid also in multi-dimensional spaces by invoking a maximum principle type
arguments for elliptic equations.

5. Numerical Results

We now turn our attention to the application of the ETD scheme and its modifications
to the solution of the time dependent Ginzburg-Landau equation (also called the Allen-Cahn
equation) that often forms a core component of the phase field modeling of the microstructure
evolution in a binary or multicomponent alloy. One of our ultimate goals is to make the high
order ETD scheme work very efficiently for such complex phase field models.

The unknown function u in the time dependent Ginzburg-Landau equation

ut = ∆u +
1
ε2

u(1 − u2) , (27)

represents an order parameter, and the nonlinear term N(u) = (u − u3)/ε2 is obtained from
the standard double-well free energy potential [13] with ε measuring the interface thickness.

In our simulations, periodic boundary condition is used as it often is the case in practice
where the bulk properties are of central interests. This leads, conveniently, to the application
of the Fourier pseudo-spectral approximation in space. At t = 0, an initial condition is given
with a circular (spherical) interface boundary centered at the center of a square (cubic) domain.
The order parameter values inside the circle (sphere) are assigned +1 and −1 outside. Such a
circular (spherical) interface will undergo the mean curvature motion and eventually disappear.

Here, due to page limitations, we only compare the results of the Ginzburg-Landau simula-
tion using ETD4RK with that of a sharp interface model. We take a two dimensional square
of size 8× 8 and an initial circle of radius 3.125 and solve the equation (27) with various values
of ε. Let A(t) be the area (volume) of the circle (sphere) at time t with positive u values and
A0 be the initial area, then in the limit as ε → 0, that is, in the sharp interface limit, the mean
curvature motion gives

A(t) = A0 − 2πt. (28)

First, we show in Fig1 that as ε decreases from 0.5 to 0.25 and 0.125, the plot of A(t) in
time based on a modified ETD4RK scheme (which is the ETD4RK implemented with a complex
integration proposed in [12]) becomes closer and closer to the asymptotic value given by (28).

The fact that ETD4RK is able to simulate small interface thickness ε with a relatively
coarse mesh clearly demonstrates the effectiveness of the spectral-ETD coupled approximation
schemes in the simulation of interface dynamics. Other convergence and accuracy tests will be
presented in our future works.

Finally, we present a simulation with ε = 1 and a fixed spatial domain size of 32 × 32 × 32
cube in the three dimensional space. The numerical solution is computed with a 128 × 128 ×
128 grid and a time step size of 0.2. The snapshots of the isosurface with value 1.0E-12 of the
solution in the three dimensional space are shown in Fig2. It can be observed that the sphere
shrinks and eventually disappears, just as predicted theoretically.

6. Conclusion

In this paper, we presented some preliminary stability analysis of the exponential time
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Figure 1: Left: computed values of area A(t) by (28), and by a modified ETD4 scheme for (27)
using ε = 0.5, 0.25 and 0.125. The picture on the right is a zoomed–in part of the left figure.

(a) t = 4 (b) t = 16 (c) t = 28 (d) t = 36

Figure 2: Isosurface plots at the value 1.0E − 12

differencing schemes for some parabolic type equations. Though only results for the first or-
der scheme were stated, their generalizations to higher order schemes are also possible. More
recently, we have also shown that the contour integration suggested in [12] has the effect of
improving the stability of the time integration. These theoretical analysis along with other ex-
tensive numerical simulations of more complex equations that model phase transition problems
will be reported elsewhere.
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