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Abstract

In this paper, the application of homotopy methods to the load flow multi-solution
problems of power systems is introduced. By the generalized Bernshtein theorem, the
combinatorial number C%, is shown to be the BKK bound of the number of isolated so-
lutions of the polynomial system transformed from load flow equations with generically
chosen coefficients. As a result of the general Bezout number, the number of paths be-
ing followed is reduced significantly in the practical load flow computation. Finally, the
complete P-V cures are obtained by tracking the load flow with homotopy methods.
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1. Introduction

Load flow computations play an important role in the power system analysis([1], [2], [3]).
In many cases, it comes down to solve a system of nonlinear algebraic equations with some
constraint conditions. The algorithms available at present for this problem, such as Newton’s
methods and its variations , can be used to obtain individual solution only if the initial guess
is in the near neighborhood of a solution. However, all solutions must be computed to explore
the mechanism of voltage instability and collapse. Many power scientists and mathematicians
have been very interested in this problem. It’s well-known that there are few other general
methods for determining all the solutions of nonlinear algebraic equations except homotopy
methods ([4], [5], [6], [7]), which requires large amounts of computer time because of that many
redundant paths must be followed during the computation.

This paper investigates homotopy methods and their numerical implementation for load
flow multi-solution problems of power systems. The results significantly reduce the number of
paths being followed. Since homotopy methods can calculate all isolated solutions of nonlinear
algebraic equations in theory, they also are a benchmark for algorithmic development in this
field.

2. Mathematical Model of Load Flow

Consider an n + 1 bus (not including the earth bus) power system with r PQ buses, n —r
PV buses, and a slack bus. Since the computed results are independent of the ordering of the
buses, without loss of generality, we assume that the previous r buses are PQ ones followed by
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PV buses and the last one is slack bus. From Kirchhoff law, we have a system of nonlinear

complex-valued algebraic equations for the bus voltages Ui,..., Uy,
x n+1
Pi—-jQi=U; Y YiUj,i=1,...,n, (1)
Jj=1

where both the slack bus voltage Un+1 and the admittance matrix ¥ = (Yij)(nt1)x(n41) are

known. The real and reactive bus powers P;, Q;(: = 1,...,r) on the PQ buses are also given,
so that only the r bus voltages U;(i = 1,...,r) are unknown. On the other hand, the real bus
powers and voltage peaks P;, V;(i = r +1,...,n) on the PV buses are given as well, only the
bus reactive powers and bus angles @;,0;(i =7+ 1,...,n) are expected. From the bus voltage

peaks on the PV buses, we can also have n — r additional equations

UiUi:Vi,i:r—l-l,...,n. (2)

Equations (1) and (2) determine all the 2n — r unknowns.
For the sake of symbolic simplicity, Equations (1) and (2) can be rewritten in the following
form
{ :Ei(bilml+...+bmxn+di)—wi:0, 1=1,...,n, (3)

.
Tz = V72, i=r+1,...,n.

where z; = U; € C, “” denotes the conjugate operation, B = (bij)nxn = (Yij)nxn, di =
Yin+1 Un+1, w; = P; —jQ; and B is a complex symmetrical matrix which is a highly sparse one
when n is very large. The solutions of practical interests always have constraint conditions on
the bus powers and voltages. However, the first phase of the algorithm dose not consider the
constraint conditions.

3. Homotopy Methods for Load Flow Problems

Equation (3) can not be directly solved by homotopy methods because it is not a traditional
polynomial equation system in complex variables. Substituting z; = z;,2n+: = ;i = 1,...,n)
into Eq. (3) and conjugating every equation and eliminating the unknown reactive powers at
the PV buses give the following equation system

Zn+i(bi121+---+binzn+di)_wi:Oa 1=1,...,r,
Zi(bilzn+1+---+bin22n+di)_U_Jizoy 1=1,...,7,
n no_ _
Znr4i( 20 bravijzj + dogi) + 2rgi( 30 brgij2ng + digei) (4)
j=1 j=1
—2P,.1; =0, 1=1,...,n—r,
\ 2r+ifntr+i :V;“Q+i7 1= 1,...,TL—’I".
This is a system of 2n quadratic polynomial equations for the complex variables {z1, ..., z2,}

with complex coefficients, which can be as denoted P(z) = 0 where z € C?". Equation (3) can
be easily proved to be equivalent to

{ P(z) =0; 5)

Zi = Znti, t=1,...,n.

for determining the bus voltages. Thus, P(z) = 0 can be firstly solved, then the result is checked
to see if z; = Z,4i(i = 1,...,n), and finally all solutions of the bus voltages are obtained.
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Obviously, it is unnatural to compute one individual root of Eq. (3) with Newton’s methods in
this way. However, in case of computing all solutions of the system (3) with homotopy methods,
as we expected at present, Eq. (5) is more preferred. The reason is that a reasonable partition
of the variables in P(z) = 0 could be discovered easily when calculating the possibly optimal
upper bound of Bezout number by multi-homogeneous structure, as a result, the number of
paths being followed can be cut down.

The degree of P(z) is 227, so the computer cost is quite expensive if a homotopic map-

ping is constructed based on the degree which would follow a total of 22" paths. How-
ever, the Bezout number of P(z) is reduced down to C3, if a suitable grouping of variables

({z1,---y2n},{2n+1,---,22n}) is considered ([8]).

Theorem 1. Let the coefficients b;;,d;(i,j =1,...,n), w;(i =1,...,7), Py, Vori(t = 1,...,n—
) of the polynomial system P(z) be generically chosen, then C%, is the BKK bound of the num-
ber of all isolated solutions of P(z) =0 in C?".

Proof. Let A = (Ay,. o A,?n) denote the support of P(z). Expunging the constant terms of
P(z) and the terms with b;;,d;(i =r+1,...,n,5 =1,...,n) from the (2r+ 1)-th subexpression
to the (n + r)-th subexpression of P(z) gives the new polynomial system P(z) as below,

Zn+i(bilzl+---+binzn+di) =0, 1=1,...,7,
Zi(bilzn—i-l + ...+ binzon + dl) =0, ¢+=1,...,r,

n 6
Zngrti( Y brgijzj + drgi) =0, i=1,...,n—r, (6)
j=1
Zr4iln+r+i :0, 1= 1,...,n—7“.

the support of which is denoted by A = (A;,..., As,). Note that, the polynomial system P(z)
with determinate support A has at most C%, nonsingular solutions, and for generically chosen
coefficients b;;,d;(i,j = 1,...,n) it has C3, nonsingular solutions. From Theorem 2.4 in [9],
the BKK bound of the number of all isolated solutions of P(z) in C2” is the mixed volume
M (AU {0}) where A U {0} denotes (A; U {0},..., A, U{0}), so M(AU{0}) > C% . Since
A;U{0} € 4;(i =1,...,2n), from Theorem 2.4 and Theorem 1.1 in [9], the BKK bound of the
number of all isolated solutions of P(z) in C?" is the mixed volume M (A), which is bounded
below by M (A U {0}), namely

M(A) > M(Au{0}) > C3,. (7)

In addition, the Bezout number C3, is just the BKK bound of the number of all isolated
solutions of the trivial system determined by the partitioning {z1,...,2zn }{zn+1,. -+, 220}, and
the support of the original system P(z) is included in the support of the trivial system. Hence,
the Bezout number C¥, is an upper bound of the BKK bound M (A), which means

M(A) < C3,. (8)
Finally, from (7) and (8), we can conclude M(A) = CZ,.

From Theorem 1, C3, is the minimum number of paths to be followed when the coefficients
of P(z) are generically chosen. According to the multi-homogenous structure determined by
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the partitioning {z1, ..., zn}{Zn+1,- .., 220}, we construct the trivial system

enz1+ ...+ eimnzn+1)(Znyi +€int1) =0, i=1,...,7,
Zi + éi,n+1)(éilzn+1 + ...+ éinZQn) =0, 1=1,...,r,

n n
E67“+i7]'z]'+1)(zér+i,jzn+j+1):07 i:]-)"'an_ry
j=1 j=1

(
(
(
(Zr—i-i + er+i,n+1)(zn+r+i + ér+i,n+1) =0, i=1,....,n—r

which is simply denoted as G(z) = 0. For generically chosen e;;j(i =1,...,n,j=1,...,n+1),
the system (9) has C7, nonsingular solutions which are easily searched. Define the homotopic
mapping:

H(z,t) = (1 -t)vG(z) + tP(z), (t € [0,1],y € C). (10)

Theorem 2. For almost all of v € C, H=1(0) consists of smooth paths over [0,1) and each
one gives an isolated solution of P(z) =0 at t = 1.

Proof. Since the trivial system G(z) and the original system P(z) have the same multi-
homogenous structure determined by the partitioning {z1,...,2n}{zn+1,...,22n} except for
the choice of the coefficients and G(z) has the Bezout number C¥, nonsingular solutions, from
the theorem proved in [5] the homotopic mapping (10) satisfies smoothness and accessibility.
The result follows.

Using standard numerical techniques with a special step size strategy, the solution curves of
H~1(0) (parameterized by t € [0, 1]) are followed starting from the C3 nonsingular solutions of
G(z) = 0 to reach all isolated solutions of G(z) = 0 at ¢t = 1. For load flow computations, matrix
B is usually large and sparse, so that one can choose e;; = 0 if b;; = 0 and other coefficients
are still generically chosen. In this way, the number of paths to be followed would be much less
than C7,. Moreover, the homotopic mapping (10) still has smoothness and accessibility ([6]).
This option is referred to as comparative-generically chosen coefficients in the literature and
the total number of all isolated solutions of the system (9) is called the general Bezout number
of P(z).

Theorem 3. For comparative-generically chosen coefficients of the trivial system G(z) and
almost all of v € C, H1(0) consists of smooth paths over [0,1) and each one gives an isolated
solution of P(z) =0 att = 1.

4. Numerical Results

In this section, homotopy methods is applied to three power systems with 3 buses, 4buses,
and 5 buses respectively (see Fig.1-Fig.3). All the solutions of the three systems (see Table
1-Table 3) were obtained in the above way, and all the calculations were done in MATLAB
5.3.0.10183 (R11) on a PC Pentium 400MHz.

Table 4 presents the degree(DN), the Bezout number(BN), the general Bezout number(GBN)
and the zero number(ZN) of the polynomial systems for the above three power systems. As we
can see that, for practical problems the number of all isolated solutions of P(z) = 0 is much
less than C3 or the general Bezout number when n is large. This is because the matrix B
has many zero elements and the support of the practical system is included by the support of
P(z) for generically or comparative-generically chosen coefficients. However, when constructing
the homotopic mapping with the multi-homogenous structure, we must follow the C'§,, or the
general Bezout number paths in order to find out all the problem solutions.
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Figure 1: 3-bus power system
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For the 4-bus system, a real parameter ¢ was used to multiply the active power of the each
bus, then for the different ¢ the load flow was computed with homotopy methods. Fig. 4 and
Fig. 5 show the ¢t-V curves for the PQ bus 1 and 2 respectively, which are essentially the P-V
curves. In the practical problems, the complete P-V cures can be obtained by tracking the load
flow with homotopy methods.

Table 1. Four solutions of the 3-bus power system

Unkowns Solutions
(V,6) 1 2 3 n
| 0.0427 0.0427 0.9665 0.9665
Vo 1.1000 1.1000 1.1000 1.1000
01 —37.54 —37.54 —1.54 —1.54
02 —155.08 2.98 —155.08 2.98

Table 2. Four solutions of the 4-bus power system

Unkowns Solutions
(V,6) 1 2 3 4
| 0.1500 | 0.1514 | 0.6899 | 0.9818
Vo 0.2808 | 0.4208 | 0.1453 | 0.9633
Vs 1.1000 | 1.1000 | 1.1000 | 1.1000
01 31.43 29.00 —5.04 | —0.46
d2 —36.22 | —22.26 | —57.74 | —6.45
d3 121.69 126.75 7.52 8.33

Table 3. Two solutions of the 5-bus power system

Unkowns Solutions Unkowns Solutions
(V) 1 2 (9) 1 2
\ %1 0.3499 | 0.8622 01 —27.47 | —4.78
Vs 1.0418 | 1.0779 02 18.84 17.85
Vs 0.9908 | 1.0364 03 —5.64 | —4.28
Vi 1.0500 | 1.0500 04 22.96 21.84

Tabel 4. DN, BN, GBN and ZN of the polynomial systems for the three power systems

Bus Number | n | DN | BN | GBN | ZN
3 2| 16 6 4 4
4 3| 64 20 18 10
5 4 1256 | 70 60 22
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Figure 4: The t-V curve for the bus 1 of the 4-bus power system
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Figure 5: The -V curve for the bus 2 of the 4-bus power system

5. Conclusions and Discussion

All of the solutions for power flow systems were computed with homotopy methods by
transforming the initial problem into the problem of a system of polynomial equations with a
proper variable partition, so that its multi-homogenous Bezout number is C3, . By the general
Bernshtein theorem, C7, is the BKK bound of the number of isolated solutions of the polynomial
system with generically chosen coefficients. As a result of the general Bezout number, the
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number of paths being followed is reduced significantly in the practical load flow computation.
Lastly, the complete P-V cures are obtained by tracking the load flow with homotopy methods.

Since both the admittance matrix and the Jacobian of the homotopic mapping are highly
sparse, the computer memory and the flops can be significantly decreased by using the disposal
techniques for spare matrices. Note that the general Bezout number is still very large for
a system of moderate size although it is much less than C7 . Further work is needed to
determine the optimal number of paths to be followed. Moreover, homotopy methods can be
easily parallelized, which would further decrease the computer time.
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