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Abstract

We propose a simple numerical method for calculating both unsteady and steady state
solution of hyperbolic system with geometrical source terms having concentrations. Phys-
ical problems under consideration include the shallow water equations with topography,
and the quasi one-dimensional nozzle flows. We use the interface value, rather than the
cell-averages, for the source terms, which results in a well-balanced scheme that can cap-
ture the steady state solution with a remarkable accuracy. This method approximates
the source terms via the numerical fluxes produced by an (approximate) Riemann solver
for the homogeneous hyperbolic systems with slight additional computation complexity
using Newton’s iterations and numerical integrations. This method solves well the sub-
or super-critical flows, and with a transonic fix, also handles well the transonic flows over
the concentration. Numerical examples provide strong evidence on the effectiveness of this
new method for both unsteady and steady state calculations.

Mathematics subject classification: 35L65, 65M06, 76B15
Key words: Shallow water equations, Discontinuous topography, Well-balanced scheme,
Shock capturing.

1. Introduction

Hyperbolic systems with geometric source terms arise in many physical applications, includ-
ing the shallow water equations with bottom topography and the quasi one-dimensional nozzle
flow equations with variable cross-sectional area. When the source terms in the system have
concentrations, corresponding to a δ function in the source, the usual numerical method for
source term approximation may give poor approximations to the steady state equations due
to the first order numerical viscosity used at discontinuities [12]. A well accepted strategy for
such problems is to design so called well-balanced scheme that balances the numerical flux with
the source term such that the steady state solution is captured numerical with exactly or with
at least a second order accuracy. Many well-balanced schemes have been proposed by many
authors in recent years, including well-balanced scheme based on non-conservative product [12]
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and its extensions [13], [11], [5], [6], [9], [10], LeVeque’s quasi-steady scheme [18], kinetic schemes
[4], [19], [2], [25], relaxation schemes [20], central schemes [15]. Nonlinear extension of Roe’s
linear idea [23] was made in [3], [24], [14]. Most of these methods require the modification of
the numerical flux.

The interface method of Jin [14] uses the numerical flux for the homogeneous hyperbolic
systems in the source term, and was shown in [14] that for smooth solutions, it captures the
steady state at cell interfaces with a second order accuracy, thus is well-balanced. Designed for
Godunov [8] and Roe [22] type schemes, this method has the advantage that it does not require
any modification of the numerical flux for the convection term. By using the numerical flux
directly in the source term it needs almost no additional computation complexity to deal with
source term.

In this paper we derive a new set of well-balanced scheme that can be viewed as an improve-
ment of Jin’s interface method. It is a hybridization of the conventional cell average method
with a improved interface type method at concentration points. The main idea is based on
finite volume approximation of hyperbolic systems, with a more accurate approximation of the
volume average of the source term. While Jin’s interface method can be viewed as the trape-
zoidal approximation of this source average, we found that more accurate approximation of
the source average significantly improves the approximation of the steady state solutions. This
involves more accurate numerical integrations and Newton’s iterations, but the added computa-
tional compexity, compared to the interface method, is small. This new method can accurately
capture both unsteady and steady state solutions. Moreover, with a simply fix, it is capable of
handling the transonic flows at source concentrations.

In section 2, 3 and 4 we introduce our method for the shallow water equations, isothermal
and non-isothermal nozzle flow equations respectively. The property of preservation of steady
state equations is shown. Numerical examples show that the new method gives satisfactory
unsteady and steady state solutions.

In the sequel we will use xj+1/2 to denote the grid point, ∆x = xj+1/2−xj−1/2 the mesh size,
wj+1/2 = w(xj+1/2) the interface value of a general quantity w, and wj = 1

∆x

∫ xj+1/2

xj−1/2
w(x) dx

be the cell average of w over the cell [xj−1/2, xj+1/2].

2. The Shallow Water Equations

Consider the one-dimensional shallow water equations with topography

ht + (hv)x = 0, (2.1)

(hv)t + (hv2 +
1
2
gh2)x = −ghBx , (2.2)

where h is the depth of the water, u is the mean velocity, g is the gravitational constant, and
B(x) is the bottom topograph. The steady state solutions satisfy

hv = C1, (2.3)
1
2
v2 + gh + gB = C2. (2.4)

These steady state conditions are satisfied not only on smooth part of the solution, but also
across a bottom discontinuity [1]. A numerical method is called well-balanced [12] if it satisfies
the steady state conditions (2.3), (2.4) exactly or with at least second order accuracy even when
the bottom contains discontinuities. In this section we design a well-balanced scheme for (2.1),
(2.2) which can preserve these steady states even at cells containing discontinuity of B(x).

2.1. A hybrid method
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We first present the conventional cell average method,

∂thj +
(hv)j+ 1

2
− (hv)j− 1

2

∆x
= 0, (2.5)

∂t(hv)j +
(hv2 +

1
2
gh2)j+ 1

2
− (hv2 +

1
2
gh2)j− 1

2

∆x

= −ghj

Bj+ 1
2
− Bj− 1

2

∆x
. (2.6)

where Bj+ 1
2

= B(xj+ 1
2
), and the numerical flux is a Godunov [8] or Roe [22] flux or its higher

order extensions.
As is well known, the cell average method is suitable if the bottom function B(x) is con-

tinuous. When B(x) contains a discontinuity, the cell average method generally fails to be
well-balanced due to the first order numerical viscosity added at discontinuities. This matches
with the fact that the shallow water equations in the form (2.1), (2.2), which are referred to
as mass-momentum formulation in [1], no longer hold valid when the bottom slope becomes
infinite.

We also mention the interface method of Jin [14]:

∂thj +
(hv)j+ 1

2
− (hv)j− 1

2

∆x
= 0, (2.7)

∂t(hv)j +
(hv2 +

1
2
gh2)j+ 1

2
− (hv2 +

1
2
gh2)j− 1

2

∆x

= −g
hj+ 1

2
+ hj− 1

2

2

Bj+ 1
2
− Bj− 1

2

∆x
. (2.8)

As will be shown later, the new method developed in this paper is a generalization–with a
better accuracy to preserve the steady state solution– of this method.

Our new method is a hybrid of the cell average method in cells in which B(x) is continuous
with a modification of the source term approximation in cells which contain a discontinuity of
B(x).

Assume a discontinuity of B(x) is contained in the middle of a cell [x1, x2]. Usually we use
[xj− 1

2
, xj+ 1

2
] to denote a cell. Here we use the subindex 1, 2 in order to simplify the notation.

Denote h̃, m̃ to be averages of h, hv in this cell respectively, and h1, h2, v1, v2, B1, B2 to be the
interface values of h, v, B at x1, x2 respectively.

Our hybrid scheme in the cell [x1, x2] takes the form

h̃t +
(h2v2) − (h1v1)

∆x
= 0, (2.9)

m̃t +
(h2v

2
2 +

1
2
gh2

2) − (h1v
2
1 +

1
2
gh2

1)

∆x

= − g

∆x

∫ x2

x1

ĥB̂xdx; (2.10)

where a general hat-function q̂ denotes a smooth function in cell [x1, x2] with endpoint values
q(xi) at xi(i = 1, 2). The choice of the non-negative smooth function ĥ over [x1, x2] will be
made clear later.

Now define function H(x) in cell [x1, x2] to be the linear interpolant through interpolating
points (xi, hivi), i = 1, 2, and G(x) in [x1, x2] to be the linear interpolant through (xi,

1
2v2

i +
ghi + gBi), i = 1, 2. Namely,

H(xi) = hivi, G(xi) =
1
2
v2

i + ghi + gBi, i = 1, 2. (2.11)
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We then determine ĥ, v̂ from the identities

H = ĥv̂, (2.12)

G =
1
2
v̂2 + gĥ + gB̂, (2.13)

or ĥ can be determined by the relation

1
2

H2

ĥ2
+ gĥ + gB̂ = G. (2.14)

We now prove that our hybrid scheme is well-balanced. We just need to prove this property
across the cell [x1, x2] that contains a discontinuity of B(x).

Theorem 2.1. Our hybrid scheme can preserve the steady state conditions (2.3)-(2.4) exactly
at cell interfaces at two sides of bottom discontinuity:

h1v1 = h2v2, (2.15)
1
2
v2
1 + gh1 + gB1 =

1
2
v2
2 + gh2 + gB2. (2.16)

Proof. It is directly seen from (2.9) that when steady state is reached, the numerical solution
should give h1v1 = h2v2, thus condition (2.15) is satisfied. It remains to prove condition (2.16)
holds in the steady state solution. This is equivalent to prove that G(x1) = G(x2).

Let E2, defined in cell [x1, x2], be given by

E2 = (ĥv̂2)x + (
1
2
gĥ2)x + gĥB̂x. (2.17)

One can transfer the expression (2.10) into the form

m̃t = − 1
∆x

∫ x2

x1

E2dx . (2.18)

Since all the hat-functions are smooth, one has

E2 = (ĥv̂)xv̂ + (ĥv̂)v̂x + gĥĥx + gĥB̂x

= Hxv̂ + ĥ(v̂v̂x + gĥx + gB̂x)

= Hxv̂ + ĥGx, (2.19)

by recalling the definition of H, G in (2.12), (2.13).
Since H is linear in [x1, x2], with the proved condition (2.15), we know that, at steady state,

H is a constant, and hence Hx must be zero in the cell [x1, x2]. So in the cell [x1, x2]

E2 = ĥGx. (2.20)

On the other hand, from (2.18) we know that the steady state solution satisfies∫ x2

x1

E2dx = 0 ,

thus ∫ x2

x1

ĥGxdx = 0. (2.21)

Since G is linear in [x1, x2], thus Gx is a constant. If h1 = 0, h2 = 0 at steady state solution,
then (2.21) holds since ĥ = 0. This is a vacuum state. If at least one of h1, h2 is greater
than zero, since ĥ(x) is chosen to be non-negative and smooth in [x1, x2], the integration of
ĥ(x) in [x1, x2] is positive. Thus equality (2.21) forces Gx = 0 in [x1, x2], and consequently
G(x1) = G(x2) at steady state.
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In practical calculation, we need to solve ĥ from H, G using (2.14). We fix the choice of B̂ as
a linear function in [x1, x2] with B̂(x1) = B1, B̂(x2) = B2. Then the source term approximation
on the right hand side of our hybrid scheme (2.10) turns out to be

−g

(
1

∆x

∫ x2

x1

ĥdx

)
B2 − B1

∆x
. (2.22)

Thus in computation we need to obtain the cell average of ĥ on [x1, x2]

1
∆x

∫ x2

x1

ĥdx

to get the source term approximation (2.22). Notice if we use the trapezoidal rule on the whole
interval [x1, x2], then we recover the interface method of Jin given in (2.7)-(2.8). Since ĥ has a
large gradient over [x1, x2], this is not a very accurate approximation. One of the main strategy
of the new method is to approximate the above integration more accurately. In our computation
we divide the interval [x1, x2] into five subintervals and use Simpson’s rule on each subinterval
to perform the numerical integration. In practice this implementation is accurate enough in
that the error between integration value we obtained and the “exact” value, which is obtained
by using much more subintervals to compute the integration, is small enough. The needed
values of ĥ to perform the numerical integration are obtained by using Newton iteration to
solve the equation (2.14). These Newton iterations can be executed consecutively, and one can
use the solution of previous one to be the initial value, thus each Newton iteration converges
with very few iterations.

2.2. A Transonic Fix

For fixed values of B̂, H, G, equation (2.14) generally has two solutions for ĥ, one corre-
sponding to the subcritical state and another to the supercritical state. When the problem is
in the subcritical case, | v1√

gh1
| < 1 and | v2√

gh2
| < 1, we choose ĥ to be the solution of (2.14)

corresponding to subcritical state. On the other hand, when the problem is in the supercritical
case, | v1√

gh1
| > 1 and | v2√

gh2
| > 1, we choose ĥ corresponding to the supercritical state. So

there is no confusion for choosing ĥ from equation (2.14) in the sub- or super-critical case.
In the transonic case, we need a fix to select the correct value of ĥ. As pointed out in [1], in

a Riemann problem for the shallow water equations, when it is the transonic case, the analytic
solution should reach the critical state at the higher side of the bottom jump. We can build
this property into our scheme. For example, assume | v1√

gh1
| > 1, | v2√

gh2
| < 1, and B1 < B2.

Let H2 = h2v2, and h3, v3 satisfy h3v3 = H2 and |v3| =
√

gh3. Namely, h3 = (
H2

2

g
)

1
3 and

v3 =
H2

h3
. Denote G2 =

1
2
v2
3 + gh3 + gB2, H1 = H2, G1 = G2. We then can proceed to define

H, G on [x1, x2] as before (which are now constants) and find ĥ, v̂ using (2.12)-(2.14). Clearly,
by choosing ĥ to be solution of equation (2.14) corresponding to supercritical state, because
| v1√

gh1
| > 1, we obtain the solution in supercritical state at the left side of the bottom jump.

We can similarly deal with other transonic case.

2.3. Numerical Examples

In this subsection we give numerical examples to demonstrate that our method works well
for calculating both unsteady and steady state solutions for the shallow water equations.

The following two problems are Riemann problems from [1]. The gravitational constant
is set to be 9.8. These two Reimann problems are defined on the domain [-10, 10]. We use
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the second order shock capruting scheme based on the Roe solver with a slope limit [17], and
the second order Runge-Kutta for time discretization for both problems. The zeroth order
extrapolation is used as numerical boundary condition. We also obtain the “exact” solution
using the new method with 1000 grid points.

Example 2.1. A Riemann problem with solution in the supercritical state.

The initial data are given by (h, v, B) = (4,−10, 0) when x < 0 and (h, v, B) = (1,−6, 1)

when x > 0. This is a supercritical case. The energy
1
2
v2 + h + B is a constant across the

bottom discontinuity. We take ∆t
∆x = 1/20. We compute the solution using our new method,

and compare it with the solutions by the interface method and the cell average method, all
using 100 cells. The results are plotted in Figures 2.1-2.3. The solutions by the new method
match with the exact solution, while the solution by the cell average method severely deviates
from the exact solution. Although the results from interface method look very like the result
from the new method, it can not approximate the constant energy across the bottom jump as
accurately as the new method. This can be seen in Figure 2.4, which is an enlargement of part
of Figure 2.3. The result from the interface method allows a gap in energy across the bottom
jump, which does not decrease with increased number of grid points. The energy in the steady
state solution by the new method is plotted in Figure 2.5. One can see that the energy reaches
a constant with a remarkable accuracy.

Example 2.2. A Riemann problem with solution in the transonic state.

The initial data are (h, v, B) = (4,−10, 0) when x < 0 and (h, v, B) = (2, 0, 1) when x > 0.
This is a transonic case. The solution reaches the critical state at the right side of the bottom

jump, and the energy
1
2
v2 + h + B remains a constant across the bottom discontinuity. We

take ∆t
∆x = 1/50. The solutions obtained by our new method, the interface method and the cell

average method using 100 cells, along with the “exact” solution, are plotted in Figures 2.6-2.8.
The solutions by the new method match very well with the real solution plotted in [1]. In
particular, it can correctly predict that the Froude number reaches −1 at the right side of the
bottom jump. This is due to the fix used in our method for the transonic case. On the other
hand, the interface method and cell average method both fail to correctly resolve the Froude
number near the bottom jump.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 2.1 Example 2.1, the supercritical case. Water level at t=0.5 along with the bottom
topography. Solid line: the exact solution; “o”: the solution of our new method, “+”: the
solution of the interface method; “x”: the solution of the cell average method; dashed line:

bottom topography.
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Figure 2.2 Example 2.1, supercritical case. Froude number at t=0.5. Solid line: the exact
solution; “o”: the solution of the new method; “+”: the solution of the interface method; “x”:

the solution of the cell average method.
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Figure 2.3 Example 2.1, supercritical case. Energy at t=0.5. Solid line: the exact solution;
“o”: the solution by the new method; “+”: the solution of the interface method; “x”: the

solution of the cell average method.
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Figure 2.4 Example 2.1, supercritical case. A close look of Figure 2.3. Solid line: the exact
solution; “o”: the solution by the new method; “+”: the solution of the interface method;

“x”: the solution of the cell average method.
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Figure 2.5 Example 2.1, the supercritical case. Steady state energy by the method using 100
cells.
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Figure 2.6 Example 2.2, the transonic case. Water level at t=0.5 along with the bottom
topography. Solid line: the exact solution; “o”: the solution by the new method; “+”: the
solution of the interface method; “x”: the solution of the cell average method; dashed line:

bottom topography.
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Figure 2.7 Example 2.2, the transonic case. Froude number at t=0.5. Solid line: the exact
solution; “o”: the solution by the new method; “+”: the solution of the interface method;

“x”: the solution of the cell average method.
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Figure 2.8 Example 2.2, the transonic case. Energy at t=0.5. Solid line: the exact solution;
“o”: the solution by the new method; “+”: the solution of the interface method; “x”: the

solution of the cell average method.

3. The Isothermal Nozzle Flow Equations

Consider the system describing the evolution of an quasi-one-dimensional isothermal fluid
in a nozzle

∂t(aρ) + ∂x(aρv) = 0, (3.1)
∂t(aρv) + ∂x(aρv2 + kaργ) = p(ρ)∂xa, (3.2)
∂ta = 0, (3.3)

where ρ, v represent density and velocity of the fluid, a(x) > 0 is the cross-sectional area of the
nozzle, p(ρ) is the pressure given by the relation

p(ρ) = kργ .

The third equation (3.3) needs to be included as part of the system when the cross sectional
area a(x) contains discontinuities. When a(x) is constant, equations (3.1)-(3.2) reduce to the
standard isentropic equations.

The cell average method for above isothermal nozzle flow equations takes the form

∂t(aρ)j +
(aρv)j+ 1

2
− (aρv)j− 1

2

∆x
= 0 (3.4)

∂t(aρv)j +
(aρv2 + kaργ)j+ 1

2
− (aρv2 + kaργ)j− 1

2

∆x

= kρj
γ
aj+ 1

2
− aj− 1

2

∆x
(3.5)

where the interface values can be obtained from a Riemann or approximate Riemann solver for
the system (3.1)-(3.3) without source term.

When the steady state solution is smooth, the steady state solutions satisfy

aρv = C1, (3.6)
1
2
v2 + k

γ

γ − 1
ργ−1 = C2. (3.7)

Furthermore, these steady state conditions also hold across a cross-sectional discontinuity [16].
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In the same principle as the shallow water equations, our method for the isothermal nozzle
flow equations can be described as follows. Assume a discontinuity of cross-section is contained
in the cell [x1, x2]. Let ai, ρi, vi be the interface values of a, ρ, v at xi(i = 1, 2) respectively.

Denote Hi = aiρivi, Gi =
1
2
v2

i + k
γ

γ − 1
ρi

γ−1, i = 1, 2. Then we choose â, H, G to be linear

functions on [x1, x2] so that â(xi) = ai, H(xi) = Hi, G(xi) = Gi, i = 1, 2. We choose ρ̂, v̂ from

âρ̂v̂ = H, (3.8)
1
2
v̂2 + k

γ

γ − 1
ρ̂γ−1 = G, (3.9)

or ρ̂ from
1
2

H2

â2ρ̂2
+ k

γ

γ − 1
ρ̂γ−1 = G (3.10)

We then use the following expression

k

(
1

∆x

∫ x2

x1

ρ̂γdx

)
a2 − a1

∆x

to replace the source term approximation in cell average method (3.5). To obtain the integration
value in the above expression, we use the same numerical strategy as for shallow water equations.

When the flow is subsonic or supersonic, there is no confusion to determine the right solution
for ρ̂. In the transonic case, we also need a fix similar to that for the shallow water equations.
This is illuminated by the fact that in the Riemann problem for isothermal nozzle flow equations,
in the transonic case, the solution is in sonic state at the side of the cross sectional step which has
a smaller area. For example, we assume the Mach number | v1√

kγρ1
γ−1

| > 1, | v2√
kγρ2

γ−1
| < 1,

and a1 < a2. Let H1 = a1ρ1v1, ρ3, v3 satisfy a1ρ3v3 = H1 and |v3| =
√

kγρ3
γ−1. Namely, we

set ρ3 = (
H2

1

kγa2
1

)
1

γ+1 and v3 =
H1

a1ρ3
. Let G1 =

1
2
v2
3 + k

γ

γ − 1
ρ3

γ−1, H2 = H1, G2 = G1. We

then choose ρ̂, v̂ to satisfy (3.8)-(3.10). By choosing function ρ̂ to be solution of equation (3.10)
corresponding to subsonic state because | v2√

kγρ2
γ−1

| < 1 implies that the solution is in the

subsonic state at the right side of the cross sectional step. We can similarly deal with other
transonic case.

We now use two numerical examples to demonstrate that our method works well for calcu-
lating both unsteady and steady state solution for the isothermal nozzle flow equations.

The following two problems are Riemann problems studied in [16]. We choose k = 1, γ =
4/3. These two Reimann problems are solved numerically on the domain [-6, 6]. For spatial
discretization, we use the Godunov flux for the homogeneous part of equations (3.1)-(3.2). The
second order Runge-Kutta time discretization is used for time discretization. We take ∆t

∆x = 1/5
for both problems. The zeorth extrapolation is used for numerical boundary conditions, and
the “exact” solution is obtained using the new method with 1000 grid points.
Example 3.1. A Riemann problem with solution in the transonic state.

The initial data are (ρ, v, a) = (4,−1.8, 1.5) when x < 0 and (ρ, v, a) = (1, 2, 2.5) when x > 0.
This is a transonic case. The solution reaches critical state at the left side of the cross-sectional
jump and the energy

1
2
v2 + k

γ

γ − 1
ργ−1 is a constant across the cross-sectional jump. For this

problem, the cell average method immediately encounters the low density problem (which is
impossible for the Roe scheme to handle [21]). The solution by the new method using 100 cells
along with the “exact” solution are plotted in Figures 3.1-3.4. The solutions with the exact

solution well. The numerical energy
1
2
v2 + k

γ

γ − 1
ργ−1 is shown to be equal at two sides of

cross-sectional jump, and captures the right-going shock on the right side of the cross-sectional
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jump. The interface method can also give very similar resolutions, but it does not keep the
constant energy across the cross-sectional jump as well as the new method, and the gap does
not decrease with increased space points, as shown by Figure 3.5 where the solutions of energy
by the interface and cell average methods using 1000 cells are given. The figure is enlarged
from the others to display the difference between the different methods.
Example 3.2. A Riemann problem with solution in both super- and sub-sonic states.

The initial data are (ρ, v, a) = (4,−1.6, 1.5) when x < 0 and (ρ, v, a) = (6, 1, 2.5) when

x > 0. This is a mixed sub- and super-sonic case. The energy
1
2
v2 + k

γ

γ − 1
ργ−1 at steady

state is a constant across the cross-sectional jump. The solution from our method along with
the “exact” solution in Figures 3.6-3.8. These solutions match well with the exact solution. On
the other hand, solutions by the interface method and the cell average method do not preserve
the constant energy across the cross-sectional jump with a high accuracy. Figure 3.9 depicts
the energy by the interface method and the cell average method using 1000 cells. This figure is
enlarged near the bottom step. The interface method behaves better than cell average method,
but both methods have gaps across the cross-sectional jump whicj do not decrease when more
grid points are used. We plot the steady state solutions by our new method using 100 cells
in Figure 3.10. One can see that the steady state energy is a very good approximation of a
constant, as the exact solution should be.
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Figure 3.1 Example 3.1, the transonic case. Density at t=0.8. Solid line: the exact solution;
“o”: the solution by the new method using 100 cells.
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Figure 3.2 Example 3.1, the transonic case. Velocity at t=0.8. Solid line: the exact solution;
“o”: the solution by the new method using 100 cells.
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Figure 3.3 Example 3.1, the transonic case. Mach number at t=0.8. Solid line: the exact
solution; “o”: the solution by the new method using 100 cells.
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Figure 3.4 Example 3.1, the transonic case. Energy at t=0.8. Solid line: the exact solution;
“o”: the solution by the new method using 100 cells.
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Figure 3.5 Example 3.1, the transonic case. A close looks of the energy at t = 0.8 by the
interface method using 1000 cells.
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Figure 3.6 Example 3.2, mixed sub- and super-sonic case. Density at t=0.8. Solid line: the
exact solution; “o”: the solution by the new method using 100 cells.
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Figure 3.7 Example 3.2, mixed sub- and super-sonic case. Velocity at t = 0.8. Solid line: the
exact solution; “o”: the solution by the new method using 100 cells.
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Figure 3.8 Example 3.2, mixed sub- and super-sonic case. Energy at t = 0.8. Solid line: the
exact solution; “o”: the solution by the new method using 100 cells.
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Figure 3.9 Example 3.2, mixed sub- and super-sonic case. A close look of the energy. “+”:
the solution of the interface method using 1000 cells; “x”: the solution of the cell average

method using 1000 cells.
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Figure 3.10 Example 3.2, mixed sub- and super-sonic case. Energy at steady state by our
new method using 100 cells.

4. The Non-isothermal Nozzle Flow Equations

The one-dimensional non-isothermal nozzle flow equations can be described by the following
Euler equations with a geometric source term

∂t(aρ) + ∂x(aρv) = 0, (4.1)

∂t(aρv) + ∂x(aρv2 + Pa) = P∂xa, (4.2)

∂t(aE) + ∂x(v(E + P )a) = 0; (4.3)

where ρ, v, P, E are respectively density, velocity, pressure, and total energy, a(x) > 0 is area of
the nozzle. For a polytropic gas, the equation of state is given by

P = (γ − 1)(E − 1
2
ρv2). (4.4)



244 S. JIN AND X. WEN

The cell average method for above non-isothermal nozzle flow equations takes the form

∂t(aρ)j +
(aρv)j+ 1

2
− (aρv)j− 1

2

∆x
= 0, (4.5)

∂t(aρv)j +
(aρv2 + Pa)j+ 1

2
− (aρv2 + Pa)j− 1

2

∆x

= Pj

aj+ 1
2
− aj− 1

2

∆x
, (4.6)

∂t(aE)j +
(v(E + P )a)j+ 1

2
− (v(E + P )a)j− 1

2

∆x
= 0; (4.7)

where aj+ 1
2

= a(xj+ 1
2
). The interface values are produced by the Roe method for the non-

isothermal nozzle flow equations (4.1)-(4.3) without the source term, namely the Euler equa-
tions.

The steady state solution satisfies

aρv = C1, (4.8)

av(γE − γ − 1
2

ρv2) = C2, (4.9)

ργ

E − 1
2
ρv2

= C3. (4.10)

Assume a discontinuity of the cross-section is contained in the cell [x1, x2]. Let ai, ρi, vi, Ei

be the interface values of a, ρ, v, E at xi, i = 1, 2 respectively. Denote Hi = aiρivi, Gi =

aivi(γE1 − γ − 1
2

ρiv
2
i ), Fi =

ρi
γ

Ei − 1
2
ρiv

2
i

, i = 1, 2. Then we choose â, H, G, F to be linear

functions on [x1, x2] so that â(xi) = ai, H(xi) = Hi, G(xi) = Gi, F (xi) = Fi, i = 1, 2. We
choose ρ̂, v̂, Ê satisfying

âρ̂v̂ = H, (4.11)

âv̂(γÊ − γ − 1
2

ρ̂v̂2) = G, (4.12)

ρ̂γ

Ê − 1
2
ρ̂v̂2

= F. (4.13)

Define P̂ by

P̂ = (γ − 1)(Ê − 1
2
ρ̂v̂2),

We then use the following expression(
1

∆x

∫ x2

x1

P̂ dx

)
a2 − a1

∆x
.

to replace the source term approximation in the cell average method (4.6). The numerical
integration strategy is similar as before mentioned.
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When the flow is transonic over the cross-sectional discontinuity, we also need the fix to
choose the solutions from (4.11)-(4.13). This is essentially the same as the isothermal nozzle
flow equations.

We now give a numerical example to show the performance of our method for calculating
both unsteady and steady state solution for the non-isothermal nozzle flow equations.
Example 4.1. The problem to be tested contains a transonic shock at steady state. This is a
problem modified from a continuous bottom problem. Consider a divergent nozzle from [7] with

a(x) = 1.398 + 0.347 tanh (0.8x − 4) ,

as shown in Figure 4.1. The computational domain is 0 ≤ x ≤ 10. The left boundary con-
ditions are (ρl, vl, El) = (0.502, 1.897, 1.299), the right boundary conditions are ρr = 0.776.
We choose the initial values as (ρ, v, E) = (0.502, 1.8974, 1.299) when x < 5 and (ρ, v, E) =
(0.776, 0.506, 1.979) when x > 5. We take ∆t

∆x = 1/4, and use the Roe flux for the convection
and a second order Runge-Kutta time discretization. The density in the steady state solutions
from cell average method using 100 cells are plotted in Figure 4.2. The steady state solution
contains a standing transonic shock.

We slightly modify this continuous cross-section to be a discontinuous one

a(x) =

{
1.05, 0 ≤ x ≤ 2,

1.4452 + 0.3 tanh (0.8x − 4), 2 < x ≤ 10.

Figure 4.3 plots the shape of the nozzle with this cross-sectional area.

Still using the same initial values and boundary conditions, the density and
ργ

P
at t=0.5

from our method using 100 cells, and using 4000 cells–which serve as the “exact” solution, are

plotted in Figures 4.4-4.5 respectively. One may notice that the quantity
ργ

P
already reaches

the same constant at two sides of the cross-sectional discontinuity at t=0.5.

Figures 4.6-4.7 plot respectively the density and the quantity
ργ

P
in the steady state by our

new method using 100 cells. The steady state solution of
ργ

P
reaches the same constant at two

sides of the cross-sectional discontinuity.
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Figure 4.1 Example 4.1, the divergent nozzle.
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Figure 4.2 Example 4.1, steady state density by the cell average method using 100 cells.

0 1 2 3 4 5 6 7 8 9 10

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.3 Example 4.1, a nozzle with discontinuous cross-sectional area.
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Figure 4.4 Example 4.1, density at t=0.5. Solid line: the exact solution; “o”: the solution by
the new method using 100 cells.



An Efficient Method for Computing Hyperbolic Systems with ... 247

0 1 2 3 4 5 6 7 8 9 10

0.85

0.9

0.95

1

Figure 4.5 Example 4.1, Solutions of
ργ

P
at t=0.5. Solid line: the exact solution; “o”: the

solution by our new method using 100 cells.
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Figure 4.6 Example 4.1, steady state density by our new method using 100 cells.

0 1 2 3 4 5 6 7 8 9 10
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

Figure 4.7 Example 4.1, solutions of
ργ

P
at steady state by our new method using 100 cells.
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