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Abstract

A practical parallel difference scheme for parabolic equations is constructed as follows:
to decompose the domain €2 into some overlapping subdomains, take flux of the last time
layer as Neumann boundary conditions for the time layer on inner boundary points of
subdomains, solve it with the fully implicit scheme on each subdomain, then take cor-
respondent values of its neighbor subdomains as its values for inner boundary points of
each subdomain and mean of its neighbor subdomain and itself at overlapping points.
The scheme is unconditionally convergent. Though its truncation error is O(7 + h), the
convergent order for the solution can be improved to O(7 + h?).
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1. Introduction

As we know, the drawback of pure explicit schemes for solving parabolic problems is a
very restrictive constraint on a time step. Fully implicit schemes are unconditional stable, but
their drawback is that on each time level, linear or nonlinear algebraic systems have to be
solved, and it is not easy to parallel implementation. Therefore people wish to find a kind
of difference schemes such that it has a lower restrictive constraint on a time step, and at
best is unconditionally stable and convergent; the other hand, it has higher parallel character,
that is, the solution domain can be decomposed freely, and loaded balance is convenient to be
implemented, and only communication between neighbor CPU can be developed with few time.
In this paper, we study this problem, and construct a practical parallel difference scheme for
the following problem

Up = Ugg, (z,t) € (1)
u(z,0) = ¢(x), 0<w<L (2)
u(0,t) =u(L,t) =0, 0<t<T (3)
where 2 = [0, L] x [0, T]. For solving this equations, Zhou!'?! presented some difference schemes
with intrinsic parallelism, and proved their stability and convergence[3]. Zhang[4’5] also pro-

vided the alternating segment explicit—implicit scheme. In addition, there were still other alter-
nating explicit-implicit schemes etcl®7], In this paper, a practical parallel difference scheme is
presented, and can be extended to more general practical problems, including variable coefficient
equations, or low order items, and two or more dimensional equations etc.

This paper is outlined as follows. In the second section, a practical parallel difference scheme
and its convergence is proved. Some numerical experiments are presented in the third section.

2. Parallel Difference Scheme

2.1. Construction of the Parallel Difference Scheme
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Divide the domain[0, L] x [0,T] into small grids with the space steplength h and time
steplength 7, where Jh = L, N7 =T, and J and N are positive integers. Denote by u} HEE

0,1,---,J;n =0,1,--- /N) the dlscrete function defined on the discrete rectangular domaln
{(zj,t")]j =0,1,---,J;n =0,1,--- , N} of the grid points, A = &, Auf™ = L(uf*! —u?),
and 0*ult! = (uyill 2uft! +u"+1) Assume that we have obtained the values of the discrete
function {u}|j = 1,2,- J 1} on the nth time layer, and will take values Uik~ u’““ Uima Uit

of the nth time layer as Newmann boundary values on these boundary points of subdomalns
For convenience, we only decompose the domain 2 into two subdomains, which are [0, 2] and
[€g—2, L]. Thus, we can use the implicit scheme inside the two subdomain, and take the values
of the (n+ 1)th time layer at these points = x_1,2 = x} and £ = x4, as estimating values,
Denoting them by E?“(j =k—1,k,k+1) and ﬁ?“(j =k —1,k,k+ 1) on two subdomains
[0, k2] and [zg_2, L] respectively. The difference scheme is written as follows

Apuftt =8t G =1,2, k=3k 43, T — 1, (4)
Aty = oo (Rt - 2upt] + ), )
At = ooty - 2apt ), ©
At = oGt - 2apt ), ™
Arupiy = ﬁ(“ZH —upy — Oy +apth, (8)
At = o (it - 2uth + ), ©
At = s 2t + ), (10)
Aaptt = th (apt —2ap™ +apf)), (11)
A = oy~ ), (12)
and then we take
wt =t = At et = St . (13)

Obviously this difference scheme is solved segmentally. Eqgs.(4)~(8) is one segment, and Eqs.(4),
(9) ~ (12) is another segment. Both Egs.(4)~(8) and Egs.(4),(9)~(12) are solved by the fully
implicit scheme, and Eqs.(8) and (12) are obtained by taking @ {) — upf] and @) — apt] of

the fully implicit scheme as uy,, —ug,, and up_, —uy_, respectively.

Using Eqgs.(13), (4)~(12) can be rewritten as

Apuftt =0t =12, k= 2,k 42,0, — 1,

n+l _ ¢2 n+l n+1
Arupy = 07w Ty + 1y,

(

(
Apuptt = Putt et (16

(

n+l _ ¢2 n+1 n+1
Arupiy = 0wy + s
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where

n 1 n n n n
rptl :m{(l F P+ (14Nt + (1= M)af,, + Al ,

— (A2 +3A+ 1)u;;+1},

1 (1+ )X (1 -2\
n+l __ n+1 n+1
S YPENIEY YT {(1 A T (e )
(up—1 +uggr) + 7(“k+2 + uk—Q)} BBV Fup
n ]' n n n n
i :m{(l +ANup 4+ (L+ NVAupt! + (1= Doy + X upy

— (A2 4+ 30+ 1)u;;+1}.

Obviously, the parallel difference scheme (14)~ (17) is a correct scheme to the fully implicit

scheme, which adds correspondent correct items ijll, TZ“, rz_tll at the points k—1,k and k+1

respectively. By calculation, we know that the truncation error of the equation (14) and (16)

are O(7 + h?), however, the truncation error of the equations (15) and (17) are both O(7 + h).
The boundary condition for above difference scheme (14)~ (17) is

ug =u7=0,Vn=0,1,---,N,
and the initial condition is
u?:(b?’ ]:0,1’ ’J_l

2.2. Convergence for the Difference Scheme

Lemma 1. Denote at = maz(a,0).

(i) Assume that {w;} satisfies —6*w; < 0, j =1,2,---,J — 1, and wo < 0,W; < 0, we
have w; <0, j=1,2,---,J—1.

(ii) Assume that {Z;-H_l} satisfies

APt =820 <0, j=1,2,-,0 -1,
ZSH-I S bg+1, ZSH-I S b§+1,

we have
n+ly+ o ( + + n +)
a1 < man(0)*, 00, _maz (1))
Theorem 2. Denote that u(z;,t"),u} are the solution of Eqs. (1) ~(3) and (1{)~(17) re-
spectively, e = u(z;,t") —uj}. Then for VA > 0, the parallel difference scheme (14)~(17)is
unconditionally convergent, that is , for YA > 0, we have

max |e?+1| =O0(r +h*), ¥Yn=0,1,--- ,N — 1.
0<j<J
Proof. Assume that u(z;,t"),u are the solution of Egs.(1)~(3) and (14)~(17) respectively,
e} =u(z;,t") —uj. Then e} satisfies

J
AT6?+1_626?+1:R?+1’ j:172"“7k_27k+27"' ;J_]-;

n+1 2 _n+1l ~n+1 __ pn+l
Arep™) — 0 ey — ) = Rp7,

n+1 2 _n+1 ~n+1 __ pn+l
Are,™ —6%ep™ - =R,

nt+l _ 2 n+l _ sn+l _ pnitl
Arepiy —0%eply — i = Ry,

n _ _,n __ —
€y —GJ—O, n—1,2,"',N,

6?207 j:():]-)"';!];
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where
~N, ]- n n n n
iy :m{(l +N)ef + (L+ NAeply + (1= NAeyy + Mejlyy
— (2 430+ Dept ]
1" a0 S i+ U5
+ 7(6k+2 + %-2)} BBV §eptt,
_ 1 n n n
A =y (Ve VAT (L Ve X
— (2 3+ 1)t ]
and

R =0(r+h?),j=1,2,-- k—=2,k+2,---,J — 1,
Nh Ou

R = 0+ 10 + gy g g o0 ),
R = O(r + h?),

n Nho & n
Rk—tll = O(T + h2) - m@(fk,t +1).

It is obvious that for j =1,2,--- Jk—2,k+2,---,.J — 1, we have |R§-‘+1| < Oy (1 + h?), where
C1 is a positive constant only dependent on u(z,t). At the same time, |RpT!| < Co, |RPT!| <

Cs(T+h?), |RZill| < Cs, where C> and C53 are both positive constants only dependent on u(z,t)
and A.

We consider the following stationary discrete problem

—0E; =Ci(t+h?), j=1,2,-- k—2,k+2,---,J—1,
— 8%E_1 = Csh,

— 0°Ey = Cs(t + h?)

— 6%Epy1 = Csh,

Ey=E; =0.

Assume that E; = E](-l) + E]@), where E](.l) and E]@) are the solution of the following problem
respectively

~ B = Ci(r+h?), j=1,2 k—2,k+2,-,J—1,

1

~-s?E{, =0,

— 2B\ = Cy(r + h?),
1

~ B, =0,

EM =EY =o.
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and
~0?EY =0, j=1,2 k—2k+2,--,J 1, (18)
~ 0B = Coh, (19)
— 5B =, (20)
~ 8’ B, = Cuh, (21)
B = B = 0. (22)

Then for E](-l) — 2C4 (T + h?)z;(1 — x;) , where Cy = maz(C1,C3), using the lemma 1(i), we
can obtain

1

1 .

E]( ) S §C4(T+h2)7 J= 172)"' )J_]-'

We compute the solution of the problem (18)~ (22) directly, and obtain
E® <20h°L, j=1,2,---,] — 1.

when n =0, e? <Ej,j=12,---,J—1. We use induction on n, and assume that e} < E;,j =
1,2,---,J —1. For e?“ — B}, Using the lemma 1(ii) leads to e?“ <E;j=12,---,J—-1.
At the same time, we can obtain that e?“ >—-FE;,j=1,2,---,J — 1. Finally we have

ef =0(r+h?), j=1,2,---,J-1in=12--- ,N.

Thus, we complete the proof of the theorem 2.

3. Numerical Experiments

In this section, we test the validity of the parallel difference scheme, comparing it with
AGE®! and ASE-TY, First, we consider the following problem

Ut = Ugz, (CU,t) €
u(z,0) = sin(7z), 0<z<1
u(0,t) =u(l,t) =0, 0<t<T

where Q@ = [0,1] x [0,7]. Denote our scheme as GS and precise solution as PS. Table 1
and 2 show the solution of GS with AGE and ASE-I under different time steplength, taking
z=20.1,0.2,---,0.9 as examples.

Table 1. h = 0.002,7 = 16.0 x 1075, T = 0.1
Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PS(IO_l) 1.1517 2.1907 3.0152 3.5446 3.7270 3.5446 3.0152 2.1907 1.1517
GS(lO_l) 1.1518 2.1909 3.0155 3.5449 3.7273 3.5449 3.0155 2.1909 1.1518
AGE(IO_l) 1.1512 2.1897 3.0138 3.5430 3.7253 3.5430 3.0138 2.1897 1.1512
ASE—I(lO_l) 1.1518 2.1909 3.0155 3.5448 3.7273 3.5448 3.0155 2.1909 1.1518

Table 2. h = 0.002,7 = 200.0 x 10~¢,7 = 0.1

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PS(lO_l) 1.1517 2.1907 3.0152 3.5446 3.7270 3.5446 3.0152 2.1907 1.1517
GS(lOfl) 1.1528 2.1928 3.0181 3.5480 3.7306 3.5480 3.0181 2.1928 1.1528

AGE(lOfl) 1.0391 1.9740 2.7158 | 3.1919 3.3556 3.1919 2.7158 1.9740 1.0391
ABE—I(1071) 1.1515 2.1883 3.0089 | 3.4010 | 3.5818 3.4010 | 3.0089 2.1883 1.1515

From Table 1 and 2, we can see that GS has better precision than AGE and ASE-I. In Table 5.
we take two CPU for examples, and give user time and communicative time under a time step.
From Table 5, we can see that communicative time, compared with user time, is very smaller.
This suggests that GS has higher parallel character.
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Second, we consider the following two—dimensional parabolic equation

Ut = Ugy + Uyy, (z,y,t) € 2 x[0,T)
u(z,y,0) = 3sinzsiny, (z,y) €N
'U/(le,y,t) = 07 (a:,y,t) € 0N x [O,T]

where @ = {(z,y)|0 < z < 1,0 < y < 1}, and 99 the boundary of 2. Here ASE-I is

developed as ABE-I®!. At the same time, we compare GS with AGE and ABE-I, taking
z=0.5(y =0.1,0.2,---,0.9) as examples (see Table 3 and 4),

Table 3. h=0.01,7=1.0x 104, 7T =0.1
Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PS(lO_l) 0.4292 0.8164 1.1238 1.3211 1.3891 1.3211 1.1238 0.8164 0.4292
GS(lO‘l) 0.4291 0.8163 1.1237 1.3210 1.3890 1.3210 1.1237 0.8163 0.4291
AGE(lO_l) 0.4276 0.8134 1.1196 1.3162 1.3840 1.3162 1.1196 0.8134 0.4276
ABE—I(lO‘l) 0.4290 0.8160 1.1235 1.3209 1.3889 1.3209 1.1235 0.8160 0.4290

Table 4. h =0.01,7 =4.0 x 104, 7 = 0.1
Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PS(lO_l) 0.4292 0.8164 1.1238 1.3211 1.3891 1.3211 1.1238 0.8164 0.4292
GS(lO_l) 0.4227 0.8040 1.1067 1.3010 1.3679 1.3010 1.1067 0.8040 0.4227
AGE(lO‘l) 0.4023 0.7652 1.0534 1.2386 1.3026 1.2386 1.0534 0.7652 0.4023
ASE—I(lO_l) 0.4198 0.7987 1.1034 1.2989 1.3643 1.2989 1.1034 0.7987 0.4198

and give user time and communicative time under a time step (see Table 6.). We also draw the
same conclusion that our difference scheme has better parallel character.

Table 5. h = 0.0001,7 = 1.0 x 108 Table 6. h = 0.01,7 = 1.0 x 10~*
First CPU | Second CPU First CPU | Second CPU
Comm.time | 0.000033 0.000023 Comm.time | 0.000093 0.000073
User time 0.057685 0.078579 User time 0.757685 0.778579
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