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Abstract. In this research, motion and deformation of a red blood cell (RBC) in a mi-
crochannel with stenosis is investigated by combined Lattice Boltzmann-Immersed
Boundary method. The fluid flow occurs due to the pressure difference between the in-
let and the outlet of the microchannel. The immersed boundary algorithm guaranteed
that there is no relative velocity between the RBC and fluid. Therefore, mass transfer
along the immersed border does not occur. It can be seen that the healthy RBC has
more deformation and passes the stenosis easier while the sick one passes the stenosis
with less deformation and returns to its initial state faster. Increasing the pressure gra-
dient (i.e., increasing Reynolds number) would cause more deformation of the RBC.
It is found that a healthy RBC moves faster than a sick one along the microchannel.
Blood pressure increases due to the presence of stenosis and low deformable RBCs.It
is the reason of many serious diseases including cardiovascular diseases. The results
of this paper were compared to the previous valid results and good agreements were
observed.
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1 Introduction

Blood is a non-homogeneous fluid that mainly consists of blood cells, plasma, and nu-
trients. Blood circulation in microvessels delivers oxygen and nutrients to living tissues
and removes metabolic wastes. Red blood cells (RBCs) have biconcave discoid shapes of
8 m diameter and form 40 to 45% of the blood volume [1]. When the diameter of RBCs
are comparable with the vessel dimensions of capillaries, the co-interaction of RBCs and
the interaction between RBCs and plasma significantly affects the overall properties of
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blood [2]. For instance, the deformed shape of blood cells or the changes in plasma vis-
cosity is a symptom of various diseases, such as acute myocardial infarction, malaria, and
sickle cell anemia [3–5]. The RBC membrane can undergo large deformations and the cell
shape is squeezed to a diameter of 3m while flowing through the vessel. Deformed RBCs
may increase blood viscosity and flow resistance, thus resulting in myocardial infarction
and apoplexy [6].The circulation phenomenon can be aggravated under the presence of
a pathological condition such as stenosis inside the microvessel, such as stenosis [7, 8].

Recently, the lattice Boltzmann method (LBM) in combination with IBM has been
used for simulating the motion and deformation of elastic bodies immersed in fluid flow
including red blood cells (RBCs). The LBM is fast, accurate, relatively simple, compatible
with the desired geometries and highly parallelizable. Zhang et al. [9,10] studied the dy-
namic behavior of RBC in shear flow and channel flow and investigated several hemody-
namic and rheological properties, using a combination of LBM and IBM.. Cheng et al. [11]
have proposed a proper model to simulate the fast boundary movements and a high pres-
sure gradient occurred in the fluid-solid interaction. In their research mitral valve jet flow
considering the interaction of leaflets and fluid has been simulated. Navidbakhsh and
Rezazadeh [12] carried out a numerical study on the behavior of malaria-infected RBC.
Vahidkhah and Abdollahi [13] simulated the motion of a massless elastic object in a two-
dimensional viscous channel flow numerically using IBM-LBM. Dadvand et al. [14, 15]
investigated numerically the motion and deformation of a RBC in a viscous shear flow
utilizing a combined LBM-IBM. Due to the advances in micro-machine technology, exper-
iments have been done on RBCs in a micro-channel with constriction [16–18]. Eggleton
and Popel [19] combined immersed boundary method (IBM) with finite element method
to simulate three-dimensional deformation of a RBC in a shear flow. Pozrikidis [20]
has used boundary integral method to study motion and deformation of RBCs in the
shear flow and the flow in the channel. Zhao et al. [21] have studied the time varia-
tions of RBCs deformation and flow resistance in the stenosed microchannels having a
diameter less than 10µm, using boundary integral method. Sun and Munn [22, 23] have
studied RBC deformation of two-dimensional RBC in a 20-40µm channel using lattice
Boltzmann method (LBM). They modeled the RBCs as two-dimensional solid particles.
Bagchi [8] simulated a suspension containing multiple cells in the range of vessel size
20-30µm and discharge hematocrit 10-60%, using IBM. Wang et al. [24] have used IB-
M with a spring model for simulating the blood flow in vessels with 8-11µm diameter
and discharge hematocrit 10-41%. They have also studied hydrodynamic hemorheologic
properties such as umbrella shaped cells, flat velocity profile and Fahraeus effect. X-
iong [25] used LBM-IBM to examine changes in the wall shear stress induced by RBC
passing through micro-channel with 5-11µm diameter. Li et al. [26] have used LBM for
two-dimensional simulating of rigid particle suspensions in a stenosed microchannel.
Hyakutake [27] conducted a two-dimensional simulation of the stenosed microvascular
flow with rigid RBCs assuming primary pulmonary hypertension due to the stenosis of
lung arteriole using LBM.

In the present article, motion and deformation of both healthy and sick RBC is inves-
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tigated in a microchannel with stenosis using Lattice Boltzmann method and Immersed
Boundary method.The results of this paper were compared to the available results and
good agreements were observed.

2 Governing equations

It was mentioned in introduction that in the IBM the fluid is represented on an Eule-
rian coordinate and the structure is represented on a Lagrangian coordinate. A typical
two-dimensional example of an elastic solid membrane with curved boundary has been
shown in Fig. 1. Consider a flexible solid membrane with the curved boundary Γ im-
mersed in the two-dimensional incompressible viscous fluid domain Ω. The membrane
boundary Γ is characterized by the Lagrangian parameter s, and the fluid domain Ω is
represented by Eulerian coordinates x⃗. Hence any point on the membrane can be written
as X⃗(s,t), where s is arc length, and t is time.

Hence, the equations governing the combination of fluid and solid motions are as
following:

∇·−→u =0, (2.1a)

ρ
(∂−→u

∂t
+−→u ·∇−→u

)
=−∇p+η∇2−→u +

−→
f (−→x ,t), (2.1b)

f⃗ (x⃗,t)=
∫

Γ
F⃗(s,t)δ(x⃗−X⃗(s,t))ds. (2.1c)

To satisfy the no-slip boundary condition on the fluid-solid interface, the velocity of any
point on the solid surface must be equal to that of the adjacent fluid particle, i.e.,

U⃗(s,t)= u⃗
(

X⃗(s,t),t
)
=

∂X⃗(s,t)
∂t

=
∫

Γ
u⃗(x⃗,t)δ

(
x⃗−X⃗(s,t)

)
dx⃗. (2.2)

Figure 1: Schematic representation of immersed boundary (Lagrangian coordinates) and Eulerian mesh for fluid.
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In the above equations, ρ and η are the mass density and dynamic viscosity of the fluid,
respectively. In addition, u⃗ and p indicate the velocity and pressure fields, respectively.
The term f⃗ on the right-side of Eq. (2.1b) denotes the RBC (Red Blood Cell) forces (tensile
and bending) due to the elastic boundary immersed in the fluid.

Eq. (2.1c) indicates that the force density of the fluid f⃗ (x⃗,t) is obtained from the force
density of the RBC F⃗(s,t). Eq. (2.2) represents the no-slip condition at the fluid-solid
interface, as the solid boundary moves with the same velocity as that of the surrounding
fluid.

Mathematically the Dirac delta function δ(x⃗) is discontinuous and has to be smoothed
for numerical implementation:

δ(x⃗)=
1
h2 ∆

( x
h

)
∆
(y

h

)
, (2.3)

where

∆(r)Z=


1
8

(
3−2r+

√
1+4r−4r2

)
, for 0≤ r≤1,

1
8

(
5−2r−

√
−7+12r−4r2

)
, for 1< r≤2,

0, for 2< r,

where h is the distance between two Eulerian grid points and r denotes the distance
between any two Eulerian and Lagrangian points.

In the IBM, to calculate the momentum exchange, the following collision function is
used:

fi(x⃗+ êi∆t,t+∆t)− fi(x⃗,t)=−
fi(x⃗,t)− f eq

i (x⃗,t)
τ

+∆tki, (2.4)

where fi (x⃗,t) is the density distribution function of particles with the velocity êi located
at position x⃗ at time t. ∆t is time step, f eq

i (x⃗,t) is the equilibrium distribution function,
τ indicates the dimensionless relaxation time and ki denotes the body force associated
with the immersed body. In the present research, the LBM with two-dimensional model
of D2Q9 has been used (see Fig. 2).

The particle velocity in the corresponding nine directions can be written as follows:

êi =


(i,i), i=0,(

cos
π

2
(i−1),sin

π

2
(i−1)

)
c, i=1−4,

√
2
(

cos
π

2
(i−2/9),sin

π

2
(i−2/9)

)
c, i=5−8,

(2.5)

where c=∆x/∆t. Here, ∆x is the distance between two successive nodes in the Euler grid.
In the present research it is assumed that ∆x/∆t=1. The equilibrium density distribution
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Figure 2: D2Q9 lattice model.

function is written as follow:

f eq
i (x⃗,t)=wiρ

[
1+3

(êi ·u⃗)
C2 +

9
2
(êi ·u⃗)2

C4 − 3
2
|u⃗|2
C2

]
. (2.6)

The fluid pressure p is calculated via an isothermal equation of state (p = ρC2
s ), where

(Cs=c/
√

3) is the speed of sound and ρ is density. In addition, wi are weight coefficients
with the following values,

Wi =


4/9, i=0,
1/9, i=1−4,
1/36, i=5−8.

(2.7)

The elastic force in the lattice Boltzmann equation ki is defined as,

ki =
(

1− 1
2τ

)
Wi

[
3
(êi ·u⃗)

C2 +9
(êi ·u⃗)2

C4 êi

]
· f⃗i. (2.8)

In addition, the density and microscopic fluid velocity are calculated from the following
relations,

ρ=
8

∑
i=0

fi, (2.9a)

u⃗=
1
ρ

[ 8

∑
i=0

fi êi+
∆t
2

f⃗
]
. (2.9b)

The kinematic viscosity v in the D2Q9 model is related to the dimensionless relaxation
time τ as follows:

v=C2
s

(
τ− 1

2

)
∆t. (2.10)
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The Lagrangian force density F⃗ comprises two parts of tension-compression F⃗s and bend-
ing F⃗b forces, i.e.,

F⃗(s,t)= F⃗s (s,t)+ F⃗b (s,t). (2.11)

This force is related to the elastic potential energy density ω as follows (thanks to the
virtual work theorem):

F⃗(s,t)=−∂ω

∂X⃗
=−∂(ωs+ωb)

∂X⃗
, (2.12)

where

ws =
1
2

Es

N−1

∑
j=1

( |X⃗j+1−X⃗j|
∆s

−1
)2

∆s (2.13)

and

wb =
1
2

Eb

N−1

∑
j=2

( |X⃗j+1−2X⃗j+X⃗j−1|
(∆s)4

)2
∆s. (2.14)

Here, Es and Eb are elastic modulus (tension/compression constant) and bending modu-
lus, respectively.

The discretized form of Lagrangian force density F⃗, and elastic potential energy den-
sity will become,

(F⃗s)k =
Es

(∆s)2

N−1

∑
j=1

{
(|X⃗j+1−X⃗j|−∆s)×

X⃗j+1−X⃗j

|X⃗j+1−X⃗j|
(δj,k−δj+1,k

}
, (2.15a)

(F⃗b)k =
Eb

(∆s)4

N−1

∑
j=2

{
(X⃗j+1−2X⃗j+X⃗j−1)(2δj,k−δj+1,k−δj−1,k)

}
. (2.15b)

In Eqs. (2.13)-(2.15b), k = 1,2,··· ,N, (N is the total number of Lagrangian nodes on the
RBC), (F⃗s)k and (F⃗b)k are elastic Lagrangian forces associated with the node k on the RBC
and δj,k is the Kronecker delta function.

When the Lagrangian forces on the RBC are calculated, all the translational and rota-
tional speeds are updated explicitly. It should be noted that the solid RBC moves contin-
uously based on Newtonian dynamics and finally the new position of the membrane is
obtained.

In the present work, the blood is considered as Newtonian fluids. The Newtonian
nature of these fluids has been well estimated [2]. The non-Newtonian behaviour of
blood is mainly due to the deformation of RBCs [8].
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The time-averaged pressure p̄, the Re number and other dimensionless parameters
are defined as follows:

p̄=
1

t2−t1

∫ t2

t1

p(t)dt, Re=
ρumaxH

µ
, x=

x∗

H
, (2.16a)

y=
y∗

H
, p=

p̄
pout−pin

, t=
t∗umax

H
. (2.16b)

Where x, y, p and t denote respectively the dimensionless vertical coordinate, horizontal
coordinate, flow pressure and time. In addition, H, umax, pout and pin are the height
of microchannel, the maximum velocity of the Poiseuille flow and the outlet and inlet
pressures of the microchannel, respectively.

In the absence of external forces, a RBC assumes a bi-concave disk, the surface to
volume ratio of which is considerably greater than that of a sphere and it can easily pass
through the capillaries [28]. The cross-section profile of a RBC in x-y plane is given by
the following relation [29]:

x=sinθ, y=cosθ
[
0.207+2.002sinθ−1.122sin2θ

]
, 0< θ<2π. (2.17)

A modified periodic boundary condition is used at the inlet and outlet boundaries of
the microvessel. To apply pressure gradient in Boltzmann method two methods can be
used. In the first method pressure gradient will be replaced by an equivalent volumetric
force. In the second method modified periodic boundary condition is used. But the
use of equivalent volumetric force, has good agreement for uniform channels. Using
modified periodic boundary condition has more precision in channels with uniform cross
section [30].

The so-called bounce back boundary condition is imposed on the straight parts of mi-
crovessel wall and the Bouzidi-Firdaouss-Lallemand [31] boundary condition is applied
on the curved parts of the microvessel walls.

3 Validation

For a membrane in the shear flow the tumbling motion has been studied by previous
researches both experimentally and numerically [32–35]. In this section, to compare our
results with the numerical results of Bagchi result [8], a microchannel with the length of
L=2500µm, the height of H=40µm involving a membrane with the diameter of D=8µm
and the elastics and bending moduli of Es=6×10−6N/m, Eb=72×10−19N·m, respective-
ly is considered. The Reynolds number is considered equal to 0.07 and the flow viscosity
is set to 0.001Pa·s. In Fig. 3(a) the tumbling motion of the membrane due to its high
hardness has been illustrated. In Figs. 3(b), (c) and (d) the present numerical results have
been compared with numerical results of Bagchi result [8], which represent good agree-
ments. The vertical migration of the membrane’s centroid has been depicted in Fig. 3(b).
In general, the vertical migration of the membrane is a very slow process. The membrane
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(a)

(b) (c) (d)

Figure 3: Tumbling motion of a membrane in Poiseuille flow (a), vertical displacement (b), horizontal velocity
component (c), vertical velocity component (d) of the membrane.

experiences a displacement of 10µm along the vertical direction, while it displaces about
2500µm in the longitudinal direction. The migration degree depends on the deformabil-
ity of membrane. The horizontal and vertical components of the membrane velocity are
shown in Figs. 3(c) and (d), respectively. The velocity oscillations are due to the tum-
bling motion of the membrane. These oscillations elevate as the deformability of the
membrane decreases. The negative values of the vertical component of the membrane
velocity is because of its downward motion.

4 Results and discussion

Consider a Poiseuille flow between two walls. The fluid velocity at the walls is taken
to be zero. Flow occurs due to pressure gradient between the inlet and the outlet of
the microchannel. The constant values are given in Table 1. The Reynolds number is
considered to be 0.35.

Table 1: Grid dimensions and physical properties.

Number of Eulerian points in the x-direction 500
Number of Eulerian points in the y-direction 100
Number of Lagrangian points 60
Time step 1.2µs
relaxation time 1
Fluid density 1000kg/m3 [10]
Plasma viscosity 1.2cp [10]
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Figure 4: Geometry and nomenclature of the microchannel with stenosis.

Figure 5: Motion and deformation of a healthy (high deformable) RBC through a microchannel with stenosis.

Figure 6: Motion and deformation of a sick (low deformable) RBC through a microchannel with stenosis.

Fig. 4 show the initial position of the RBC which is located below the central line
of microchannel. The RBC length in vertical direction is considered 65 Eulerian lattice
unit. Due to the force inserted to RBC from flow, Lagrangian grids of RBC shifts. It
produces Lagrangian force. The Eulerian force inserted to the flow around the RBC is
obtained with Eq. (2.1c). At the beginning of the solution RBC is suddenly released into
the microchannels. In other words, RBC starts to move with a speed equal to developed
flow at habitat and there is no relative speed between the cell and flow. Before he RBC
released the flow has been developed. In fact, the flow has been assumed developed
Poiseuille.

In Fig. 5 the healthy RBC is considered, which has the elastics moduli of 6×10−6N/m
and the bending moduli of 2×10−19N·m. In Fig. 6, the sick RBC is considered, which
has the elastics moduli of 6×10−5N/m and the bending moduli of 4×10−18N·m. These
values are identical to those given in [36, 37].

The obtained results display an increment in the velocity of blood flow in the stenosis
part. According to this fact, more deformations of the RBC would take place at this
section. Both tank- treading and tumbling phenomena due to stiffness of the sick RBC can
be seen in in Figs. 5 and 6, respectively [32]. The circular symbol on the RBC illustrates
its rotation.

In the case, which the RBC is put below the center line of microchannel; it does not
collide with the bottom walls of the stenosis (in order to avoid numerical instability, there
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Figure 7: Variations of non-dimensional volumetric flow rate.

is at least one lattice unit distance between the microchannel and RBC’s walls). Because
of the obstacle existence in the way of the RBC in this case, the RBC inevitably moves
towards the center of microchannel and stenosis. It can be seen that the healthy RBC has
more deformation and passes the stenosis easier while the sick one is passed the stenosis
with less deformation and returned to its initial position faster. This conclusion is in
agreement with Hyakutake and Hongo [38] findings.

Healthy RBC has higher velocity than sick RBC [25,39]. Due to the existence of steno-
sis, more losses are appeared and consequently velocity of the RBC is reduced. Existence
of stenosis decreases the velocity of the RBC before and after the stenosis and causes in-
crement of its value during passing through the stenosis. Healthy and sick RBCs reach
the end of michrochannel in time duration of 0.4 and 1.7 respectively. It should be noted
that fast or slow motion of the RBC with respect to its normal state, causes inappropriate
exchange of materials between the cell wall and the surrounding flow, which deteriorates
its most important task of exchanging the materials with tissues.

Fig. 7 demonstrates the variations of non-dimensional volumetric flow rate with re-
spect to the non-dimensional elastic modulus of RBC (E∗

s =Es/ρu2
maxH) in a michrochan-

nel with stenosis at x=2.5. The flow rate is defined as Q=
∫

udy. The subscript ”0” in Fig. 7
refers to the microchannel without RBC. In addition, the relation between flow rate and
other parameters in pure plasma fluid (without RBC) is expressed as follow as Q0=

∆pH3

12µL ,
where ∆p, µ, H and L are pressure difference between the inlet and outlet, pure plasma
viscosity, height and length of the microchannel, respectively [36]. Sick RBC produces a
greater region of flow passage blocked causing a decrease in the flow velocity around the
RBC. As a result, the volumetric flow rate decreases and the apparent viscosity and flow
resistance increase. Increment of blood viscosity is indication of a disease named sickle
cell anemia, where RBCs become sickle and stiffer and hence lose their ability of carrying
oxygen [3].

Creation of stenosis in vessel causes the speed of blood transformation decrease and
the process of supply of oxygen by RBCs become a serious problem for patient and blood
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Figure 8: Time-averaged flow pressure at y=0.5.

pressure is increased. If this problem does not be resolved, it would cause physical prob-
lems for patient since the blood can hardly be transferred to other vessels. More cardio-
vascular diseases are relatedto the abnormal blood flow rate such as anemia ischemia
caused by occurring vessel obstruction.It is observed that if the amount of stenosis in-
creased, RBCs that have high stiffness andlow flexibility pass blocked vessels hardly. In
addition, they block the other cells’ path. If this process continues, it causes the risk of
heart attack.

Fig. 8 displays the dimensionless time-averaged pressure of the flow in the microchan-
nel with stenosis at y=0.5. Pressure also has been normalized with the pressure difference
between the inlet and outlet of the microchannel. In the case of pure plasma motion in
the microchannel (without RBC), the pressure decreases along the vessel due to frictional
losses. For Sick RBC, the flow passage is more blocked due to the lack of flexibility of the
RBC and hence it causes the flow velocity to decrease. As a result, the pressure around
the RBC increases and becomes even higher than the inlet pressure of microchannel. This
increased pressure is the reason of many serious diseases including cardiovascular dis-
eases.

In Fig. 9, Lagrangian points velocity vector of the healthy RBC (at t=0.8) and the sick
RBC (at t=1.2) at the exit region of the stenosis is observed. The RBC center is located at
x=3.3, approximately. The Healthy RBC adapts itself easily with the flow and deforms
more easily. The sick RBC have tumbling motion because of its more stiffness and it is
almost vertical while exiting from stenosis. This way that sick cells exit from stenosis,
slow down the flow velocity at stenosis and increase the blood pressure in this part of
microchannel (Fig. 8). The reason of the slowdown is that the sick RBC blocks larger
amount of patient blood flow.

In Fig. 10 horizontal component of flow velocity contour at time t= 0.25 (Fig. 10(a))
and at time t=0.8 (Fig. 10(b)) is shown. One can see in Fig. 10(a) the healthy RBC adopt
itself with flow because of higher deformability and passes more easily. Unlike as can
be seen from Fig. 10(b), the flow velocity around the sick RBC is lower; meaning that



R. Esmaily, N. Pourmahmoud and I. Mirzaee / Adv. Appl. Math. Mech., 10 (2018), pp. 62-76 73

(a) (b)

Figure 9: Velocity vector of lagrangian points (a) healthy RBC and (b) sick RBC at time passing the stenosis.

(a) (b)

Figure 10: Horizontal component of flow velocity contour for (a) the healthy RBC and (b) the sick RBC.

the sick RBC is more rigid and barricades against the flow in stenosis part. This event in
turn increases the blood pressure in the stenosis area as it can be seen in Fig. 8. Immersed
boundary algorithm ensures that there is no relative speed between the RBC wall and the
fluid. So immersed mass transfer does not occur along the boundary. RBC is assumed
for a ring which the flow exists inside and outside it.

In Fig. 11, the effect of Reynolds number increment (i.e., Re=3.5) on deformation of
the sick RBC (Fig. 6) is shown. The more the Reynolds the more deformation of RBC is
achieved due to increase pressure difference between inlet and outlet of microchannel.
So the RBC can pass the stenosis easier and faster. In fact, more shear force applied
from fluid on the RBC which causes the RBC to become more stretch in the longitudinal
direction.

5 Conclusions

In this manuscript, a hybrid LBM-IBM is used to simulate the hydrodynamic interaction
of RBCs having different elastic moduli in a stenosed microchannel. The RBCs are con-
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Figure 11: The effect increases of Reynolds number on deformation of the sick RBC.

sidered as elastic boundaries immersed in the fluid flow and represented in Lagrangian
coordinates. The coupling method between the fluid and solid membranes is based on
the IBM, which uses a uniform and fixed Eulerian mesh and removes the burden of ex-
pensive mesh updating in the traditional Arbitrary Lagrangian Eulerian (ALE) approach.
The results were found to be in good agreement with available previous data. The present
obtained results showed that healthy RBC moves faster than the sick one. Blood pressure
increases at the presence of stenosis and low deformable RBC, which is the reason of
many serious diseases including cardiovascular diseases. It was seen that the healthy
RBC had more deformation and passed the stenosis easier while the sick one passed the
stenosis with less deformation and returned to initial state faster. Finally the effect of
Reynolds number increasing was studied that illustrated the pressure gradient (increas-
ing Reynolds number) would cause more deformation of the RBC.
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