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Abstract

Some properties of a newly developed polynomial preserving gradient recovery tech-
nique are discussed. Both practical and theoretical issues are addressed. Bounded-ness
property is considered especially under anisotropic grids. For even-order finite element
space, an ultra-convergence property is established under translation invariant meshes; for
linear element, a superconvergence result is proven for unstructured grids generated by the
Delaunay triangulation.
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1. Introduction

The Zienkiewicz-Zhu error estimator [15] using recovered gradient by the superconvergent
patch recovery (SPR) [16] has proven to be an effective way to access the error in computed
data. The idea of their recovery is to fit higher-order polynomials, in the least-squares sense,
with computed gradients on element patches. Recently, we proposed an alternative recovery
method [14]. The idea is to fit higher-order polynomials with computed solution values (instead
of gradient values) at some local sampling points, and obtain the recovered gradient at a nodal
point by evaluating the gradient of the resultant polynomial at the same nodal point. One
significant feature of this recovery is polynomial preserving. For this reason, we call it PPR.

In an earlier work [11], Wiberg-Li used function value fitting to improve convergence in
the L2-norm. In a more recent work [10], Wang used a semi-local L2-projection and proved a
superconvergent result under quasi-uniform mesh assumption.

Superconvergence properties of the SPR and its effectiveness in a posteriori error estimates
have been studied by the author and his colleagues, see e.g., [5, 12, 13]. In this paper, we
discuss PPR. Other than theoretical discussions, some practical aspects, including the selection
of polynomial basis functions in the least-squares fitting and anisotropic grids are considered.
Finally, we establish an ultra-convergence (two-order superconvergence) property for even-order
finite elements under translation invariant meshes and a superconvergence result with irregular
meshes by the Delaunay triangulation.

Numerical tests of PPR and its comparison with SPR can be found in [7, 14]. Our tests
indicate that PPR is as good as, or better than SPR in practice.
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As for the literature regarding superconvergence and a posteriori error estimates, the reader
is referred to [1, 2, 3, 4, 6, 8, 9].

2. Recovery Procedure

Let Sh,k be a polynomial finite element space of degree k over a triangulation Th. We
define a gradient recovery operator Gh : Sh,k → Sd

h,k, with d = 1, 2, 3. Given a finite element
solution uh, we first define Ghuh at certain nodes. When d = 2, there are three types of nodes:
vertices, edge nodes, and internal nodes. When d = 3, there is one more type: the surface node.
For the linear element, all nodes are vertices. For the quadratic element, there are vertices
and edge-center nodes. For the cubic or higher-order elements, all types of nodes are present.
After defining values of Ghuh at all nodes, we obtain Ghuh ∈ Sd

h,k on the whole domain by
interpolation using the original nodal shape functions of Sh,k.

Given a node zi, we need to determine Ghuh(zi). This is achieved by first selecting n ≥ m =
1
d!

Πd
j=1(k + 1 + j) sampling points adjacent to zi (including zi), and then fitting a polynomial

of degree k + 1, in the least-squares sense, with values of uh at those sampling points. In other
words, we are looking for pk+1 ∈ Pk+1 such that

n∑
j=1

(pk+1 − uh)2(zij) = min
q∈Pk+1

n∑
j=1

(q − uh)2(zij). (2.1)

Using the local coordinates (x, y) with zi as the origin, the fitting polynomial is denoted as
pk+1(x, y; zi), we then define

Ghuh(zi) = ∇pk+1(0, 0; zi). (2.2)

Comparing with Zienkiewicz-Zhu’s patch recovery [16], here we fit uh instead of ∇uh. The
above procedure generates a finite difference scheme

Ghv(zi) =
n∑

j=1

�Cjv(zij),
n∑

j=1

�Cj = �0. (2.3)

The task now is to determine the coefficients �Cjs.
Usually, we select sampling points as nodal points of all triangles that share a common

vertex zi. These triangles naturally form an element patch as used in [16]. Figures 4-6 depict
some possible interior and boundary patches when d = 2. Among them, only the last two
interior patches (with 4 and 5 triangles, respectively) in Figure 4 and the two boundary patches
in Figure 5 appear in meshes constructed by a sophisticated automatic mesh generator (based
on the Delaunay triangulation). Indeed, for an interior patch that has only three triangles (the
first patch in Figure 4), a mesh generator simply removes the center node and three connecting
edges; for a patch that contains four triangles (the second patch in Figure 4), a mesh generator
removes the center node and related edges, then adds one of the diagonals of the quadrilateral
to form two new triangles. As for a boundary vertex, a mesh generator always seeks to connect
it with two interior vertices, and for a corner vertex, a mesh generator always bisects the angle
that is less than π/2. Therefore, situations in Figure 6 and the first two cases in Figure 4 almost
never happen in practice.

Actually, the sampling points selection can be very flexible. The rule of thumb is to make
an interior node zi as close as possible to the geometric center of all zijs. The perfect situation
is when zijs are symmetrically distributed around zi.

We may always select n ≥ m sampling points. However, this alone is not sufficient to
guarantee that problem (2.1) has a unique solution. Towards this end, we introduce an Angle
condition: The sum of any two adjacent angles in Th is no more than π.
Theorem 1. The angle condition implies a unique solution of (2.1) when n ≥ m.
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Proof. See [7].
In practice, the least-squares fitting is performed with scaling, since it is the relative position

of those sampling points that counts. For simplicity, we use a simple example of uniform mesh
to illustrate the idea and keep in mind that the least-squares procedure is applicable to arbitrary
and anisotropic meshes.
Example 1. Linear element with uniform triangular mesh of the Union-Jake pattern, see
Figure 1(a). We fit

p2(x, y) = (1, x, y, x2, xy, y2)(a1, · · · , a6)T

with respect to the nine nodal values on eight triangles that share a common vertex. By scaling,
we denote

�e = (1, 1, 1, 1, 1, 1, 1, 1, 1)T , �ξ = (0, 1, 1, 0,−1,−1,−1, 0, 1)T ,

�η = (0, 0, 1, 1, 1, 0,−1,−1,−1)T, A = (�e, �ξ, �η, �ξ2, �ξη, �η2).

Performing the discrete least-squares fitting, we obtain the recovered gradient at the patch
center

∇p2(0, 0) = a1 = (AT A)−1AT�b =
1
6h

(
u1 − u5 + u2 − u4 + u8 − u6

u3 − u7 + u2 − u8 + u4 − u6

)
, (2.4)

where �bT = (u0, u1, · · · , u8), u0 = u(0, 0), u1 = u(h, 0), u2 = u(h, h), . . .. An alternate strategy
is to fit

q2(x, y) = (1, x, y, x2, xy, y2, x2y, xy2, x2y2)(a1, · · · , a9)T

with respect to the nine nodal values. This is the same as interpolation, which results in

∇q2(0, 0) =
1
2h

(
u1 − u5

u3 − u7

)
. (2.5)

Fitting
q̃2(x, y) = (1, x, y, x2, xy, y2, x2y, xy2)(a1, · · · , a8)T

with respect to the nine nodal values on the patch also produces (2.5).
Remark 1. The recovery operator would be the same as the above example for bilinear element
on uniform square mesh when we perform the fitting on the nine nodal values of the four squares
that share a common vertex. Figure 1(b) demonstrate the resulted coefficients �Cjs, which are
the same as given by (2.4). This reveals an important property: Gh is nodal dependent, not
patch dependent.
Condition number for different polynomial bases. When higher-order polynomials are
involved, we recommend using orthogonal polynomial basis functions for the least-squares fitting
in order to avoid ill conditioning. We explain this point in the one dimensional setting.

Consider the standard least-squares fitting problem: Given data set (tj , bj) with tj , j =
1, 2, . . . , n, distinct numbers in (0, 1), find p ∈ Pk, such that

n∑
j=1

(p(tj) − bj)2 = min
q∈Pk

n∑
j=1

(q(tj) − bj)2

If we use the conventional basis functions 1, t, t2, . . . , tk, the coefficients of p are given by
(AT A)−1AT�b with

A =

⎛
⎜⎜⎜⎝

1 t1 · · · tk1
1 t2 · · · tk2
...

...
. . .

...
1 tn · · · tkn

⎞
⎟⎟⎟⎠ , �b =

⎛
⎜⎜⎜⎝

b1

b2

...
bn

⎞
⎟⎟⎟⎠
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The (l, m) entry of AT A is,
n∑

j=1

tl+m−2
j ≈ n

∫ 1

0

tl+m−2dt =
n

l + m − 1
,

when n is sufficiently large and tj ’s are properly distributed. Therefore, AT A behaves like the
Hilbert matrix and has a condition number O(10k).

A better choice for the basis function would be the Legendre polynomials on the unit interval
in which case the coefficients of p is given by (BT B)−1BT�b with

B =

⎛
⎜⎜⎜⎝

1 L1(t1) · · · Lk(t1)
1 L1(t2) · · · Lk(t2)
...

...
. . .

...
1 L1(tn) · · · Lk(tn)

⎞
⎟⎟⎟⎠

The (l, m) entry of BT B is
n∑

j=1

Ll−1(tj)Lm−1(tj) ≈ n

∫ 1

0

Ll−1(t)Lm−1(t)dt =
{

n, m = l = 1
2n

2m−1δlm, m > 1,

when n is sufficiently large and tj ’s are properly distributed. Therefore, BT B behaves like the
diagonal matrix: ndiag(1, 2/3, · · ·2/(2k + 1)).

3. Properties of the Gradient Recovery Operator

In this section, we assume that the problem (2.1) has a unique solution. We denote ωz, an
element patch associated with node z; and denote ωτ , the union of element patches associated
with three vertices of τ .
Proposition 1. Gh is polynomial preserving in the sense that GhuI = ∇u for any u ∈ Pk+1,
where uI ∈ Sh,k is the Lagrange interpolation of u. (See [14] for details.)
Proposition 2. Gh is a bounded operator in the sense that there exists a constant C, indepen-
dent of h, such that

|Ghv(z)| ≤ C|v|W 1∞(ωz), or ‖Ghv‖L2(τ) ≤ C|v|H1(ωτ ), ∀v ∈ Sh,k. (3.1)

Proof. Let v̄ be the average of v ∈ Sh,k on the patch ωz. Then by (2.3),

Ghv(z) = Gh(v − v̄)(z) =
1
h

G(v − v̄)(z).

Here G is the scaled recovery operator on a reference patch. Therefore, G is bounded indepen-
dent of h. By the inverse inequality,

|Ghvh(z)| ≤ ‖G‖
h

‖v − v̄‖L∞(ωz) ≤ C|v|W 1∞(ωz).

Proposition 3. If sampling nodes zij are symmetrically distributed around the assembly node
zi = zi1, then the coefficients �Cj are distributed anti-symmetrically, i.e., there is a permutation
(j2, · · · , jn) of (2, · · · , n), such that

�C1 = �0, �C2 + �Cj2 = �0, · · · , �Cn + �Cjn = �0.

Proof. Let v ∈ Sh,k be even and consider Ghv. By the least-squares fitting procedure, the
fitting polynomial pk+1 is invariant under anti-nodal transform z → zi − (z − zi) if zij are
symmetrically distributed around zi = zi1. In other words, we have pk+1(zi − (z − zi)) =
pk+1(z). Consequently,

∇pk+1(zi − (z − zi)) = −∇pk+1(z),



Polynomial Preserving Recovery for Anisotropic and Irregular Grids 335

and therefore, Ghv(zi) = ∇pk+1(zi) = �0.
Now we set v = Ni, the nodal shape function at zi, then Ghv(zi) = �C1v(zi) = �C1 = �0,

since v is even under symmetrically distributed nodes.
Next, we choose v = N2 + Nj2 , where N2 and Nj2 are nodal shape functions at zi2 and

zij2 , respectively, with zij2 − zi = zi − zi2. This is possible since the sampling points are
symmetrically distributed around zi. Clearly v is even and hance

Ghv(zi) = �C2v(zi2) + �Cj2v(zij2 ) = �C2 + �Cj2 = �0.

The rest can be proved similarly.

All above properties are valid for d = 1, 2, 3, and anisotropic meshes.
Example 2. We consider the uniform triangulation of the regular pattern with mesh size H
in the x-direction, and h in the y-direction, see Figure 2. Consider linear finite element space
SH , the recovered gradient is given by

GHv(0, 0) =
(

[2(v1 − v4) + v2 − v3 + v6 − v5)]/(6H)
[2(v3 − v6) + v2 − v1 + v4 − v5]/(6h)

)
,

where

v0 = (0, 0), v1 = (H, 0), v2 = v(H, h), v3 = v(0, h), v4 = v(−H, 0), . . .

Given v ∈ SH , we have
v1 − v4

H
=

v1 − v0

H
+

v0 − v4

H
=

∂v

∂x
|τ6∪τ1 +

∂v

∂x
|τ3∪τ4 .

Similar results hold for other terms in GHv. With some simple manipulation, we can verify
that

GHv(0, 0) =
1
6

6∑
j=1

∇v(τj). (3.2)

Therefore, GH is a bounded operator in the sense that both inequalities in (3.1) have bounding
constant C = 1. Clearly, C is not only independent of H , but also independent of h or the
mesh aspect ratio.

Next we consider another anisotropic mesh as depicted in Figure 3. The horizontal edge
length is H and the coefficients for GH are marked. Again, it is straightforward to verify (3.2).

In both cases, some coefficients of GH after scaling are unbounded at the anisotropic limit.
They have a factor H/h in case (a), and cot θ in case (b). Nevertheless, the resulting gradient
recovery operator is still bounded with bounding constant C = 1.
Arbitrary mesh via perturbation. We are able to prove that the bounding constant equals
1 for some uniform meshes. Based on this, we can establish the bounded-ness of the recovery
operator for meshes that distorted by a measure of ε.

The least-squares fitting involves a coordinate matrix A as demonstrated in Example 1. Now
we decompose A = A0 + εA1, where A0 is the coordinate matrix associated with a uniform or
symmetry mesh. We see that A is perturbed from A0 by a measure of ε. Here it is reasonable
to assume that A1 is a “well behaved” matrix. Then we are able to show that if A0 has a
full rank, then A1 has a full rank for sufficiently small ε. Indeed, after some simple algebraic
manipulation, we can show that

(AT A)−1AT = (AT
0 A0)−1AT

0 + εE,

where it is possible to trace the dependent of E with respect to A0 and A1. Now, if the recovery
operator associated with A0 is given by

G◦
hv(zi) =

n∑
j=1

�C◦
j v(zij),

n∑
j=1

�C◦
j = �0;
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Figure 1: PPR is patch independent
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Figure 2: Anisotropic mesh (a)

then the recovery operator associated with A can be expressed as

Ghv(zi) =
n∑

j=1

(�C◦
j + ε �C1

j )v(zij),
n∑

j=1

�C1
j = �0.

Therefore, the bounded-ness of Gh can be obtained from that of G◦
h provided ε is sufficiently

small.
Ultra-convergence for even-order elements. We shall prove an ultra-convergence result
for the recovery operator Gh under translation invariant meshes.

As mentioned earlier, the selection of sampling points can be very flexible. As an example,
we consider quadratic element under triangular mesh of the regular pattern. In order to recover
the gradient at a diagonal edge center, we may choose sampling points as depicted in Figure
7(b), or choose only those diagonal edge centers as shown in Figure 7(a). If all sampling points
zij are selected the same type as the assembly point zi (Figure 7(a)), then the recovered
gradient can be represented as a finite quotient in the following manner:

Ghuh(z) =
∑

|ν|≤M

∑
i

�C
(i)
ν,huh(z + νhli). (3.3)

Now for these specially selected sampling points, we sketch a proof for ultra-convergence of
order 2k (k ≥ 1) elements on uniform triangular mesh of the regular pattern.

To fix the idea and to simplify matters, we consider a second-order elliptic equation with
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Figure 4: Internal patches

homogeneous Dirichlet boundary condition on a polygonal domain: Find u ∈ H1
0 (Ω) such that

a(u, v) =
∫

Ω

[(A∇u + bu) · ∇v + cuv] = f(v), ∀v ∈ H1
0 (Ω). (3.4)

We assume that all the coefficient functions are smooth, A is a 2×2 symmetric positive definite
matrix, f(·) is a linear functional, and the bilinear form is continuous and satisfies the inf-sup
condition on H1(Ω). These conditions insure that (3.4) has a unique solution.

We consider even-order finite element space. The finite element solution uh ∈ S0
h,2k(Ω)

satisfies
a(uh, vh) = f(vh) ∀vh ∈ S0

h,2k(Ω). (3.5)

To insure a unique solution for (3.5), we further assume the inf-sup condition of a(·, ·) be
satisfied on S0

h,2k(Ω).
Set w = Ghu and wh = Ghuh. Observe that the dual operator G∗

h is well defined in
an interior sub-domain D ⊂ Ω. Therefore, for any v ∈ S0

h,2k(D0) with D0 ⊂⊂ D and
dist(∂D, D0) ≥ Mh, we have

a(w − wh, v) = a(u − uh, G∗
hv) = 0,

Note that G∗
hv ∈ S0

h,2k(D)d and wh ∈ Sh,2k. By the theory for translation invariant meshes
under maximum norm, we have the optimal convergent rate (see, e.g., [9])

(w − wh)(z) = O(h2k+1).

If z is a symmetry point with O(1) symmetry, the superconvergence occurs, and we actually
have

Gh(u − uh)(z) = (w − wh)(z) = O(h2k+2).

Now the question is whether w has the required regularity. At the first glance, w = Ghu ∈ Sd
h,2k.

However, if we view it from the translation expression (3.3), we then have the required regularity
as long as u is sufficiently smooth. Therefore, we have the following:
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Figure 6: Illegal boundary patches

Theorem 2. Consider even-order finite element approximation for the second-order elliptic
equation under uniform triangular mesh of the regular pattern. The recovered gradient by PPR
is ultra-convergent at an interior nodal point.

A rigorous proof follows the above argument with some interior analysis.
Corollary. Under the same condition as in Theorem 2, PPR has a cubic convergence rate for
quadratic element, locally or globally, as long as the regularity permits.

Proof. By Theorem 2, PPR has a 4th-order convergent rate at interior nodes, which include
vertices and edge centers. Interpolating at nodal points by the quadratic basis functions, we
then obtain a global piece-wisely continuous gradient field with 3dr-order convergent rate by
standard approximation theory.
Remark 2. In practice, the recovered gradient for quadratic element at an edge center is
usually obtained by averaging the values from the two related vertex recoveries. The reader is
referred to [14, 16] for details.
Unstructured grids by the Delaunay triangulation. There are two important ingredients
in an automatic mesh generation code based on the Delaunay triangulation.

i) Lagrange smoothing. It places (iteratively) each node near a mesh symmetry center.
ii) swap diagonal. It changes the direction of some diagonal edges to near parallel directions

for adjacent element edges and makes as many nodes as possible have six triangles attached.
A sophisticated automatic mesh generator makes every two adjacent triangles form an

O(h1+α) (α > 0) parallelogram, except a small portion of elements (including boundary el-
ements). Therefore, we introduce the following mesh condition:
Definition. The triangulation Th = T1,h ∪ T2,h is said to satisfy Condition (α, σ) if there exist
positive constants α and σ such that: Every two adjacent triangles inside T1,h form an O(h1+α)
parallelogram and

Ω̄1,h ∪ Ω̄2,h = Ω̄, |Ω2,h| = O(hσ), Ω̄i,h ≡
⋃

τ∈Ti,h

τ̄ , i = 1, 2.
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Figure 7: Sampling points for quadratic element

Theorem 3. Consider an interior patch ωz ⊂⊂ Ωd ⊂ Ω1,h with d = dist(ωz, ∂Ωd) ≥ Kh for
some constant K > 0. Let u ∈ W 2

∞(Ω) ∩ W 3
∞(Ωd) be the solution of (3.4), let uh be the linear

finite element approximation, and let Gh be a recovery operator defined by PPR. Then we have

|(∇u − Ghuh)(z)| ≤ C(h2‖u‖3,∞,ωz + d−1h2 ln
1
h
‖u‖2,∞,Ω + h1+α ln

d

h
|u|2,∞,Ωd

),

where C is a constant independent of u and h.
Proof. Let uI ∈ S0

h,1(Ω) be the linear interpolation of u. We have proved in [12],

|uh − uI |1,∞,ωz ≤ C(d−1h2 ln
1
h
‖u‖2,∞,Ω + h1+α ln

d

h
|u|2,∞,Ωd

). (3.6)

Now we decompose
(∇u − Ghuh)(z) = (∇u − GhuI)(z) + Gh(uI − uh)(z). (3.7)

The beauty of the polynomial preserving is that the first term on the right hand side is super-
convergent unconditionally, i.e.,

|(∇u − GhuI)(z)| ≤ Ch2‖u‖W 3∞(ωz). (3.8)
By the bounded-ness property and (3.6), we have

|Gh(uI − uh)(z)| ≤ C|uh − uI |1,∞,ωz ≤ C(d−1h2 ln
1
h
‖u‖2,∞,Ω + h1+α ln

d

h
|u|2,∞,Ωd

). (3.9)

The conclusion follows by applying (3.8) and (3.9) to (3.7).
Remark 3. Choose d = h1−α in Theorem 3, we see that the recovered gradient is superconver-
gent point-wisely with order O(h1+α), which is hα better than the optimal global rate for the
gradient approximation. Our numerical tests supported this theoretical result. When Delaunay
triangulation are used, PPR always provides some order of superconvergence. For more details,
see [14, 7].
Remark 4. Based on the superconvergence property

|(∇u − Ghuh)(z)| ≤ Ch1+α,

we can design a point-wise error estimator
ηz = |(Ghuh −∇uh)(z)|,

which is asymptotically exact. In fact, it is straightforward to verify that
ηz

|∇(u − uh)(z)| = 1 + O(hα),

under the non-saturation condition
|∇(u − uh)(z)| ≥ Ch.
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