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Abstract

The purpose of this paper is to study the cascadic multigrid method for the second-
order elliptic problems with curved boundary in two-dimension which are discretized by
the isoparametric finite element method with numerical integration. We show that the
CCG method is accurate with optimal complexity and traditional multigrid smoother (like
symmetric Gauss-Seidel, SSOR or damped Jacobi iteration) is accurate with suboptimal
complexity.
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1. Introduction

In this paper, we consider the second-order linear elliptic problems posed over a bounded
domain Q C R? with curved boundary I'. The problem can be described as

Lu = —div(a(z)gradu) + b(z)u = f, in Q, (1.1)
v = 0, on T, (1.2)

where a(z) is a (sufficiently smooth) uniformly positive definite matrix in 2, b(x) is sufficiently
smooth and 0 < b < b(x).
The weak form of the problem (1.1)—(1.2) is: Find u € H}(Q) such that

a(u,v) = (f,v), Vv € Hy(Q), (1.3)

where

a(u,v) = /Q((a(a:)Vu) - Vv + b(z)uv)de,

(fv) = /vadm.

In this paper, we will need to assume the H?-regularity on Problem (1.1)-(1.2). We
formalize it into assumption (A.1).

A.1 For any f € L*(Q), the corresponding solution u of Problem (1.1)-(1.2) is in the space
H?(Q) N H(Q) and there exists a constant C' independent of u and f such that

lull2.2 < Cliflloe,  Vf € L*(9). (1.4)

For the second-order selfadjoint elliptic boundary value problems, taking into account nu-
merical integration, Ciarlet [5], Ciarlet and Raviart [6] and Li [8] obtained the error estimates
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in H*(Q2)-norm and H'(2)-norm respectively. In general, Q;, does not contain Q and vice
versa. Because the identical quadrature scheme is used in [5] [6] and [8], the finite element
solution obtained in [8] is the same as that in [5] and [6] respectively. In [8], Li avoid to extend
the partial differential equation and only need the H2—regularity assumption on the differen-
tial equation (1.1)-(1.2) to obtain the error estimate in H'(€2)—norm. While in [5] and [6], in
order to make (4.4.68) in [5] hold and obtain the error estimate in H'(Q),)—norm, the higher
regularity assumption on the differential equation will be needed.

On the other hand, Bornemann and Deuflhard [2] have recently proposed the so-called
cascadic multigrid method. As a distinctive feature this method performs more iterations on
coarser levels so as to obtain less iterations on finer level. A first candidate of such a cascadic
multigrid method was the recently suggested cascadic conjugate gradient method in Deuflhard
[7], in short CCG method, which used the CG method as a basic iteration method on each
level. The first publication of this algorithm in Deuflhard [7] contained rather convincing
numerical results, but no theoretical justification. For the second-order elliptic problem in 2D
which is discretized by the P1 conforming element, Bornemann and Deuflhard [2] have proved
that the CCG method is accurate with optimal computational complexity for the conjugate
gradient method as a smoother and only nearly optimal complexity for other conventional
iterative smoother, like symmetric Gauss-Seidel, SSOR or damped Jacobi method. Shi and
Xu [11] establish the general framework to analyse the cascadic multigrid method. In [12], Shi
and Xu develop the cascadic multigrid method for parabolic problems and obtain the optimal
convergence accuracy and computational complexity. Shaidurov and Tobiska [10] study the
convergence of the CCG method which is used to solve the elliptic problems in domain with
re-entrant corners.

In this paper we use the cascadic multigrid method to solve the second-order elliptic prob-
lems with curved boundary discretized by the isoparametric finite element method taking into
account numerical integration. We show that in this case the CCG method is accurate with
optimal complexity and traditional multigrid smoother (like symmetric Gauss-Seidel, SSOR or
damped Jacobi iteration) is accurate with suboptimal complexity.

Apart from the introduction, this paper comprises three sections. In Sect.2, we give a
special discretization using the isoparametric finite element. In Sect.3, we take into account
into numerical integration and derive the error estimate in L?-norm over the domain ). Finally,
we prove the accuracy and complexity of cascadic multigrid method for H2-regular elliptic
problems in Sect.4.

2. A special Discreziation

We start with a coarse approximate triagulation 7o of Q for a sufficiently small hg. The
triangulation {7} will be defined from {7;_;} as follows:

(1). If 7, is a triangle with two vertices in {2 then 74_; is broken into four finer-grid
triangles by the line connecting the midpoints of the edges of the triangle 7, ;.

(2). If 74— is a triangle with two vertices on 912, we take a new boundary point to be the
crosspoint of the boundary arc and the vertical bisector between the two boundary vertices of
Tk—1 and form two curved triangles and two straight triangles by connecting the nodes of the
element 71,_1. From the construction of 7, we know that hj ~ %hk_l.

In this paper, as in Li [8], we give a special triangulation T, that is

Q= UKEka; hK,k = dlam(K), h; = max hK,k; (21)
KEeTx

where the interior finite element (K, Pg,) )(K € 7;) is obtained from a reference finite

element (I/(\' ,13, /Z\) through an affine mapping F K(I/(\' ) which is uniquely determined by the
data of the nodes of the finite element K (see [5] and [6]). While the boundary finite element
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(K,Px,> ;) € Ti) can be obtained from a modified reference finite element (I?,ﬁ,i)

through an isoparametric mapping Fx € P»(K) which is obtained by generalizing original
mapping Fi (K), where K is expanded from K and the mapping F (K) satisfies K C Fg(K),
for details see [8]. We always assume the isoparametric family is regular (see Ciarlet [5]).
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Fig.1.

In this paper, as usual, we still denote the modified reference finite element by (I? , ]3, /i) if
there is no confusion.

For convenience, Let F} j denote the set of nodes of the boundary finite elements corre-
sponding to 7T which are on T

Let Mj, denote the isoparametric finite element space associated with the triangulation 7y

~

M = {Uk € Co(ﬁ) : vk(x) =0,Vz € Ek,h,'Uk|K = Uy, - Flzl, U € PQ(K)}.

Note that M1 & M. At each level k, the discrete problem of the problem (1.3) is: Find
up € My, such that

a(ug,ve) = (f,vr), Vor € My, (2.2)

where
a(ug,vg) = /Q((a(:r)Vuk) - Vo, + b(z)ugvg)de,

(f,vr) :/vakda:.

In this paper, the notation of Sobolev spaces and associated norms are the same as those in
Ciarlet [5], and C' denotes the positive constant independent of hy and the number of the levels
and may be different at different occurrence.

3. Numerical Integration and Error Estimate

In this section, we take into account numerical integration and derive the error estimate
|lu — ug|lo,o under the H?— regularity assumption which will serve as a crucial ingredient of
the cascadic multigrid optimality analysis in section 4.

In paper [6], Ciarlet and Raviart obtained the error estimate || — us||12(q,)- Because the
extension @ of the exact solution u to the set (0 must satisfy the original differential equation,
the higher regularity assumption on the differential equation (1.1)-(1.2) will be needed.
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Let K = FK(I?), o K — R, ¢:K = R, ¢ =¢-Fg'. Over the reference element K, we
apply the same quadrature scheme as that used in [5] and [6],

L
/A p(@)di ~ Y op(b), @ >0, beK, 1<I<L. (3.1)
K

where l;l(l <1 < L) are the vertices and midpoints of the edges of the reference element K.
Given an isoparametric finite element K = F (K) corresponding to an invertible mapping
F . K — K, we may, and will, assume that

Jr, (&) = det(DFg (£)) > 0, Vi€ K.

Using the standard formula for the change of variables in multiple integrals, we find that the
quadrature scheme (3.1) over the reference element K automatically induces the quadrature
scheme over the finite element K, namely,

[ wt@rts ~ S nwpttu), (3.2)

=1

with weights w; x and nodes b; x defined by
wl’K:(IJlJFK(IA)l) and bl,K:FK(i)l); 1 SZSG,

where by g (1 <1 < 6) are the nodes of the element K € 7}, (see Ciarlet [5] and Li [8]).
Accordingly, we introduce the quadrature error functionals

6 R L .
Ex(p) = /K p@)dr — 3wkl B@) = /I?m)d@ -3 ool

=1

which are related by Ex (p) = E(¢Jr, ) and E(p) = E(pJ;)).
In this paper, in order to obtain the error estimate ||u — uk||0 @, as in the paper Ciarlet and

Raviart[6], the quadrature scheme over the reference element K is exact for the space P4(K ),
ie.,

E(0) =0, Voe Py(K). (3.3)

The discrete problem of the problem (1.3) with numerical integration is: Find uy € M}, such
that

apk (Uk, o) = fp 1 (Vk),  Vor € M, (3.4)
where
6
afL,k(uk,Uk) = Z ZwlﬁK((aVuk) -V, + b’ulk’l)k)(bh[(), (35)
KeTg l=1
fh k ’Uk Z Zwl K ka bl K) (3.6)

KeTe =1
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~

Lemma 3.1. (see [9]) Suppose the quadrature scheme (3.1) is exact for the space Py(K), i.e.,
(8.3) holds, then there exist Cy,Co > 0, h{ € (0,1), such that

Cillvell} o < aj i (vk,vk) < Colloe|fq,  VYh € (0,ho], vk € M. (3.7)

From Lemma 3.1, we know that the discrete problem (3.4) has a unique solution u; € M.
The following estimate is proved in Li [8]:

l|lu — Mpull1.0 < Chillulls.a, Yue H*(Q)N Hy(Q), (3.8)

where IIpu € M}, is the interpolant of w.
Using the method in Li[8], we can obtain the following estimate:

llu — Mpullo.o < Chillulla.o, Yu€ H?*(Q)N Hy(Q). (3.9)

From Li [8], we have the following error estimate:
Lemma 3.2. Suppose the union U~ {b} contains a Py(K)-unisolvent subset or the quadrature

~

scheme (3.1) is exact for the space Py(K), then

lu = ugllne < Chi(llulls.e + If]2.0.0), (3.10)

where f € W24(Q), q > 2.
Lemma 3.3. There ezists a constant C' independent of hy, such that

[vo.n\0 < Chz|v|1,9h\97 [vo.0\Qn < C’h2|v|179\9h, (3.11)

either for all functions v € Hy(Q,) or all functions v € HY(Q) such that v = 0 on T, where
Q C R? is a bounded open subset such that Q) C Q and Qn C Q for all hy,.

Proof. The first inequality in (3.11) is proved in Lemma 2 in Ciarlet and Raviart [6]. Using
the method in the proof of Lemma 2 in [6], we can easily see that the second inequality in (3.11)
is also valid.

Lemma 3.4. (Lemma 3 in [6]) For any function v € H'(Qy), there exists a constant C
independent of hy such that

[[ollo,r,. < Cllv]l1 0, (3.12)

where T'y, = 0Qy,.
In order to estimate ||u — ugl||o,0, We use the duality argument. We consider the following
auxiliary problem:

L¢ = —div(a(z)gradg) + b(z)¢ = g, in Q, (3.13)
o = 0, on I, (3.14)
We assume the H?—regularity on Problem (1.1)-(1.2). Obviously, Problem (3.12)—(3.14) also

has H?-regularity, for any g € L?(2), the corresponding solution ¢ is in the space H2(Q)NH{ (Q)
and there exists a constant C' independent of ¢ and g such that

llll2,.2 < Cllgllo,q, Vg € L*(). (3.15)

From the Tietze-Urysohn extension theorem, we know that there exists an extension oper-
ator &1 H?(Q) — H?*(R?) satistying ||Ev||2,r2 < C||v||2,0. For different function spaces, the
extension operator is different. To simplify notation, in this paper, we denote the extension
operator by & if there is no confusion. We have the following extension problem:

L(&E¢) = —div((Ea)grad(E9)) + (Eb)(EP) = Eg, in Qy, (3.16)
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where the functions £a, ¢ and £b are the extensions of the functions a, ¢ and b to the set Qy,
when Q; ¢ Q. Fixed €a,E¢ and b, £g will be determined by the left side of the equation
(3.16).

From equation (3.16), ||€v]|s,r2 < C||v||2,0 and H?-regularity, we have

1€qllo,2 < Cllgllo,a-

In this paper, for vy € My, Evy, is the natural extension of vy and for simplicity we still
denote the extension vy by wvy.
Theorem 3.5. Suppose the quadrature scheme (3.1) is ezact for the space Py(K), i.e., (3.3)
holds, then for any sufficiently small hy, we have

[l = urlloo < Chi(llulls.a +|£]ls.), (3.17)

where f € H?().
Proof. By the definition of || - ||o,q, we have

lu —uglloe =  sup (u—u, 900 (3.18)

geL2(Q)\{0} llgllo.0

From (3.16), we may write (u — ug, g)o,q as follows:

(u—ug,9)o.0 = (Eu—ur,E9)o, — (Eu—ur,£9)0,0,\0
+(u — uk, 9)o,.0\Q
= L+ L+ 1Is. (3.19)

From the Cauchy—Schwarz inequality, the property of the extension operator and Lemma
3.3, we obtain

|12 [[Eu — Uk||0,9h\9||59||0,9h\9

<
< ClEullo,ana + lurllo.oune)llgllo.o
< C(hillulls.e + luklloe.ne)llgllo.e- (3.20)

For the term ||ug|[o,q,\q, from (3.11), we have
luello.gne < Chillukllione < Chi(llu — uillLa + lullLg)- (3.21)
Combining (3.20) with (3.21) yields
|12 < Chi(llu — uellLe + llulls.2)llgllo.o- (3.22)
Similar as above, using (3.11), we get
|15 < Chi(llu — uellLe + llulls 2)llgllo.o- (3.23)

Using the Green’s formula and ug = 0 on I'j,, we obtain

L aq, (Eu — ug, EP) +/ (Ea)grad(£¢) - n(Eu)ds

I'n
Ry + R;. (3.24)
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where the bilinear form ag, (-,-) is defined over the domain Q) and n = (n1,ns) is the unit
outer normal along I'j,.
By the Cauchy—Schwarz inequality, we have

|R2| < Cll€ullo,r,|lgrad(€9)[o,r, (3.25)
By Lemma 3.4, we get

|lgrad(£9)[lo,r, < ClIEd]l2,01 < Cll0]l2,0- (3.26)
It follows from (5.13) in Ciarlet and Raviart [6] that

1€ullo.r, < Chill€ulltco0, < Chillulls.- (3.27)

From (3.25)—(3.27), we get
| Ra| < Chigllulls llgllo.a; (3.28)

where the regularity assumption ||¢]|2.0 < C||g]lo,o is used.
To estimate Ry = agq, (Eu — ug, E¢), we may write

Ry = aq, (fu —u,E¢ — I d) — aq, (u, @)
+ag, (uk, Uk d) + aq, (Eu, Md) — fh 1 (). (3.29)

where the representations of the numerical integration terms ag,, (ur, [lx¢) and f; , (Il;¢) are
given by (3.5) and (3.6) over the domain Qj,, respectively, and IIx¢ € M}, is the interpolant of

’ We may rewrite aq, (Eu, ;@) — f5; , (Ilx¢) as follows.
aq, (Eu, x o) — fi (L)
(L(Eu), Mk @)o,ey — f (ko)
(f, Mgd)onna — for(Ted) + (L(Eu), M d)o,0,\0
(5f> Hk¢)079h - fi:,k(Hk@ - (5f; Hk¢)0,9h\9
+(L(Eu), Tk d)o,a,\05 (3.30)

where the extension £ f of the function f is different from the extension £g of the function g.
The extension £f of the function f is obtained by the extension theorem and doesn’t require
L(Eu) = Ef over Qp,.

From the Cauchy—Schwarz inequality, (3.11) and the regularity assumption (3.15), we obtain

(€, TkPloanel < €flo,amellTkdllo.on0
< ChYIflhelkelLe,
< Chillflle(l€d — kol . + 1€8]1,0.)
< Chillfllallglloq (3.31)
[(L(Ew), M g)o.aal < Chillulls.ellgllo.q- (3.32)

From Theorem 5 in Ciarlet and Raviart [6], we have

[(EF, Mkdoy — frrid)] < ChEIIE 3.0, | Mkdll2,0, 0
< Chl|fllslldll20
< Chillflls.allgllo.c (3.33)
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where [T ¢|l2.0,.n = ( > ||Hk¢||%,K)1/2 and we have used (5.16) in [6], i.e., [|Txd||2.0,.n <

KEeTs
1¢]]2.0-
From (3.30)—(3.33), we have
lagy, (Eu, 1k d) — fi; 1 (k)| < CRE(I| flls. + llulls.)llgllo.o- (3.34)

From Lemma 3.2 and (3.9), we have
lag, (Eu — ug, £¢ — T g)| < Chi(||fllz.0.0 + lulls.2)llgllo.c- (3.35)
From (5.20) in [6], we know that
lagy, (uk, k@) — ag, (uk, ko)
< Chwllur — Myully, + killEulls.e)llgllo.q
< C(hwllup—TIxully o +hilulls 2)llgllo.0
< Chi(llulls.e +11fll2.0.2)llgll0.0; (3.36)

where the triangle inequality, Lemma 3.2 and (3.8) have been used.
Combining (3.29), (3.34), (3.35) with (3.36), we obtain

|1R1| = lag, (Eu — uk, £¢)| < Chi(|lulls.a + 11£ll5.0)llgllo.c- (3.37)

From (3.18), (3.19), (3.22), (3.23), (3.24), (3.28) and (3.37), we get the desired result (3.17).

4. Cascadic Multigrid Method

We now construct a cascadic multigrid algorithm for the isoparametric finite element method.
Since My_1 € My, we introduce coarse-to-fine intergrid operator Iy : My_1 — M.

For v € My,_1,if p is a vertex of a element in 7} and p is the interior midpoint of an edge of
a element in T, g is the crosspoint of the arc and vertical bisector between two vertices (which
are on I') of the curved boundary element in 7, then Iyv € My is determined by

i ={ 58

(Iev)(P) = v(P), (Lkv)(q) =0.
Using the special triangulation given in section 2 and the standard scaling argument [5], we

can show that the following lemma holds for the isoparametric finite element space Mjy.
Lemma 4.1. For any vy € My, K € Ty,

6
loelld e < B2 3" vR(a) < Cllowl . (4.1)

i=1

where a;(1 < i < 6) are the nodes of the element K.
Lemma 4.2. For the operator I, we have

17Tl —1u — Mullo.e < ChE(ulze + Juls,0), (4.2)

where Iyu € My, is the interpolant of u.
Proof. 1If the element K € Tj_; is an interior element or a boundary element with two

vertices in ) then
Ika,1U - Hk’LL =0.
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If the element K; € Tj_1 is a boundary element with two vertices on 0f2, it is broken into
two curved triangles and two straight triangles e; € T, (1 < i < 4). For the boundary element
e1 € Tr , we have from Lemma 4.1

6
eIy — Tul[§ ., < Chi Y (@), (4.3)
i=1
where ¢, := (It Ily_1u — xu)|e,, a1, a3 and as are the vertices of the element e; and az, a4 are

the midpoints of the edges and ag is the node of the arc asas on I' of the element e; respectively.
By the definitions of I}, I and II;_q,

or(a1) = ¢r(as) = ¢rlas) =0, (4.4)
and
|p(az)| = [(Tellg—1u — Mpu)(az)] = [Hp-1u(az) — ulaz)]
< [Mg—1u — ufo,co, Ky (4.5)
Similarly, we have
|p(as)] < Mp—1u — uloco,ky,  [P(as)] < [Mg—1u — ufo,c0,k; - (4.6)

Arguing as in the case of Theorem 4.3.4 in Ciarlet [5], using the method given in Li [8], we
know

ITk—1u = ullo,oo, i, < Chig(Julzi, + [uls.i,)- (4.7)
From (4.3)—(4.7), we have
I — el 3, < OBl g, + [uf - (48)
Similar estimates can be obtained for the elements e;,i = 2, 3,4, i.e.,
1T vu — Tl < CRY(lul g, + lul} ), i =2,3,4. (4.9)

Summing all elements Ky € Tx—1, we obtain the desired estimate (4.2).
Lemma 4.3. For the operator I, we have

||’U — Ik'UH(),Q < Chk|v|17g, Vv € My_1. (4.10)

Proof. Let a boundary element K; € T;_1 be broken into four elements e; € T;. (1 <1 < 4).
For the interior element ez € T}, we have

llv = Ivllo,es < Chi|v|1,k,, (4.11)

where Iv|., is the polynomial interpolant of v.
For the curved boundary element e; € T, from the definition of Iy, we have

lo = Tkolloe, < fo = Tgollie, + |ITko = Teolloes

6
Chillvller + 11D (v = ko) (ai) o,

=1
Chil|v|]1,e; + [|[(v = Ixv)(as) Pag llo,e,
Chi|lv]|1,e, + [(v = Ixv)(a6)|l|@ag o,
Chi|[vl]1,e, + [v(as)]l|@aslo,e, - (4.12)

0,61

ININIA
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where a;(1 < i < 6) are the nodes of e, ag is the node on arc asas along I' and ¢,, is the
corresponding nodal basis.

Let ag be the point on the arc azaz along 'y, satisfying |agag| < Chi. Obviously, v(ag) = 0.
From the Taylor expansion, we deduce

[v(ag)| = [v(as) — v(ag)| < ChE[v]1,00.e, < Chilvly k- (4.13)
Combining (4.12), (4.13) with ||¢agllo,e; < Chy yields
llv — Ievlloe, < Ch}|v]1K,- (4.14)
Similarly, we get
[l = Lev|loe, < ORI E,, || = Ikv||oe, < Chilv|ik, - (4.15)

Squaring both sides of the inequalities (4.11), (4.14), (4.15) and summing up all K € Ti_1, we
obtain the desired estimate (4.10).

Lemma 4.4. Assume that the hypotheses of Theorem 3.5 hold and uy are the solution of (3.4),
then, for any sufficiently small hy, we have

|lur, — Iyur—1lloe < CRE(|lulls.0 + || £]l3,0)- (4.16)
Proof. From Theorem 3.5 and (3.8), we have

lluk, — Iruk—1lloe < [lu — uklloe + [[v — Mullo,o + [[Tku — Truk—1lo,0
< Chi(llulls, + I fll3,2) + [Mew — Iyug—1]lo.c- (4.17)

From Lemma 4.2 and Lemma 4.3, we get

Mrw — Iug—1llo,e < kv — Llg—1ullo,o + || {e(Tlr—1w — ur—1)|lo,0
< Chillulls,e + |Me—1u — ug—1o,0

H|(Mgm1w — ug—1) — I (Mg—1u — ug—1)]]o,0
Chillulls,o + k- 1u = ulloo + |lu — ux-1llo.0
+Chi|Mg_1u — uk_1l|1,0
< COhi(llulls0 +Ifll3.0) + Che||[Tg—1u — ul1,0

+Chy||lu — ug—1l|1,0
< Chi(llulls.e +11£ls.9)- (4.18)

IN

Combining (4.17) with (4.18) completes the proof of Lemma, 4.4.
Lemma 4.5. (see [8]) There exists an hy € (0,1) such that

5
||Uk||0,F < C’hf |'Uk:|1,uK’, Yo, € My, hi € (O,h{)], (4.19)

where K' is the boundary finite element.
Following [3] and [11], we introduce a projection operator Py, : My_1 + My — Mj, defined
by

a(Pru,v) = a(u,v), Yv € M. (4.20)

We note that Py is the elliptic projection operator defined by (4.20) without numerical
integration. From the definition of P, we know that

Peolllg < Hlolllgs, Vo€ Miy, (4.21)
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where the norm [||v]|||1,k—1 of v € My_; is defined by |||v||]1,k—1 = Va(v,v).
It is not difficult to see that the norm induced by +/a(:,-) is equivalent to the standard
H'(Q) norm:

Cilllolllie < lolle < Colllvllli g, Vo € M. (4.22)
Lemma 4.6. For the operator Py, we have
[lv — Pyvlloa < Chillvl|lie, Yv € Mi_;. (4.23)
Proof. We use the duality argument (see [3] and [11]) to complete the proof. Consider the
following problem: for a given v € Mj,_1, find ¢ € H%(Q2) N Hg () such that

L{ = —div(a(z)grad() + b(z)( = v— Py, in Q, (4.24)
¢ =0 on I, (4.25)

Using the Green formula, we obtain
llv — Ppoll2 = a(¢,v— Po) — /(agrad{) -nvds
r
+/(agrad§) -nPyvds
r
= T+ Ty + T3, (4.26)
where n is the unit outerward normal vector along I'.

Let (i be any function in M. It follows from the definition of the operator P, the norm
equivalence (4.22) and the regularity assumption ||{||2,0 < C|jv — Pyv||o,o that

Ty = |a((,v— Pyv)| = |a(¢ — (kv — Prv)
< C inf — — P
< cklng”C Gl ellv = Prolli,0
< Chil[Cllz.llv — Pevllie
< CthU — Pk'l}||07Q||'U||17Q. (4.27)

Noting that |C|li,r < C][(||2,0, we have, by Lemma 4.5 and the regularity assumption
<]z < Cllv = Prollo,o,

5
To] < Chigllv = Prllosllvll1e-

Using the norm equivalence (4.22), we know that similar estimation to |T3| is also valid for |T3].
Combining above inequalities completes the proof.

We use the operator Cy : M} — M), to denote the basic iterative procedure on the level k.
Denoting my, steps of the basic iteration on the level k by Cj, 1, , the cascadic multigrid method
can be written as:

Cascadic multigrid method

(1). Set u = uy=up, where ug is the solution of (3.3) on coarse initial triangulation 7. Let

0 *
up = Teuy,

(2). For k=1,---,J
uTk :Ck7mku2

(3). Set uh=ul"’.
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Following [2], we call a cascadic multigrid method optimal for level J, if we obtain accuracy
|lus = ujllie = [lu—urlle

which means that the iteration error is comparable to the approximation error, and multigrid
complexity

amount of work = O(ny)

where my = dimM .
We consider the following type of basic iterations for the finite element problem on the level
k started with ug € My:

uk = Chmyupy = T (ug — uf), (4.28)

with a linear mapping T} : My — Mj, for the error propagation. We call the basic iteration an
H'-norm reducing smoother, if it obeys the smoothing properties

. ht
@) T vkl e < C#Hvkﬂo,na Yoy, € My, (4.29)
k

(i). N7 vrlllie < lvellle,  Yor € My, (4.30)

with a parameter 0 < v < 1.
For k =0,1,---,J, define the operator Ay : M} — M, by

(Apv,w) = a}, (v,w), Yv,w € M.

It has been shown in Bank and Dupont [1] that the Richardson iterative operator Ty, = I — ﬁAk
satisfies (4.29) and (4.30) with v = 1/2, where A, denotes the largest eigenvalue of A. Using
the same method of constructing smoothers in Bramble [4], we can show that the operator
Ty = I — Ry Ay, where Ry, is the symmetric Gauss-Seidel, SSOR. or Jacobi iteration on the level
k, also satisfies (4.29) and (4.30) with v = 1/2. Using the similar argument of Theorem 2.2 in
[2], we can show that the conjugate gradient iteration is a smoother in the sense of (4.29) and
(4.30) with a parameter v = 1.

As in our example, by construction, hgy; is approximately equal to %hk. Thus, we have
27=kh;/c < hy < 277%h;. We consider sequences my, -+ -, my of the kind

my = [ﬁjikm‘]] (431)

for some fixed # > 0, where [-] denotes the chosen integral function.

Next, By means of the framework established in [11], from Theorem 3.5, Lemma 4.2, Lemma
4.3, Lemma 4.4 and Lemma 4.6, we obtain the following Theorem 4.7.
Theorem 4.7. Assume that the hypotheses of Theorem 3.5 and (4.28)—(4.30) hold and the sym-
metric Gauss-Seidel, SSOR or Jacobi iteration is used as a smoother, then for any sufficiently
small hy, the error of the cascadic multigrid method can be estimated by

J

* hi

|lus = ujllie SCZm—’%(||U||3,Q+||f||3,Q)- (4.32)
k=1 k

The similar argument of Lemma 1.3 and Lemma 1.4 in [2] leads to the following theorems.
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Theorem 4.8. Let the number my, of iterations on level k be given by (4.31). Then the accuracy
of the cascadic multigrid method for the isoparametric element taking into account numerical
integration s

2
R h_Jw(
1—5 m;

. [lulls,0 + | flls,), for B> 2L/,
llus —ujlha < B2 "
C-J E(|lullse + [|flls,e) for g=27.

o
J

(4.33)

Theorem 4.9. Let the number my, of iterations on level k be given by (4.31). Then the com-
putational cost of the cascadic multigrid method for the isoparametric element is proportional
to

J 1
kank < { —ZmIng, for B <4, (4.34)
P CJmyny, for [=4.

If we choose to fix accuracy, we obtain as an immediate consequence of our results the
following Theorem 4.10.
Theorem 4.10. If the Gauss-Seidel or Jacobi iteration is used as a smoother and the number
of iteration on level J is

my = [m.J?].

The error of the cascadic multigrid method for the isoparametric element is

. h5
lus = ujllie < C =7 (llulls.o +|fls.9) (4.35)
m

*
and the complexity of computation is

J
kank < Cmany(1+logny)3. (4.36)
k=1

Remark. If the conjugate gradient method is used as a smoother, Theorem 4.7 still holds.
The reader may refer to [2] for details.

References

[1] R. Bank and T.Dupont, An optimal order process for solving finite element equations, Math.
Comp., (1981), 35-51.

[2] F.A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problem, Numer.
Math., 75 (1996), 135-152.

[3] D. Braess and W. Dahmen, A cascade multigrid algorithm for the Stokes equations, Numer. Math.,
82 (1999), 179-192.

[4] J. Bramble, Multigrid Methods, Pitman, 1993

[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

[6] P.G. Ciarlet, P. A. Raviart, The combined Effect of Curved Boundaries and Numerical Integration
in Isoparametric Finite Element, The Mathematical Foundations of the Finite Element Method
with Applications to Partial Differential Equations. (A.K.Aziz, Editor), Academic Press, New
York, 407-474, 1972.

[7] P. Deuflhard, Cascadic conjugate gradient methods for elliptic partial differential equations,
Alorithm and numerical results, In Keyes, D., Xu, J. (eds) Proceeding of the 7th International
Conference on Domain Decomposition Methods 1993, 29-42. AMS. Providence.



136 C.J. BI AND L.K. LI

[8] Li-kang Li, Approximate boundary condition and numerical integration in isoparametric finite
element methods, in Proceedings of the China-France Symposium on finite element methods, K.
Feng and J. L. Lions, ed., Science Press, China, 1983.

[9] Li-kang Li and Jin-ru Chen, Preconditioning Isoparametric Finite Element Methods Taking into
Account Numerical Integration, Appl. Math. and Comput., 87 (1997) 271-288.

[10] V. Shaidurov and L. Tobiska, The convergence of the cascadic conjugate-gradient method applied
to elliptic problems in domains with re-entrant corners, Math. Comp., 69 (1999), 501-520.

[11] Zhong-ci Shi and Xue-jun Xu, Cascadic multigrid method for elliptic problems, FEast-West
J.Numer.Math., 7 (1999), 199-209.

[12] Zhong-ci Shi and Xue-jun Xu, Cascadic multigrid for parabolic problems, J. Comput. Math. , 18
(2000), 551-560.



