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Abstract

A derivative patch interpolating recovery technique is analyzed for the finite element ap-
proximation to the second order elliptic boundary value problems in two dimensional case.
It is shown that the convergence rate of the recovered gradient admits superc onvergence
on the recovered subdomain, and is two order higher than the optimal global convergence
rate (ultracovergence) at an internal node point when even order finite element spaces and
local uniform meshes are used.
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1. Introduction

Finite element superconvergence property has long attracted considerable attentions since
its practical importance in enhancing the accuracy of finite element calculation and in adaptive
computing via a posteriori error estimate. In this field affluent research results have been
achieved. For some complete literature on superconvergence, the reader is referred to Wahlbin’s
book [1], Chen and Huang’s book [2], and a recent conference proceeding edited by Krizek et al.
[3]. In article [4,5], Lin Qun et al. proposed a new type of interpolation operator into the finite
element spaces, that is the interpolation operator of projection type, and remarked that it will
approximate the finite element solutions much better than the usual Lagrange interpolation.
Thus, the interpolation operator of projection type provides a new powerful means in the
research of finite element superconvergence, and we will use it as main analysis means in this
paper.

In a previous work[6], the ultraconvergence (i.e., two order higher than the optimal global
convergence rate ) of the derivative patch interpolating recovery technique was analyzed for
a class of two-point boundary value problems. The current work is devoted to the supercon-
vergence and ultraconvergence properties of the derivative interpolating recovery technique for
finite element approximation to the elliptic equation Au = f on a rectangular domain with the
general partial differential operator of second order

9 9 &K 9

and A = —A + agl when ultraconvergence is concerned. In this article, we will assume that the
rectangular partition mesh is regular for general case, or quasi-regular when superconvergence
is considered. Moreover, when we analysis the ultraconvergence at an interior nodal point
po, we will also assume that the mesh is local uniform, that is the four elements which share
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the common interior nodal point py are uniform. In general, the solution of the second order
elliptic boundary value problems on a rectangular domain may have corner singularity, and
consequently, the finite element approximation may suffer from the ”pollution effect” which
will result in the failure of the recovery procedure. There have been many techniques to treat
the pollution effect caused by domain singularity, for example, the local mesh refinement. In
order to concentrate on the local recovery method, in this paper, we assume that the solution
is smooth enough on domain 2 for our purpose, otherwise some local analysis methods should
be used[4,7].

Recently, many research works focus on the so-called Z — Z derivative patch recovery
technique[8-11], and this technique is considered to be one of the most effectiveness techniques
in the research of asymptotically exact a posteriori error estimates[12]. This technique uses
the least square method to fit the first order derivatives of finite element solution and results
in superconvergence. The ultraconvergence property of Z — Z technique has been analyzed
by Zhang[13] for the Laplace equation in the two dimensional setting. Comparing with the
Z — Z technique, our recovery method is more simple and easier to implement, and possesses
the explicit expression.

In this paper, we shall use notation Hi and W, to represent the usual Sobolev spaces on
domain €2 with norm and seminorm || - ||, and | - [, on W)", respectively, and use letter C
to denote a generic constant.

The plan of this paper is as follows: In Section 2 we introduce the interpolation operator
of projection type and discuss its approximation properties. In Section 3 the derivative patch
interpolating recovery operator is defined and its super-approximation and ultra-approximation
properties are analyzed. Section 4 is devoted to the superconvergence and ultraconvergence
properties for the finite element approximation to the second order elliptic boundary value
problems.

2. Interpolation Operator of Projection Type and Its
Super-approximation Properties

Let element e = ey X e = (¢ —he, Te +he) X (e —Tie, ye +1ie),  {L;(x)}52, and {L; (4)}32,
be the normalized orthogonal Legendre polynomial systems on Ly (e;) and Lo(es), respectively.
Set

z Yy

wol@) =0 ) =1, wjsa (z) = / L(@)de, Bya1 (y) = / Li(y)dy, j >0
Te—he Ye—he

It is well known that polynomials wyy1(z) and Lg(z) (k > 1) have k 4+ 1 and k zero points on
€1 and eg, respectively, and these zero points are symmetrically distributed with respect to the
middle point z.. Denote the two kinds of zero point set by N}go) = {g](-o) }and Ny = {yg,},

respectively, and we call N ,50) the Lobatto point set and N the Gauss point set. Moreover, we
know that these polynomials also possess the following symmetry and antisymmetry
waj(Te + ) = waj(®e — ), waj_1(Te + ) = —waj_1(Te — T) (1)
ng(a:e + CE) = ng(a:e — ZE), L2j_1(a:e + ZU) = —LQj_1(£Ee — 37) (2)

The completely parallel conclusions hold for the polynomials w1 (y) and Lk (y) on element
€2 = (ye - heaye + he)-

Below we denote the Lobatto and Gauss points on element e = e; X ez by {GE?) = (gEO), g
;0))} and {Gij = (9i, 5]) }, respectively, and also denote the Gauss lines by G, ; = {(:v,gj ;
r€ey, 9;€ENL} and Giy = {(9:,9); 9i € Nk, y € €2 }.
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Now let u € H?(e), then we have Fourier expansion [
u(z,y) =D Y Bijwile) 0j (y), (z.y) €e (3)
=0 j=0
ﬂOO = U(xe - heaye - he)a ﬂij = /Uacy Li—l(x) Lj—1 (y) dwdy (4)

Bio = /Uz(w,ye —he) Li—i(z)dr,  Poj = /Uy(iﬂe — he,y) Zj—l (ydy,i,j>1 (5)

€2

Introduce the k-order and bicomplete k-order polynomial spaces P, and @y, i.e.

k kok
pl,y) = Y aya'y), Vpe P qlz,y) =YY aia'y’, Vg€ Q;
i+j=0 i=0 j=0

Define the k-order interpolation operator of projection type by m : H?(e) — Q(e) such that

k k
mrule,y) = 33 By wile) 5; (4), (a,y) € e (6)

i=0 j=0
Then 7, is uniquely solvable with respect to Q(e) and for k > 1 possesses properties[!]
Tpw(Te &+ ey Ye £+ he) = w(@e £ he,ye £ ) (7)

|U - 7rk'Uf|m.p.e < Chk+1im|u|k+1.p.e; 1<p<o0, 0<m< kE+1 (8)

here h = y/h2 + h2. From (3) and (6) we have
0o k

U—WkU:(Z Z + Z Z-F Z Z )6ijwi(x)$j () 9)

k
i=0 j=k+1 i=k+1j=0 i=k+1j=k+1

Lemma 1. Let u € Qp(e) U{z**+!,y**1}, Dy = 2, Dy = a%' Then

u— Tt = Brr1,0wk+1(2) + Boka1 Wrr1 (Y)
2(

Di(u — mpu) = Bryr,0Lr(x),  Da(u —mpu) = Bok+1 Li ()

Proof. Let u € Q(e) U{z**1,y* 1} so that ugy € Qr_1(e), uy € Pr(e1) and u, € Py (e2).
Then, from (4) — (5) and the orthogonality of Legendre polynomial system, we have

Biy=0, i>k+1j>lori>1,j>k+1, fo=po;=0,i>k+2j>k+?2

combining this with (9) to obtain the representation of u — mu, the other representations follow

from taking partial derivatives for the representation formula of u — mpu, the proof is completed.

Corollary. Let u € WEF2(e). Then, the interpolation operator m possesses the super-
approzimation properties

| = me) (G| < CH 2 ulizoe b > 1 (10)

|Dl(u — nku)(Gij)| S C’hk+1|u|k+2m,e, k Z ]., l = ].,2 (11)

Proof. We only prove the estimate (11), the proof of estimate (10) is similar. Introduce
bilinear transformation F :e—s e by (z,y) = F(&,n) = (ze + &he,ye + nhe), (£§,7) ce=
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A
(-1, 1)x(—1,1). Denote t (&,n) =u(F(&n)), D= D¢ (or Dy, ). For fixed point G;; = F(&,n;)
and smooth function u, define the linear functional

A A

E(u) =D (4 — 7)€, m5) = he Dy (u — mu) (Gyj) (12)

From (8) we see that E is a linear bounded functional on Wéﬁfz(é), and it follows from Lemma
1 that

E(t) =0, ¥ 0€ Pyyq(°)
Then, according to the Bramble-Hilbert Lemma[14], we have

IB)| <Cla| n<CH*|ulyisme

k+2.00.€

Combining this with (12), estimate (11) is proved.

Remark 1. From the proof above, it is easy to see that the super-approximation points G;;
in (11) can be replaced by super-approximation lines G, ; (or G ).

Some delicate properties (see (15)-(17)) of the interpolation operator of projection type,
that are not shared by the usual Lagrange interpolation, can be shown as follows.

From Lemma 1 we see that
DlDQ(U-ﬂ'kU)(CE,y):O, (may) Ee: VuEPk_H(e) (13)

Moreover, when u € Py12(e), from (4)-(5) and (9) we can obtain

k k
DiDs(u—mpu) = Bikr1Lict(x) Lic () + Y Brr1,; Lu(@) Lit (y) + Brtr par Le() L (y)
i=1 j=1

hence

DlDQ(’LL — nku)(G,J) = 0, Yu € Pk+2(€) (14)

By (13), (14) and Bramble-Hilbert Lemma, we can prove similarly as in the Corollary that the
following global super-approximation and ultra-approximation results hold

|D1D2(U - ﬂ-ku)(way) | S Chk|u|k+2.oo.67 (may) € €, k Z 1 (15)
|D1D2(U — Fku)(Gij” S Chk+1|u|k+3_oo_e 5 k‘ Z 1 (16)

From Lemma 1 and the orthogonality of Legender polynomial system, we also see that for
u € Qr(e) Uz, y**}

/V(u — mpu)Vodedy =0, Yo € Q(e) (17)

This shows that the interpolation approximation 7,u can be considered as the finite element
solution of the Laplace equation with exact solution u € Qy(e) J{z* 1, yF*1}.
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3. Derivative Patch Interpolating Recovery Technique

In this section we shall introduce the
derivative patch interpolating recovery operator
and discuss its super-approximation and ultra-
approximation properties. Let e(®) (s = 1,2,3,4) (4) | (o0, Yo) o(3)
be four elements which share a common interior h; M1

node point (zg,yp). Corresponding to the point h;
(zo,y0), we define the derivative patch recovery
: (1) e
domain (see figure 1)
Figure 1

4
Do = |J ") = (w0 — hi, w0 + hi1) X (yo — g yo + hyr1)

s=1
Let Gi; = (gi, 5]'), i, = #+1,---,+k are the 4k? Gauss points in Dy, i.e.
To—hi<g p<---<g1<x< <---<gk<x0+hi+1
Yo —hy <9_p< -+ <G_1< yo <1< -+ <Ip< yo + hj1

Because of 4k> = (2k)?, then a polynomial in Q251 can be uniquely determined by its values
on the 4k? Gauss points {Gy;}.

Corresponding to the point g; ( 5]' ), introduce the 2k — 1 order Lagrange interpolation basis
function @l(m) € PQk_l(ZEO — h;i, o + hi+1) (‘pl (ZU) € PQk_l(yO — hj,yo + hj+1)) by

+k +k ~
0i(z) = H (z—g1) %y (z) = H M
i = ’ J - ~ ~
=1, 1#i (9i —g0) 1=<1,125 (95 — 91)

Then, {¢;j(z,y) = pi(z) t;j (y) } form the basis function system of space Qax—1(Dyo)-
Now, we define the derivative patch interpolation recovery operator R : WL (Do) = Qak—1
(Do) such that

+k £k

i=+1j=+1

Note that Djup(z,y)) may be discontinuous across element edges when uy, is a piecewise poly-
nomial on Dy, but the recovery derivative RDjuy(x,y) is a smooth polynomial on Dy.
Lemma 2. The derivative recovery operator R possesses the following properties

RVup1(2,y) = Vurr (2,y), Yuerr € Qe(Do) Y=, o1} (19)
RV ks (2,y) = Vg (2,9), Vg € Qe(Do) [ J{aF T, 41} (20)
1RV ullo.00.00 < [IVttllo.00.00, V1 € Wi, (Do) (21)

Proof. 'When ug1 € Qi(Do) U{z" ™, y*t1}, we have Djury1 € Qr(Do) C Qar—1(Do),
then equality (19) comes from the uniqueness of interpolation polynomial. By Lemma 1 we
see that Dluk+1(Gij) = Dlﬂ'kulﬁ-l(Gij), i,j = x1,---, £k, 1 = 1,2 for upy1 € Qk(DO)U
{x**+1 y*+1} then from (18) we have RV 7yugi1(z,y) = RVupi1(z,y). Now the equality (20)
follows from (19). Estimate (21) can be dire ctly verified by mapping Dy into the standard

A
element D= (—1,1) x (=1, 1).
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Lemma 3. Let u € WE2(Dy). Then, the operator R possesses the following global super-
approzimation property

IVu — RV mull0.00.00 < CP*Hulpt2.00.00, k> 1 (22)

Proof. The estimate (22) can be obtained by using (20) and Bramble-Hilbert Lemma.

Now we investigate the ultra-approximation property of the derivative recovery operator
at an interior nodal point (zo,yo). Let Do be composed of four rectangular elements, that
is Do = (w0 — h1,x0 + h1) X (yo — h2,yo + h2). Because the Gauss points of element are
symmetrically distributed with respect to the middle point of element, so we have

To—g—1 =g — %o, Yo— 9—1=91 —Yo, | =1,2,---,k (23)

This results in (pi(ill’[)) = ¢_i(zo), <Pj (o) :;Lj (o), i, = 1,2,---,k. Note that the basis

functions ¢;; = ;(z) <,0]- (y), then, at the point (zo,yo), the definition of operator R (see (18))
can be simplified as

k k
RD[U) .To,y() ZZ Dlw i.j +Dlw(Gi7_j)+Dlw(G_i7j)+Dlw(G_i7_j)]@ij(xo,yo) (24)

i=1 j=1

Lemma 4. Let u € WEF(Dy), k > 2 be even, (zo,y0) be an interior nodal point, Dy =
(o — h1,x0 + h1) X (yo — h2,y0 + ha). Then, at point (xo,yo), the derivative recovery operator
R possesses the following ultra-approzimation property

| Diu(zo,y0) — RDimru(zo,yo)| < ChEY 2 ulkss.00.p0y 1 = 1,2, k > 2

Proof. For simplification, without loss of generality, we assume that Dy is centered at the
origin (zg,y0) = (0,0). Then we have

k k
RD[U) 0, 0 Z Z Dlw ,J + Dlw(Gi,,j) + Dlw(G,m-) + Dlw(G,@,j) ]gai]-(0,0) (25)

i=1 j=1
If we can prove that for £ > 2 even, hold
Dyu(0,0) = RDmu(0,0), | = 1,2, Yu € Pyya(Dy) (26)

then, the conclusion of Lemma 4 can be derived from Bramble-Hilbert Lemma. Since Py12(Dg) C
Qi (Do) U{zhtL, yhtl ght2 k42 pyhtl gh+l) according to (20) in Lemma 2, we only need
to prove (26) for u € {z**+2, yk+2 zyh+l 2zh+1y}. Below denote by {1;(t)} the normalized or-

thogonal Legendre polynomial system on the standard element e= (—1,1). Then, the Legendre
polynomial system on the elements (—h1,0) and (0, k1) can be expressed as, respectively,

L; (x) =1(t), z = —% + %t te(—1,1)
LT (x) =1;(t), . = % + %t te(-1,1)
By the symmetry and antisymmetry of [;(¢), we have
Ly;(=7) = L3;(7), Ly; 1 (=7) = —L3; (1), 0< 7 <My (27)
wQ_j(—T) = w;'j(v'), w;j_l(—v') = —w;'j_l(v') 0<7<h (28)
Similar results hold for Zj (y) and @; (y). Now we will prove (26) for u = z*+2, yF+2 gyk+t

yx*T! separately.
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(1) w = z¥*2 . From (4)-(5) and the orthogonality of Legendre polynomial, we obtain
Bij =0,i>0,5>1, Bio =0, i > k+ 3. Then, from (9) we have

Brin oL (@) + Bria oLy (@), @ € (—h1,0)
Dq(u — meu z, — +1,0"k k+2,07k+1 ’ ) 29
i wu)(®:9) { 5k++1,0L:(x) +5k++2,0L;+1(93), z € (0,h1) (29)
0 h1
Boo= [ b+ 215 @)de, 8= [ (k2L (o) da
—nR1
Note that k is even, then by (27) and integration by substitution, we have 8, , ; = —ﬂ,‘:“’o,

Biino = Bitao- Thus, from (27) and (29), we obtain

Dy (u = mpu)(—=7,y) + D1(u — meu)(7,y)

= (51;4_170 + 61?4.170)[/:(7) + (61?4_270 - 51;.2,0)[/:(7) =0,0<7<MIy
taking 7 = —g_; = g;, i = 1,2, -- -, k, it implies from (25) that

RD¢(u — mu)(0,0) =0, or RD;m,u(0,0) = RD1u(0,0)
Since Dyu(z,y) = (k + 2)z**t!, Dyu(g_i,y) = —Diu(g;,y), then, from (25) we also obtain
RD;u(0,0) = 0, hence RD;mu(0,0) = 0 = D1u(0,0).
(2) w = y**2 . From (4)-(5) and the orthogonality of Legendre polynomial, we have

Bij =0,i>1,5 > 0. Then from (6) we see Dimpu(z,y) = 0. Therefore RD1m,u(0,0) =0 =
D1(0,0).

(3) w = zy**! . From (4)-(5) and the orthogonality of Legendre polynomial, we obtain
Bij =0,i>2,7>0o0r i>0,j>k+ 2. Then, from (9) we have

ﬁﬂ;kﬂ (;1;+1(y)7 y € (=h2,0)

(30)
\/Lh_lﬁilﬁ_l w;_l(y), y € (0,h2)

Di(u = mpu)(z,y) = {

0 ho ~
B = / 0t L) B, = / (k+ Dy* L () dy

By (27) and integration by substitution we see that 8, ,,, = ﬁ1+,k+1- Then from (28) and (30)
we obtain

Di(u—mpu)(z, —7) + D1(u — mpu)(z,7) =0, 0 < 7 < hy

taking T = — 5,j:5j, j=1,2,--- k, it implies from (25) that RD;(u — mxu)(0,0) = 0. Since
Dyu(z,y) = y**1, Dyu(z, 5,]-) = —Dju(z, 5]-), then from (25) we also obtain RD;u(0,0) = 0.
Hence RDym,u(0,0) =0 = Dyu(0,0).

(4) u=z"1y . By (4)-(5) and the orthogonality of Legendre polynomial, we have 3;; =
0,i>0,7>2o0ri>k+2,j>0. Then, from (9) we obtain

D (u — mpu)(2,y) = Brs1,0Li(x) + Brsr1 Li(x) @1 (y)

hence D1 (u — mru)(Gyj) =0, 0,5 = £1,---, £k, this results in RD; (v — mxu)(0,0) = 0. Note
that Diu = (k + 1)z*y, Diu(z,g_;) = —Diu(z,g;), we also obtain RDyu(0,0) = 0. Hence
RDl’/Tk’LL(0,0) =0= Dlu(O, 0)

Completely similarly we can show that

RDZ'/TkU(O)O) = D2u(0>0)7 Vue {xk+2;yk+2>xyk+lamk+1y}

Thus, equality (26) is verified and the proof of Lemma 4 is completed.
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4. Superconvergence and Ultraconvergence

Let Q C R? be a rectangular domain, J, = {e} be a sequence of subdivisions of () param-

eterized by mesh size h so that Q = U e. We assume that the partition is regular and all
ecJp

elements {e} are rectangles with sides parallel to the coordinate axes, respectively. Define the

k order tensor product finite element space S, C Hi () as usual. On each element e € Jp,

we define the k-order interpolation operator of projection type 7 as in Section 2 so that 7y, is

defined on J;. By Lemma 1 and the orthogonality of Legendre polynomial system, it is easy to

see that for k > 2

/(u—ﬂ'ku)qdmdyZO, Vq€ Qr_2(e), e € Jp (31)
/l(u —mpu)pds =0, Vp € Py_s(l), line segment [ € de (32)
Thus, properties (7) and (32) make 7, : H?(Q) — S, k > 1. Introduce the bilinear form
A(u,v) = 22: (aij Diu, Djv) + i(ai Dju,v) + (ap u,v) (33)
ij=1 i=1

where (, ) represents the inner product on L»(Q2), a;j(z,y), ai(z,y) and ag(z,y) are properly
smooth functions. It is well known that elementary estimate of interpolation operator ( also
called as interpolation weak estimate ) play an important role in the research of superconver-
gence. Many detai led discussions have been given for the interpolation operator of Lagrange
type [4,7]. For the interpolation operator of projection type, by properties (31) and (32) and
using the Bilinear Lemmal[14], we can prove that (a detailed proof can be found in article
[15,Theorem 7.5-7.6])

Theorem 1. Let bilinear form A(u,v) be defined by (38) (not necessary positive definite and
symmetric), u € H}(Q) N Wf“(ﬂ). Then, the interpolation operator my satisfies the following
super-approximation elementary estimate

A = mu, 00)] € W ullisplionllig, k> 1 (34)

For the special case A(u,v) = (Vu, Vv) + (agu, v), we have the ultra-approzimation elementary
estimate

A = T, 0n)] < CH 2 [lullisapllonllig, k> 2 (35)

where vy, € Sp, 2 < p < oo, %+%:1.

Now further assume that A(u,v) is a continuous and uniformly elliptic on H}(Q) x Hg ()
(not necessary symmetry). For function u € H}(Q), define its finite element approximation by
up € Sy such that

A(u —up,vp) =0, Vo, €S, (36)

Afterwards we assume that the partition Jj is quasi-regular. By means of the elementary
estimates (34)-(35) and the Green function methods[7], we can prove the following results.
Theorem 2. Let u and uy, satisfy equation (36), uw € Hi(Q) N\ WEF2(Q). Then, the following
superapprorimation estimate holds

[|meu — upll1.00 < C’hk+1| In bl ||u)lkt2.00, £ >1 (37)

For the special case A(u,v) = (Vu,Vv) + (apu,v) and v € H(Q)N\WE(Q), the ultra-
approximation estimate holds

i = wnllr.oo < CRE2| b [ullirn.oo, & > 2 (38)
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Now we can prove the main results of our paper.
Theorem 3. Let u and uy, satisfy equation (36), u € Hi(Q) WEF2(Q), Do = (zo — hi,zo +
hit1) X (Yo — Rj,y0 + fjy1), (Zo,yo) be an interior nodal point, R be the derivative patch
recovery operator defined by (18). Then we have the following global superconvergence estimate
on recovery subdomain Dy

IVu(z,y) = RVun(z,y)| < Ch*Hinh| ullpsz.c00 (2,y) € Do, k> 1 (39)
Furthermore, for the special case A(u,v) = (Vu,Vv) + (agu,v), u € HF(Q)N\WE(Q), and
hi = hiy1, hj = hji1, we have the following ultraconvergence result with k > 2 even

|Vu(zo,y0) — RVup(z0,y0)| < CR*2|In b ||ullpss.00, k> 2 (40)

Proof. From Lemma 2 we know that R is a linear bounded operator, then, using Lemma
3 and Theorem 2, we obtain

IVu(z,y) — RVun(@,y)| < [Vu(z,y) — RVreu(e,y)| + ||| [mru(z, y) — un(z, y)ll1.c0.00
< O Mulkg2.00.00 + CHM I b [Jullk42.00, (2,9) € Do
Thus, estimate (39) is derived. Similarly, estimate (40) can be obtained by using Lemma 4 and
Theorem 2, the proof is completed.

By the results in Theorem 3, it is easy to see that when Dy is not a superconvergence
subdomain of error V(u — uy), we have

IV (u = wn)llo.co.0o / IV (Run = un)llo.co.0, =0, b =0 (41)
and when the interior nodal point (xo, o) is not a ultraconvergence point of error V(u — up),
with even-order finite element space and A = —A + agl, we have

IV (u = un)(xo0,y0)| / IV (Run — un)(@o,y0)| = 0, h =0 (42)

Hence quantity ||V (Rup —up)l|o.0c0.0y ( |V (Rup —up)(zo,yo)| ) also provides an asymptotically
exact a posteriori error estimator for error ||V (u — up)||o.co.0, ( |V (v — up)(zo,y0)])-
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