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Abstract

Klein-Gordon-Schrédinger (KGS) equations are very important in physics. Some papers
studied their well-posedness and numerical solution [1-4], and another works investigated
the existence of global attractor in R™ and Q C R" (n < 3) [5-6,11-12]. In this paper, we
discuss the dynamical behavior when we apply spectral method to find numerical approx-
imation for periodic initial value problem of KGS equations. It includes the existence of
approximate attractor Ay, the upper semi-continuity on 4 which is a global attractor of
initial problem and the upper bounds of Hausdorff and fractal dimensions for 4 and Ay,
etc.

Key words: Klein-Gordon-Schrédinger equation, Spectral approximate, Global attractor,
Hausdorff dimension, Fractal dimension.

1. Introduction

In this paper, we consider the following periodic initial value problem of dissipative KGS
equations

{ i¢t+A"/}+iV¢+¢¢:f(m)v I'EI:I:[O)QW]B:
bit + 70t — D+ ¢ — [Y* = g(z), t>0,

where 1, ¢ are complex and real unknown functions, respectively, v,y are positive constants, f
and g are given complex and real functions respectively, ivy and y¢; are dissipative terms. We
introduce the transformation 8 = ¢; + d¢, where § is a small positive constant and then the
above problem can be written as

iy + DAY +iv + ¢y = f(z), (1.1)
ot + 00 =0, xel,t >0, (1.2)
O+ (v —0)0 — Dp+ (1= d(y —8)o — [¢]* = g(2), (1.3)
Y(x + 2me;, t) = P(x,t), pla + 2me;, t) = d(x, t),0(x + 2me;, t) = O(z, t), (1.4)
’QZJ(ZU,O) = ¢0(x)v¢(m70) = ¢0($),0($,0) = 60(37)7 (15)

where e; are unit vectors in the i-th direction.

Let Hy(I) denote the periodic real or complex Sobolev space with the inner product (-,-)s
and the norm || - ||,. In particular, H)(I) = H(I), and its inner product and norm are (-,-),
|- Il, respectively. Denote V = H,(I)xH,(I)xH(I), [(,$,0)I}, = lI¢li + llgllT + 16]1%,
V = Hj(I) x Hy(I) x Hy(I), [I(v,$,0)II% = 1[5 + [1¢l13 + I01]3-

Assume that Sy =span{e’®7|jeZ3,|j|<N} , Py is an orthogonal projection from L? to Sy.
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Lemma 1. For any o >0, if u€HJ (I) then

lu— Pyullj<eN~"lull,,  0<j<o.
Lemma 2. For ueH,(I), n =3, then

3/4
ol | 2 <] |3 [l /2

2. Some Results on the Problem (1.1)-(1.5)

Lemma 3. Assume that f , g € L*(I) and ||(v0, ¢o,60)|lv <R , then there exists a constant
01>0 , such that if 0<d, then solution of the problem (1.1)-(1.5) satisfies

Y@l + le@ll + 10| <Dy, i1,

where Dy depends on v,v,d,||fll, |lg]l; t1 depends on v,v,4,| fll,|lg]| and R.
Lemma 4. Assume that f , geHY(I) , k>0 and |[¢o]li+2 + ||follks2 + [|6ollk+1<R, then the
solution (v, ¢, 0) of the problem satisfies

9@ lk+2 + [0 k42 + 10D lk+1<Drya;  t2tkt2,

where Do depends on v,v,0,||fllk, gl and k ; tgr2 depends on v,~,d, || fllx, |g]lk, k& and R.
The proof of Lemma 3 and Lemma 4 are similar the paper[5] we don’t represent.
Furthermore, we can prove

Lemma 5. Under the conditions of Lemma 3, for 0<t<T, we have

Y@l + @Il + 0@ <La,

where Ly depends on v,,d,||fll, llgll, and T.
Lemma 6. Under the conditions of Lemma 4, for 0<t<T, we have

1Y Olk+2 + (|00 k42 + 10D k11 <Lit2,

where Liyo depends on v,7, 9, || fllk, l|gllk, and T.

By the above Lemmas and the theory of partial differential equation we can obtain that
the problem (1.1)-(1.5) defineds a continuous operator semigroup {S(t)}:>0, S(t)(¢o, ¢o,60) =
((t), (t),0(t)). If we denote

By ={(,¢,0)eV] [l + [l + 10| <M1}

and
By, = {(¥,¢,0)eHy P> x Hy P2 Hi | [k + [19llk2 + 161111 < Miy2],

where M;, i = 1,2, ...,k + 2 are proper large constants, then B; and By, are bounded absorbing
sets on V and H£+2XH5+2XH5+1 respectively. We can also prove the following result using
the technique introduced by Temam][8].
Theorem 1. Suppose that f,geH, then the problem (1.1)-(1.5) has a global attractor A on
V ,which is a compact invariant subset of V ,absorbs any bounded set of V.

If f, geH}(I), k>0, then (1.1)-(1.5) has a global attractor on Q% = H} "2 xH}*2x H} !
which is a compact invariant subset of Q* and absorbs any bounded set of Q.

The proof of Theorem is similar to [5]. We can prove S(t) is asymptotically compact in Q*,
that is if (¢, ®n,0,) is bounded in Q* and t,, — oo, then S(t,)(¢n, dn,0,) is precompact in
Q*, thus from the Theorem I.1.1 of [8], we obtain the existence of global attractor Ay in Q*.
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3. Some Results on Spectral Approximation of (1.1)-(1.5)

For the problem (1.1)-(1.5), we consider the following Fourier spectral approximation:
Find (¢Yn, N, GN)ES]?Q satisfing

(¢Nt)n) +6(¢N;n) = (0N>77)7 VUESN) (32)
(Ont,C) + (v = 0)(On, ) + (Von, V() + (1 = d(y = 6))(¢n, ()

_(|¢N|25C) = (97C)7 VCESNa (33)
YN (0) = Py, ¢~ (0) = Pn o, On(0) = Pn0o. (3.4)

Since the above problem is similar to (1.1)-(1.5) and for any un, vN €SN,

/uN|vN|2da: _ /(PNUN)|UN|2dx _ /uNPN(|vN|2)da:,
I I I

we can obtain
Lemma 7. Assume that f,geH, then there exists a constant &, such that for 6<é; and

(10, B0, 80)||v<R, the solution (N, ¢n,0n) of (3.1)-(3.4) satisfies
(N (t), o (1), On ())[|v <M, t>ts,

where M depends on v,7,6, |||, ||gll; t2 depends on v,~,4, ||f|],lgll and R.
Further assume that f,g € HJ, vo,¢0 € Hy(I),00 € H}(I) then we have

tselgi(llzbzv(t)llg +llon @13 + Ion (O1F) < M

where M; depends on v,7,4,||f||2,|lgl|2 only.

(3.1)-(3.4) is a system of ordinary differential equations.According to the theory of ordinary
differential equations we get that for any 7'>0, (3.1)-(3.4) has a unique solution on the interval
[0,T]. Hence (3.1)-(3.4) define a continuous operator semigroup {Sn(t)}:>0 Sn(t)(¥n(0), on
(0), 05 (0)) = (¥n (1), dn(t),0n(t)) and we have
Theorem 2. Assume that f,g€H, (Yo, ¢o,00) € V, then the operator semigroup {Sn(t)}i>o0
which is defined by (3.1)-(3.4) has a global attractor An. It is a compact invariant subset of
S3; and absorbs any bounded set in S%;.

4. The Error Estimate

Set _ _
YV—Yn=v—t¢—(Yn—7¢)=a-—b, (4.1)
b—¢n=0¢-6—(¢n - ) =c—d, (4.2)
-0y =0—0—(Oy—0) =e—h, (4.3)
where J = Pn1, 5 = Pno, 6 = Pn0, hence they satisfy
(V@ =4),V) =0, (V(6—9),VXx)=0, (V(6-0),Vx)=0, VxeSy (44)
and by orthogonality b,d,h satisfy
=0, Vx€SN, ’
(dtﬂ?) + 6(d7 77) - (hﬂ?) = 0> VUESN, (46)
(1, Q)+ (7= 8)(1,C) + (VA, V) + (1= 8y = 8)(d,0) = (wn ~ W0 (4

=0.
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Setting x = b in (4.5) and taking the imaginary part,we get

1d
5 7 1Pl + Il <lllon lloo (lall + [1BI1) + [1¥lloo (lell + iiDIB]

et ([IBI1* + [lall* + llell® + [1d]1*).- (4.8)

Taking n = d in (4.6), we have

| =

4]
dII* + lldI* <5 ldII* + 2 |AlJ*. (4.9)

N | =
U

t
Setting ¢ = h in (4.7), we get

%%Ilhll2 + (v = 0)|Ihl* = (h, Ad) + (1 = (3(y = 6))(d, k) + (@ = b)yow + (@ — b)), h)

=0. (4.10)
In order to eliminate the term (h, Ad), we set n = Ad in (4.6) again, and then we obtain

1d 9 5
2dt||Vd|| +0||Vd||* = —(h, Ad). (4.11)
By (4.10) and (4.11)
1d
S 7 (IRl +[1Vd|*) + 8[IVdll* + (v = 8)IAl]* + (1 = (8(y — 8))(d, )
+((@=Byen + (a—b)ib, h) = 0.
Using the e-inequality we have

1d 1
5 77 IRl +IVdI) + 5 (v = DIl + 8[| V|]® (4.12)

<cs(ldII” + llall® + 11BI1%)-
Finally setting x = —Ab in (4.5) and taking the imagenary part, we obtain

1d
57 IVOIP + VIVOIP = Im((d = )y + (b = a)$, D),

here we have used (at, Ab) = (a, Ab) = 0. Using Lemma 7, ||¢n]|lco < C, and

/Ilallvl/JNIIVbldﬂf < IVollIIVenllzsllallze < e(BllF + IV l7sllall7e)
by the interpolation inequality
IVénllze < cllonll IV9nl < C,
embedding theorem ||a||zs < ¢||al|1, thus
/IIGIIW/JNIIVbldl“ < ca(|Ibll? + llall?)-

Similarly estimate for the another terms, hence we obtain

1d
5 7 IVeIF<es(BlT + lldllt + [lallt + [leflD)- (4.13)
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Summing up (4.8), (4.9), (4.12) and (4.13) we obtain

d
Z(IBI1T + N1l + [1R11%) + 2Bl + dlld]I* + 2(y — d)|RI* + 20]|Vd]]?
< ([l + NIl + 1R1*) + ez (llall} + [el).
By the Gronwall inequality for ¢€[0,T] we have
Ib@IT + A + 1ROIP<CrN 27 (1912 11 + el 1)

Finally using the trigonometric inequality and Lemma 1, we get

() = en (I + l6(t) = dn@OIF + 10(t) — On ()]
< CoN 27 (1l + 1811740 + [19115)- (4.14)

Theorem 3. Assume that the problem (1.1)-(1.5) have a unique solution and it satisfies 1,
peL>®(RT; HIT'(I)), 0eL>®(R*; HJ(I)), 0>1, then we have the error estimate (4.14) for the
solution (YN (t), dn(t),0n(t)) of the Fourier spectral method (3.1)-(3.4).

Using the results of [8]: Let H,CH is a class subspace,0 < n<no, |J H, is dense in H.
0<n<mo
For every n > 0, the semigroup operator Sy (t) maps H,, into itself and is continuous for ¢>0,and

for every compact interval I CRT,

577(?): sup sup dist(Sy(t)uo, S(t)ug)—0, n—0.

IIHHOOEII?;2 tel
Assume that for every n > 0, {S;(t)}+>0 has a global attractor which absorbs any bounded
open neighourhood of A, J A.
Theorem 4. Under the above assumptions, we have

du(A,;, A) =0, n — 0.

where

di(Ay, A) = sup inf distp(z,y).
zEA, 9EA

In order to use Theorem 4, we take H = V,H, = Hy = S3;. Obviously, Sy (t) maps S%
into S3; for all £>0, and it is continous for every N. From Theorem 3

on(I) = sup sup [|(Sn () (Yo, do, bo) — S(£)(vho, ¢o, bo)|lv =0, N —o0.

(¥0.60.60)€S3, 4T
1(¥0.40.00)ly <R

Hence we have
Theorem 5. Under the assumptions of Theorems 8 (o > 1), for A and Ay ,we have

dy (Ax, A) =0, N — +o0.

5. Upper Bounds of Hausdorff and Fractal Dimension for A4 and Ay

In this section we give an estimate of the upper bounds of Hausdorff and fractal dimension
for A and An. First of all we introduce some definitions and lemmas.

Let H is a Hilbert space, X CH is a compact set, S(¢) maps X into H which is a continuous
map and satisfies
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() S(X =X, 10;
(ii) S(t) is uniformly differentiable on X, i.e. for every u€X, where exists a linear operator
L(t,v)eL(H,H) and

sup |S(t)u — S(t)v — L(t;v)(u — v)| g

vEX |u —U|H
0< Ju—v|pp <e

— 0, e — 0

(iii) sup |L(t;v)|zcm,m) < +oo.

Note that
IGAGA ANl = 1<(Ziet (G G)s VG GneH, (5.1)
W (t) = sup wm(L(t,vo)), (5.2)
vo€EX
where
wim(L(t,v9)) = ngg |L(t;v0)C1 A L(t;v9)C2 A -+ - A L(t;00) Cm | - (5.3)

1¢; g <1,i=1,2,---,m

then we have
Lemma 8. Assume that the conditions (i)-(iii) hold. If for some d > 0, to > 0 such that

sup wq(L(tg,u)) < 1, then the Hausdorff dimension dg(X) of X is finite and less than or equal
ueX

to d, where wq(L) = wl*(L)ws (L), d=m-+s,and its fractal dimension dp(z) is finite too.
In order to apply the Lemma to the above, we need to verify (i)-(iii).The condition (i) is

obviously satisfied for A and S(t) in X = V. Now we examine the conditions (ii) and (ii).
The linearization of problem (1.1)-(1.5) is

iU + AU + iU + ¢U + 9V =0, (5.4)
Vi 40V =W, (5.5)
Wi+ (y =W — AV + (1 — 6(y — 0))V — (U + Uq) =0, (5.6)
U(z + 2me;, t) = Ulx,t),V(z + 2me;, t) = V(z,t), W(z + 2me;, t) = W(x,t), (5.7)
U0) =41,V (0) = ¢1, (0) =61 (5.8)

Using the priori estimate and the theory of linear partial differential equation, we obtain
Theorem 6. Assume that (¢1, ¢1,01)€V, then there exists a unique solution for (5.4)-(5.8)
(U(t),V(t),W(t)eC(R',V) and the following estimate holds

U@ + VO + W OIP<Crlvl + 61l +1l61]*),  0<t<T, VT > 0.

Now we prove the solution operator S(¢) of (1.1)-(1.5) is uniformly differentiable on V. First
of all we study the difference of solutions corresponding to different initial values.

Suppose that the problem (1.1)-(1.5) has solutions (7, ¢7,07) and (¥§, ¢5,65) which cor-
responding to (Yo + Y1, d0 + ¢1,00 + 01) and (¥, ¢o,6), respectively, then their difference
(T, ®,0) satisfies (¥(0), ®(0),0(0)) = (¢1, ¢1,61) and the equation

iy + AU +ivV + ¢F ¥ + dopy = 0, (5.9)
o, + 50 =0, (5.10)
O+ (=060 —A®+(1—-6(y—06)® — (Y} ¥ +15¥) =0, (5.11)

Since the above equation is similar to (5.4)-(5.6),we can obtian

%(II‘I’(t)IIf +lle@Ii +le@IH<CUEMIT + 12MOIIF + o))
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i.e
1Z@)F + NIR@BIF + 10N < e ([l + llgullF + 1162117)-

Further we consider the difference

(1:[;; 5) 5) = (\Ilv (§>6) - (U) V>W)

95

(5.12)

(5.13)

where (U, V, W) is the solution of (5.4)-(5.8), then (¢, ,0) satisfies (¢)(0), $(0),8(0)) = 0, and

the equation
ithe + DY + v + ¢FU 4+ 5d — yU — Y5V =0,
S+op=0, N
0y + (v —0)0 — Agp+ (1 - d(y =)o
—(PFV + g0 — 5U — 5U) = 0.
From (5.14)-(5.16),it follows that

1d, ~ ~ e ~
SO+ o0l < [ sdilan+ [ wadias

1d ~, ~o
5 g Iol™ +dllgll” = (6, 9),
1d o o * * "
5 IVOI? + [ VOI1? = Im (678 + 5@ — ¢pU — 15V, Agp) = 0.
2 dt
Using (5.15) again
T\ — li 7112 2
(~10,8) = 5 VI + 51V,
we have
1d 72 a2 a2 72 T
57 IVl + 116117) + (v = O)IOlI" + 0|V el|” + (1 — 6(y — 0))(6,0)
2 dt

(7T + 950 — 25U — YU, 0) = 0.
Summing up (5.17)-(5.20) and noting that
g — GgU — UiV = 610+ Ujo + U,
YT + 0" = 5T = $o"U = Yo + 5o + UL,
we have

1d
2dt

< / s Fdlde + / US|z + / 88\de + 6y — ) / 183\ de

(BIT + NGIE + 1611%) + vIIIIE + S1IBI1T + (v = &)1I6]I*

+ / W1+ G50 + T0)Blda + / 1396V + [V (456 + UV lda.

For the terms on the right side of (5.21) we have following estimations

/I 106|dz<]|8]|* + [|6]|*, /I 05 | da <165 oo (10117 + [12]]),

/1 |05 + FED)Bldr< (15 loo + 1165 loo) (DI + 116]2),

(5.14)
(5.15)
(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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/I|U<I>{z?lda:§cll{/?ll||<I>||L4||U||L4§c||{/?||||<I>II?/“||<I>||1/4IIUII?/“IIUIIU4

<clllI” + eIl N @l + T IFIT I <[> + eI @Il + 1T,

here we used Lemma 2 to obtain the last inequality. Similarly
/1 U®g|dz<cl|f]” + ([T + [U])-

Furthermore

/Iwavav@dx < (151l (IVEI1* + [IV911),

|/IUVW‘PdeSIIVzZJIIIIUIILPIIV‘I>||LqSC(IIV¢II2+||U||%p||V‘I>II%q),
where % + % = %.Using the interpolation inequality
U= <cllUNIFNUN~ < el|U]h

IVellz, < Clao]+[IveliIve|' 7,

where a = 3‘;;6, B=3(3- %) = %, 3 < p < 6. Thus by for given (¢, ¢o,60) € V, the solution

(W (1), 6(t),0(1)) € V

| [ UVETRds| < VI + VIRATE] + 2] V0
I

it _3
<c(IVYIP + VIRV @I + [Tl Ve —=)

<c([IVDI12 + |1 + [|U]IF + ||®||*
<c(|IV[® +[1@llF + U1l + [1@]l7),

where we choose p = ¢ = 4, a:ﬁ:%, s:g, r =6.

~ ~ 3 1 ~
/II‘I’VUWJIdm <12l VUVl < cll@liz [[R[IFIVTUIIIV

1 ~ ~ il 18
< dl@|FIVUIIIVel < el + 12l + IU17),

Similarly, [, [hV ¢ Vi |da, I; |<$V¢6‘sz|da: can be estimated.
Substituting above estimations to (5.21), we get

d ~ ~ -
2 (AT + NIl + N161)

12
5

(I + 1815 + 18112) + eIl + [@]1f + U1 + [VIIE + |B]f} + [T a7 + U1
<c([[9ll7 + llelly +1017) + e[l + @[y + [[UNT + VI + [1@l7 + (U117 + @[l + IU]")

and using Gronwall’s inequality

sup (IIB@)1F + 817 + 1)1

te[0,T]
12 9 18
SOTtes[tépT](II\I’(t)||‘11 +le@T + 1T+ VO + 1215 + 1UNF + (1@l +1U17)

12 9 18
<Cr(lvallf + Noullt + 1160l* + Nloall? + lleonll® + llpullf + lebnlly)-
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Finally we obtain
sup
0<|(¥1.,61,61)llv <e (¥1,61.01)€V

IS (£) (Yo + 1, ¢o + ¢1,00 + 61) — S(t) (Yo, do,b0) — L(t;uo) (Y1, d1,61)]|%
(Y1, p1,61)113

— 0, e —0,

where ug = (o, ¢o, 0o)-

Lemma 9. Assume that the semigroup operator of (1.1)-(1.5) and (5.4)-(5.8) are S(t) and
L(t;uo) respectively, then they satisfy the conditions (i)-(iii) of Lemma 8, i.e, S(t) is uniformly
differentiable on V.

Now we prove that there exist m,to such that d =m + s, supwgy(L(to;u)) < 1.
ucA

Let Q'(t),---,Q™(t) are solutions of (5.4)-(5.8) with initial values &, - - -, &, €V, respectively.
Note that g(t) = e®*Q(t) then q(t) = (e2*U(t), e’V (t),e?* W (t)) = (u(t), v(t), w(t)) and

et (@(0.Q70)v = Q" (DA D) A+ AQ (D}
=2 (OAP ) A AT (D] (5.22)
We shall prove this is exponential decalying if t — +o0.
Obviously ¢(t) satisfies

VU = w,

iug + Au+i(v — O)u + du + v =0,
wy + (7 — 280)w — Av + (1= 6(y — 8))v — (i + Yu) = 0.

Since J
Ma(llull2 + [vl1?) = pl—2vjul]® - 2Im/1/1ﬂvdw — 26||v[|* + 2/del‘],
I I

similarly, we can obtain

S 1,(a) = Jula(0)

where

Lu(q(®)) = llull + [lolI} + [lwll} —/I¢IUI2dw—2Re/1¢ﬂvdw+u(IIUI|2+ l01%),

Tu(a(8) == = Ol = (r = 20) 0l = Im [ wivds + (v = )Re [ Guvda
1 _
+(V—5)/I¢|u|2dm— 5/1(0—5¢)|u|2dw—Re/I¢tuvdm
-R uwd o(y—2a d i + Yu)wd
e/lz/)uw x4+ o(y )/va m+/l(1/1u+1/1u)wa:

+u[—21/||u||2—2[m/¢ﬂvda:—25||v||2+2/vwdm].
T I

We can take p sufficiently large such that (I,(g(t)))*/? induces an equivalent norm in V.
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Note that g(t) = (u(t), v(t), w(t)), §(t) = (@(t),5(t), @(¢)) and

W, (¢ q(t), 3(t)) = / (Wt + V- Vit + 05 + Vo - V5 + wio — uin)da
I

_% /1 (Y + Yu)v + (Yur + Pur)vi]de + M/I (4 + o) de.

Obviously ¥, (t,q(t),q(t)) is a symmetrical positive definite bilinear functional in V' xV and
satisfies ¥, (¢, ¢(t),q(t)) = I,(q(t)). Hence ¥, (¢,q(t),q(t)) defines an inner product in V'xV.

Using the e-inequality we have

| Tu (gD (full® + Ilv]*)-

Let
m m m
Ho(t) = | det W,(tq' (0,0 ®) =[] mox min 0t Y250, Y os))
=)= |=1 dimF=I m 1 1
> lej12=1
1
m m m
<II max mip GQ_id, Y aid)v =a™ det (¢'d)yv
[=1 dimF=l m 1 1 ==
D laj12=1
1
=a"lg AP A - A @)
Taking p properly we have
m m ) m )
[ OACBO A A" O = ]| max min O zid (1), wid’ (H)v
|=1 dimF=1 m 1 1
D leji2=1
1
m m m
<II max  min W, (6,) 26/ (t), ) wi¢’ (1)
|=1 dimF=1 m 1 1
D leji2=1
1

= det U,(t,Y =z (1), 3 zjq’ (1) = Hn(t)
155 21: I 21: ! (5.23)
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According to the results of [9], we get

m
d m Tu(3 2’ ()
a0 = Hn0 2 i wp
[=1 dimF=l m €T
Slesi2=1 g it
1
IS zowd 112 4 115 2507 (|2
m (1 2w | + | 07 |”)
SHa(t) ), max  win A
R N (TR DE TR DL (o
> l=j12=1 1 1 1
1
- m DL A DoEl
S et ) o mip (o
¢ i~ € 2 2
R A DT DOE R
o

2c* 1
< Ha(t)Y

d 2c* = 1 .
—Hn ()<= Hin() ) <em¥ Hop(t)

where ¢ is a constant, and )
H,,(t)<exp(cm3t)H,,(0). (5.24)

Thus by (5.22)-(5.24) we have
Q' (MAQ*(B)A -+ AQ™ ()]} < exp{t(emF — 20m)} Hy (0)
< exp{t(ém? — 20m)}&1" g (0)AG*(0)A -+~ Ag™ ()},
= exp{t(cms — 26m)} " |E AEE A AET R (5.25)

Ifm> Z—%m% > m — 1, then we have
Theorem 7. The global attractor A defined by Theorem 1 then the Hausdorff dimension of A
is less than m and its fractal dimension is less than 2m in V.

By the result of paper [10]: Let H is a Hilbert space, {S(t) }+>0 and {Sn(¢)}:>0 are C* op-
erator semigroup and as un (t) = Sy (t)uon approaches u(t) = S(t)up as N>Ny,where ugny €SN
is some approximation of ug, i.e. for any R > 0,7 > 0, there exists a constant C'(R,T) such
that V ||uol|H <R,

|Sn (H)uon — S(t)uo||g<C(R,T)N™', (5.26)
1S (8, uon) = S"(t, o) | £ (21,60 <C(R, T)N . (5.27)

Suppose that A and Ay are compact set which satisfy S(t)A=A, and Sy(t)An =
An,t>0, N>Ny and dg (An, A)—0, N — +o0, then we have
Theorem 8['9. Suppose the above assumptions hold and there exists T > 0,1<d<N, such
that

wa(S'(T;u)) < 1, YueA,
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then we have dg(A)<d and dg(An)<d when N is sufficiently large.
For our problem, S’ (t,uo) and Sy (t,uon) ara solution operators of (5.4)-(5.8) and

((i(Unt,X) = (VUN, VX) +iv(Un, x) + (UnVN + Unon, x) =0, Vx € Sw, (5.28)
(Vne,m) +0(Va,n) = (Wn,m), Vn € Sn, (5.29)
(Wne, Q) + (v = 6)(Wn, ) + (VVN, V) + (1 = 6(7 = 6)) (VN {)

% — (Un¢n +UnYN,() =0, V(E S, (5.30)
Un(0) = Pnt1, Vn(0) = Pngr, Wn(0) = Pnbh, (5.31)
UN(Z’ + 27(6,’,15) = UN(I‘,t), VN(Z’ + 27(6,’,15) = VN(Z’,t), (532)

[ Wi (z + 2me;, t) = Wi(w, t)

respectively .By Theorem 3, the condition (5.26) is hold (¢ = 1) and using similar error estimate
between (5.4)-(5.8) and (5.28)-(5.32) we can also obtain the (5.27). Using Theorem 7 we obtain
Theorem 9. The global attractor Ax which defined by semigroup {Sn(t)}i>o0 of (4.5)-(4.7)
has same upper bound of Hausdorff dimension with A for sufficiently large N.

Similarly we can obtain that A and An have same fractal dimension when N is sufficiently
large.

Thanks for readers to help seriously for me!
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