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Abstract. Using the standard mixed Galerkin methods with equal order elements to
solve Biot’s consolidation problems, the pressure close to the initial time produces
large non-physical oscillations. In this paper, we propose a class of fully discrete stabi-
lized methods using equal order elements to reduce the effects of non-physical oscilla-
tions. Optimal error estimates for the approximation of displacements and pressure at
every time level are obtained, which are valid even close to the initial time. Numerical
experiments illustrate and confirm our theoretical analysis.
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1 Introduction

The Biot’s consolidation model describes the time-dependent interaction between the de-
formation of an elastic porous material and the fluid flow inside of it. This problem was
first proposed by Terzaghi [1], and summarized by Biot [2–4]. Biot’s model is widely
used in geomechanics, hydrogeology, petrol engineering and biomechanics. This paper
focuses on the quasi-static Biot’s consolidation model.

Variational principles for Biot’s consolidation problem and finite element approxi-
mations based on the Galerkin method were presented in [5–9]. Asymptotic behavior
of semi-discrete finite element approximations of the Biot’s consolidation problem was
discussed in [8]. The authors analyzed the standard mixed Galerkin methods for the
Biot’s consolidation problem in [9]. Long-time stability was proved since they obtained
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an exponential decay of the error in the initial data in time. Error estimates on the LB-
B (Ladyzhenskaya-Babuška-Brezzi) stable and LBB unstable spaces combinations were
presented. For the LBB stable cases, the error estimates were optimal even close to the
initial time. On the other hand, for the unstable cases, especially those with equal-order
of interpolation, the lack of stability close to the initial time results from an unstable ap-
proximation of the initial condition. Therefore, oscillations of the pressure close to the
initial time may happen. Some researches [9, 10] are devoted to working on this issue.
Murad and Loula [9] proposed a post-processing technique, which has to use the LBB
stable space combinations in the post-processing. Paper [10] presented a penalty sta-
bilized scheme using equal-order linear space, the numerical experiments showed the
good stability and convergence of their method, but no further theoretical analysis is giv-
en. A fully discrete stabilized discontinuous Galerkin method was proposed in [11], error
estimates for the pressure close to the initial time and numerical experiments were not
given.

Motivated by the stabilized methods for the Stokes problem [13–19], in this paper we
proposed a large class of fully discrete stabilized methods including the method in [10].
By adding a weak consistent term with time derivate of pressure, we obtain additional
control of the pressure. Then we establish the error estimates for the velocities and pres-
sure with arbitrary combination of interpolations. The error estimates are optimal even
close to the initial time. Numerical experiments illustrate and confirm our theoretical
analysis.

An outline of the paper is as follows. In Section 2, we introduce the quasi-static Biot’s
consolidation model. In Section 3, we propose and analyze the stability of our methods.
In Section 4 we give error estimates for our scheme. In Section 5, we give some numerical
experiments. In Section 6, we conclude the whole paper.

Throughout this paper, we use C to denote a positive constant independent of ∆t and
h, not necessarily the same at each occurrence.

2 The quasi-static Biot’s consolidation model

Let Ω ∈ R
d (d = 1,2,3) be a bounded domain with polygonal or polyhedral boundary

Γ= ∂Ω. We use Wm,p(Ω), W
m,p
0 (Ω) to denote the m-order Sobolev spaces on Ω, and use

‖·‖m,p, |·|m,p to denote the norm and semi-norm on these spaces, respectively. When p=2,

we set Hm(Ω)=Wm,p(Ω), Hm
0 (Ω)=W

m,p
0 (Ω) and ‖·‖m=‖·‖m,p, |·|m= |·|m,p. Denote the

inner product of Hm(Ω) by (·,·)m and (·,·)=(·,·)0. Let X denote a Banach space with the
norm ‖·‖X . We define

L∞(0,T;X)=
{

v∈X : ess sup0≤t≤T‖v‖2
X <∞

}

, (2.1a)

L2(0,T;X)=

{

v∈X :
∫ T

0
‖v‖2

X dt<∞

}

, (2.1b)
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H1(0,T;X)=

{

v∈X :
∫ T

0

(

‖v‖2
X+

∥

∥

∥

∥

dv

dt

∥

∥

∥

∥

2

X

)

dt<∞

}

. (2.1c)

Vector analogues of the Sobolev spaces along with vector-valued functions are denoted
by upper and lower case bold face font, respectively, e.g., H1

0(Ω), L2(Ω) and u. Let Th =
{K} be a quasi-uniform simplex partitioning of Ω, hK stands for the diameter of K and
h=maxK∈Th

hK.

To simplify of notations, we consider the Biot’s consolidation problem for constant
coefficient case:

{

−Au+∇p= f in Ω×(0,T],

∇·Dtu−Bp= g in Ω×(0,T],
(2.2)

where

Au=µ∆u+(µ+λ)∇·u, (2.3a)

Bp=
κ

η
∆p. (2.3b)

f=f(x,t)∈R
d×[0,T] represents a given body force, g=g(x,t)∈R×[0,T] represents a forced

fluid ex-traction or injection process, u=u(x,t)∈R
d×[0,T], represents the displacements,

p= p(x,t)∈R×[0,T] is the pore pressure. The coefficients µ, λ and κ are Lamé constants
and the permeability of the porous skeleton, respectively, and η denotes the viscosity
of the pore fluid, T denotes a positive constant. Dt denotes time derivative. The initial
condition is given by

∇·u(x,0)=0 on Ω, (2.4)

and the boundary condition is given by

u=0,
κ

η
∇p·n= g1 on Γ1, (2.5)

and

p=0, (λ∇·uI+2µε(u))n= f1 on Γ2, (2.6)

where Γ1∪Γ2 =Γ with Γ1 and Γ2 disjoint subsets of Γ with non-null measure, f1 = f1(t)∈
R

d∩L2(Γ1) and g1= g1(t)∈R∩L2(Γ2), I is a d×d matrix, ε(u)=(∇u+∇Tu)/2.

In this paper we always assume the solution of (2.2)-(2.6) is smooth enough. We define
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the forms

a(u,v)=2µ(ε(u),ε(v))+λ(∇·u,∇·v) , (2.7a)

b(v,p)=(∇·v,p) , (2.7b)

d(p,q)=

(

κ

η
∇p,∇q

)

, (2.7c)

F(v)=(f,v)+
∫

Γ2

f1vdΓ, (2.7d)

G(q)=(g,q)+
∫

Γ1

g1qdΓ, (2.7e)

and we introduce the displacements and pressure spaces

V=
{

v∈H1(Ω) :v=0 on Γ1

}

, (2.8a)

Q=
{

q∈H1 (Ω) : q=0 on Γ2

}

. (2.8b)

From Korn’s inequality and the fact that Γ1 has non-null measure we have:

Lemma 2.1. ‖ε(v)‖0 is a norm on V, and is equivalent to ‖v‖1. Then the variational formulation
for problem (2.2) with the initial condition (2.4) and the boundary conditions (2.5)-(2.6) consists
of the following:

Find the initial value (u0,p0)∈V×L2(Ω) such that
{

a
(

u0,v
)

−b
(

v,p0
)

=F0(v), ∀v∈V,
b
(

u0,q
)

=0, ∀q∈L2(Ω),
(2.9)

and (u,p)∈V×Q for any t∈ (0,T] such that
{

a(u,v)−b(v,p)=F(v), ∀v∈V,
b(Dtu,q)+d(p,q)=G(q) , ∀q∈Q.

(2.10)

Let Vh=V×Pl(Th) and Qh=Q×Pm (Th), where l≥1, m≥1, then we have the following
approximation properties.

Lemma 2.2. There exists a pair of interpolation operator (Ih, Jh) from V×Q to Vh×Qh such
that,

‖u−Ihu‖0+h|u−Ihu|1≤Chl+1 |u|l+1 , ∀u∈V∩Hl+1(Ω), (2.11a)

‖p− Jh p‖0+h|p− Jh p|1≤Chm+1 |p|m+1 , ∀p∈q∩Hm+1(Ω). (2.11b)

We also introduce the interpolation operator used in our paper, find (uI ,pI)∈Vh×Qh

such that
{

a(uI ,vh)−b(vh,pI)= a(u,vh)−b(vh,p), ∀vh∈Vh,

d(pI ,qh)=d(p,qh), ∀qh ∈Qh.
(2.12)
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It’s obvious problem (2.12) is well-defined. Using the technique in [12, 20], we have the
error estimates

‖u−uI‖0+h|u−uI |1

≤Chs+1
(

‖u‖l+1+‖p‖m+1

)

, ∀u∈V∩Hl+1(Ω), p∈Q∩Hm+1(Ω), (2.13a)

‖p−pI‖0+h|p−pI |1≤Chm+1‖p‖m+1 , ∀p∈Q∩Hm+1(Ω), (2.13b)

where s =min(l,m+1). Applying Dt and Dtt on (2.12) and using the technique in [20]
again, we have the error estimates

‖Dt(u−uI)‖0+h|Dt(u−uI)|1≤Chs+1
(

‖Dtu‖l+1+‖Dt p‖m+1

)

,

∀Dtu∈V∩Hl+1(Ω), Dt p∈Q∩Hm+1(Ω), (2.14a)

‖Dt(p−pI)‖0+h|Dt(p−pI)|1≤Chm+1‖Dt p‖m+1 ,

∀Dt p∈Q∩Hm+1(Ω), (2.14b)

‖Dtt(u−uI)‖0+h|Dtt(u−uI)|1≤Chs+1
(

‖Dttu‖l+1+‖Dtt p‖m+1

)

,

∀Dttu∈V∩Hl+1(Ω), Dtt p∈Q∩Hm+1(Ω), (2.14c)

‖Dtt(p−pI)‖0+h|Dtt(p−pI)|1≤Chm+1‖Dtt p‖m+1 ,

∀Dtt p∈Q∩Hm+1(Ω). (2.14d)

For simplicity, we define

En =dtu
n−Dtu

n, (2.15)

where dtu
n is defined as

dtu
n :=

un−un−1

∆t
. (2.16)

We also define

eu=ξ+η=(uI−uh)+(u−uI), (2.17a)

ep=γ+β=(pI−ph)+(p−pI). (2.17b)

The standard Galerkin method using θ- difference for (2.9), (2.10) reads.
Find

(

u0
h,p0

h

)

∈Vh×Qh such that
{

a
(

u0
h,vh

)

−b
(

vh,p0
h

)

=F0(vh), ∀vh∈Vh,

b
(

u0
h,qh

)

=0, ∀qh∈Qh.
(2.18)

Find
(

un
h ,pn

h

)

∈Vh×Qh such that

{

a
(

un
h ,vh

)

−b
(

vh,pn
h

)

=Fn (vh), ∀vh∈Vh,

b
(

dtu
n
h ,qh

)

+θd
(

pn
h ,qh

)

+(1−θ)d
(

pn−1
h ,qh

)

= θGn (qh)+(1−θ)Gn−1(qh), ∀qh ∈Qh,
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where 0≤ θ≤1, 1≤n≤N. When θ=1 we obtain the backwards difference methods.
Find

(

un
h ,pn

h

)

∈Vh×Qh such that
{

a
(

un
h ,vh

)

−b
(

vh,pn
h

)

=Fn (vh), ∀vh∈Vh,

b
(

dtu
n
h ,qh

)

+d
(

pn
h ,qh

)

=Gn(qh), ∀qh∈Qh,
(2.19)

where 1≤n≤N.
We notice that (2.18) is a Stokes problem, it’s not well-posed unless Vh×Qh satisfies

the discrete LBB condition. If the initial value isn’t needed (the initial pressure isn’t need-
ed), we don’t need to solve (2.18), since we can use b

(

u0
h,qh

)

= 0 in (2.19), when n = 1.
Otherwise, we propose the following scheme to solve the initial value.

Let the conforming space Vh0×Qh0⊂V×Q satisfy the condition

Vh×Qh⊆Vh0×Qh0, (2.20)

and there exists a pair of interpolation operator (Ih, Jh) from V×Q to Vh×Qh such that,

‖u−Ih0u‖0+h|u−Ih0u|1≤Chl0+1‖u‖l0+1 , ∀u∈V∩Hl0+1(Ω), (2.21a)

‖p− Jh0 p‖0+h|p− Jh0 p|1≤Chm0+1‖p‖m0+1 , ∀p∈Q∩Hm0+1(Ω). (2.21b)

From (2.20), it’s obviously that

l≤ l0, m≤m0. (2.22)

We use two steps to solve the initial value.

Step 1 Find
(

u0
h0,p0

h0

)

∈Vh0×Qh0 such that
{

a
(

u0
h0,vh

)

−b
(

vh,p0
h0

)

=F0(vh), ∀vh∈Vh0,

b
(

u0
h0,qh

)

+αMh0

(

p0
h0,qh

)

=0, ∀qh∈Qh0,
(2.23)

where Mh0(ph,qh) is a LBB stabilized term and α=1. If Vh0×Qh0 satisfies the LBB
condition, α=0. Then we have the error estimates,

∣

∣u0−u0
h0

∣

∣

1
+
∥

∥p0−p0
h0

∥

∥

0
≤Chs0

(

∥

∥u0
∥

∥

l0+1
+
∥

∥p0
∥

∥

m0+1

)

, (2.24)

where
s0=min(l0,m0+1).

Step 2 Find
(

u0
h0,p0

h0

)

∈Vh×Qh such that
{

a
(

u0
h,vh

)

−b
(

vh,p0
h

)

= a
(

u0
h0,vh

)

−b
(

vh,p0
h0

)

, ∀vh∈Vh,

d
(

p0
h,qh

)

=d
(

p0
h0,qh

)

, ∀qh ∈Qh.
(2.25)

Then we have the error estimates,
∣

∣u0−u0
h

∣

∣

1
≤Chs

(

∥

∥u0
∥

∥

l+1
+
∥

∥p0
∥

∥

m+1

)

, (2.26a)

∥

∥p0−p0
h

∥

∥

0
≤Chs0

(

∥

∥u0
∥

∥

l0+1
+
∥

∥p0
∥

∥

m0+1

)

+Chm+1
∥

∥p0
∥

∥

m+1
. (2.26b)



G. Chen and M. F. Feng / Adv. Appl. Math. Mech., 10 (2018), pp. 77-99 83

3 New stabilized methods

3.1 The stabilized scheme

In this section, we will give a unified form of our new stabilized methods. We invoke the:
let the symmetrical bilinear functional Mh(p,q) satisfy the hypothesis:

Mh(p,q)≤Mh(p,p)1/2Mh(q,q)1/2, ∀p,q∈V, (3.1a)

Mh(ph,ph)≤‖ph‖
2 , ∀ph ∈Vh, (3.1b)

Mh(p,p)≤Ch2r‖p‖2
r , ∀p∈Hr (Ω), (3.1c)

where r is a fixed integer satisfying 0≤ r≤m. And there exists an interpolation operator
jh :H1

0(Ω)∩V→H1
0(Ω)∩Vh for any v∈H1

0(Ω)∩V and qh ∈Qh, there holds

|(∇·(jhv−v),qh)|≤Ch−1Mh(qh,qh)
1/2(‖jhv−v‖0+h|jhv−v|1), (3.2a)

‖v−jhv‖0+h|v−jhv|1≤Chm+1‖v‖m+1 , v∈V∩H1
0(Ω)∩Hm+1(Ω). (3.2b)

The stabilized method for the Biot’s consolidation problems reads: seek (uh,ph)∈Vh×Qh

such that
{

a(uh,vh)−b(vh,ph)=F(vh), ∀vh∈Vh,

b(Dtuh,qh)+d(ph,qh)+Mh(Dt ph,qh)=G(qh), ∀qh ∈Qh.

The θ- difference scheme of last scheme reads:
Seek

(

un
h ,pn

h

)

∈Vh×Qh such that



















a
(

un
h ,vh

)

−b
(

vh,pn
h

)

=Fn (vh), ∀vh∈Vh,
b
(

dtu
n
h ,qh

)

+θd
(

pn
h ,qh

)

+θMh(dt pn
h ,qh)

+(1−θ)d
(

pn−1
h ,qh

)

+(1−θ)Mh(dt pn−1
h ,qh)

= θGn (qh)+(1−θ)Gn−1(qh), ∀qh ∈Qh,

where 0≤θ≤1, 1≤n≤N. When θ=0 and θ= 1
2 , the last scheme is forward difference and

Crank-Nicolson difference scheme, respectively. In this paper we only give an analysis
of the backwards difference scheme, i.e., θ=1 in last scheme: seek

(

un
h ,pn

h

)

∈Vh×Qh such
that

{

a
(

un
h ,vh

)

−b
(

vh,pn
h

)

=Fn (vh), ∀vh∈Vh,
b
(

dtu
n
h ,qh

)

+d
(

pn
h ,qh

)

+Mh(dt pn
h ,qh)=Gn(qh), ∀qh ∈Qh.

(3.3)

Subtracting (3.3) from (2.10) we get the error estimates equation,







a(ξn,vh)−b(vh,γn)=0, ∀vh∈Vh,
b(dtξ

n,qh)+d(γn,qh)+Mh(dtγ
n,qh)

=b(En,qh)−b(dtη
n,qh)−Mh(dtβ

n,qh)+Mh(dt pn,qh), ∀qh∈Qh.
(3.4)
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Applying dt on the first equation in (3.5) we get

a(dtξ
n,vh)−b(vh,dtγ

n)=0, ∀vh∈Vh, n≥1. (3.5)

Lemma 3.1. There exists a constant C, for any ph ∈Qh such that

sup
vh∈Vh,vh 6=0

(∇·vh,ph)

‖vh‖1

+CMh(ph,ph)
1/2≥C‖ph‖0. (3.6)

Proof. We define

C0=
1

|Ω|

∫

Ω
phdx. (3.7)

So for any ph ∈Qh, there exists v∈H1
0(Ω)⊂V, such that

∇·v= ph−C0, ‖vh‖1≤C‖ph−C0‖0. (3.8)

Then we have

‖ph−C0‖
2
0=(∇·v,ph−C0)=(∇·v,ph)

=(∇·(v−jhv),ph)+(∇·jhv,ph)

≤Ch−1Mh (ph,ph)
1/2(‖jhv−v‖0+h|v−jhv|1)+(∇·jhv,ph)

≤CMh(ph,ph)
1/2‖ph−C0‖0+(∇·jhv,ph), (3.9)

this implies (3.6).

Lemma 3.2. Under the definitions from (2.15) to (2.17b), we have the estimates

‖∇·En‖2
0≤C∆t‖∇·Dttu‖

2
L2(tn−1,tn;L2(Ω)) , (3.10a)

‖∇·dtη
n‖2

0≤C
h2s

∆t

(

‖Dtu‖
2
L2(tn−1,tn;Hl+1(Ω))+‖Dt p‖2

L2(tn−1,tn;Hm+1(Ω))

)

. (3.10b)

Theorem 3.1. Let
(

un
h ,pn

h

)

∈ Vh×Qh and (u,p) ∈ V×Q be the solution to (3.3) and (2.10),
respectively. Then, we have the error estimates

max
1≤n≤N

(

2µ‖ε(un−un
h)‖

2
0+λ‖∇·(un−un

h)‖
2
0

)

+ max
1≤n≤N

(

κ

η
‖∇(pn−pn

h)‖
2
0+Mh(pn−pn

h ,pn−pn
h)

)

+∆t
N

∑
i=1

(

2µ
∥

∥

∥
ε
(

dt

(

ui−ui
h

))
∥

∥

∥

2

0
+λ
∥

∥

∥
∇·dt

(

ui−ui
h

)
∥

∥

∥

2

0

)

+∆t
N

∑
i=1

(

κ

η

∥

∥

∥
∇
(

pi−pi
h

)∥

∥

∥

2

0
+Mh

(

dt

(

pi−pi
h

)

,dt

(

pi−pi
h

))

)

≤CT

(

h2m+h2l+h2r+∆t2
)

+Ch2s0−2
(

∥

∥u0
∥

∥

2

l0+1
+
∥

∥p0
∥

∥

2

m0+1

)

, (3.11)
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where CT is represented by

CT =C
(

‖∇·Dttu‖
2
L2(0,T;L2(Ω))+‖Dtu‖

2
L2(0,T;Hl+1(Ω))+‖Dt p‖

2
L2(0,T;Hm+1(Ω))

)

+C
(

‖Dtu‖
2
L∞(0,T;Hl+1(Ω))+‖Dt p‖2

L∞(0,T;Hm+1(Ω))

)

. (3.12)

Proof. Testing (3.4) with vh=dtξ
n, qh=γn+dtγ

n, we get

a(ξn,dtξ
n)+d(γn,dtγ

n)+Mh(dtγ
n,γn)+b(dtξ

n,dtγ
n)

+d(γn,γn)+Mh(dtγ
n,dtγ

n)

=b(En,γn)−b(dtη
n,γn)+b(En,dtγ

n)−b(dtη
n,dtγ

n)−Mh(dtβ
n,γn)

+Mh(dt pn,γn)−Mh(dtβ
n,dtγ

n)+Mh(dt pn,dtγ
n) . (3.13)

Testing (3.5) with vh=dtξ
n we get

a(dtξ
n,dtξ

n)−b(dtξ
n,dtγ

n)=0. (3.14)

Add (3.13), (3.14) together we get

a(ξn,dtξ
n)+d(γn,dtγ

n)+Mh(dtγ
n,γn)+a(dtξ

n,dtξ
n)

+d(γn,γn)+Mh(dtγ
n,dtγ

n)

=b(En,γn)−b(dtη
n,γn)+b(En,dtγ

n)−b(dtη
n,dtγ

n)−Mh(dtβ
n,γn)

+Mh(dt pn,γn)−Mh(dtβ
n,dtγ

n)+Mh(dt pn,dtγ
n) . (3.15)

Then we have

∆tdt (a(ξ
n,ξn)+d(γn,γn)+Mh(γ

n,γn))

+2∆t(a(dtξ
n,dtξ

n)+d(γn,γn)+Mh(dtγ
n,dtγ

n))

≤C∆t(‖∇·En‖0+‖∇·dtη
n‖0)(‖γn‖0+‖dtγ

n‖)

+C∆t
(

Mh(dtβ
n,dtβ

n)1/2+Mh(dt pn,dt pn)1/2
)

(‖γn‖0+‖dtγ
n‖). (3.16)

From Lemma 3.1 and (3.5), we get

‖dtγ
n‖≤C sup

v∈Vh,v 6=0

b(v,dtγ
n)

‖v‖1

+CMh(dtγ
n,dtγ

n)1/2

=C sup
v∈Vh,v 6=0

a(dtξ
n,v)

‖v‖1

+CMh(dtγ
n,dtγ

n)1/2

≤Ca(dtξ
n,dtξ

n)1/2+CMh(dtγ
n,dtγ

n)1/2
. (3.17)
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Combining (3.16), (3.17), and Lemma 3.2 we get

∆tdt (a(ξ
n,ξn)+d(γn,γn)+Mh(γ

n,γn))

+∆t(a(dtξ
n,dtξ

n)+d(γn,γn)+Mh (dtγ
n,dtγ

n))

≤Ch2s
(

‖Dtu‖
2
L2(tn−1,tn;Hl+1(Ω))+‖Dt p‖

2
L2(tn−1,tn;Hm+1(Ω))

)

+C∆t2‖∇·Dttu‖
2
L2(tn−1,tn;L2(Ω))+Ch2r‖Dt p‖2

L2(tn−1,tn;Hr+1(Ω)) . (3.18)

Adding last equation form 1 to n, we get

(

2µ‖ε(ξn)‖2
0+λ‖∇·ξn‖2

0+
κ

η
‖∇γn‖2

0+Mh(γ
n,γn)

)

+∆t
n

∑
i=1

(

2µ
∥

∥

∥
ε
(

dtξ
i
)
∥

∥

∥

2

0
+λ
∥

∥

∥
∇·dtξ

i
∥

∥

∥

2

0

)

+∆t
n

∑
i=1

(

κ

η

∥

∥

∥
∇γi

∥

∥

∥

2

0
+Mh(dtγ

n,dtγ
n)

)

≤CT

(

h2s+∆t2+h2r
)

+Ch2s0−2
(

∥

∥u0
∥

∥

2

l0+1
+
∥

∥p0
∥

∥

2

m0+1

)

. (3.19)

We use triangle inequality to get our final result.

3.2 The form of the stabilization term

In this section we will give the concrete form of the stabilized term Mh(p,q), satisfying
the assumptions (3.1a)-(3.2b).

3.2.1 Penalty stabilized method

The penalty stabilized term proposed in [10] is C0h2(∇dt pn
h ,∇qh), where the numerical

analysis is not given. This method is include in the class of our stabilized method, since
we can define

Mh(ph,qh)=C0h2 (∇ph,∇qh), (3.20)

then we have (3.1a), (3.1c) with r = 1. Take jhu=uI, we also have (3.2a), (3.2b). As for
(3.1b), we have

Mh(ph,ph)=C0h2‖∇(ph−C1)‖
2
0≤C‖ph−C1‖

2
0 , (3.21)

from the arbitrariness of C1, we have (3.1b).

So the actual stabilized term in (3.7) is

Mh(dt pn
h ,qh)=C0h2 (∇dt pn

h ,∇qh).
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3.2.2 Pressure stabilized method

When l≥m≥1, we can define

Mh(ph,qh)=C0((id−πm−1)ph,(id−πm−1)qh) , (3.22)

or

Mh(ph,qh)=C0h2(∇(id−πm−1)ph,∇(id−πm−1)qh) . (3.23)

When m=1, (3.24) is the same as (3.20), and is equivalent to (3.22) since

Ch‖∇ph‖0=Ch‖∇(id−π0)ph‖0≤‖(id−π0)ph‖0≤Ch‖∇ph‖0. (3.24)

When l≥m≥2, we only have to verify (3.2a), (3.2b). Obviously, Vh×Pm−1(Th) satisfying
the discrete LBB condition, so we have Fortin interplant πF , for any v∈H1

0(Ω)∩V, such
that

πFv∈H1
0(Ω)∩Vh, b(qh0,v)=b(qh0,πFv), ∀qh0∈Pm−1(Th), (3.25a)

‖v−πFv‖1≤Chk−1‖v‖k, 1≤ k≤m+1, v∈Hm+1(Ω)∩H1
0(Ω)∩V. (3.25b)

So we have

|(∇·(πFu−u),qh)|=|(∇·(πFu−u),(id−πm−1)qh)|

≤C‖∇(πFu−u)‖0‖(id−πm−1)qh‖0 . (3.26)

Taking r=m and jh =πF we have (3.2a), (3.2b). The actual stabilized term in (3.7) is

Mh(dt pn
h ,qh)=C0((id−πm−1)dt pn

h ,(id−πm−1)qh) .

Or
Mh(dt pn

h ,qh)=C0h2(∇(id−πm−1)dt pn
h ,∇(id−πm−1)qh).

3.2.3 Orthogonal projection and local projection stabilized method

The orthogonal projection method is

Mh(ph,qh)=Ch2((id−πh)∇ph,(id−πh)∇qh). (3.27)

Where πh is the L2-projection onto H1
0(Ω)∩Vh. For any u∈H1

0(Ω)∩V, we have

|(∇·(πhu−u),qh)|= |(πhu−u,∇qh)|

=|(πhu−u,(id−πh)∇qh)|≤C‖(id−πh)∇qh‖0‖πhu−u‖0 . (3.28)

Taking r=m and jh=πh, we have verified (3.2a), (3.2b). For the local projection stabilized
method we refer to [15], in where exists a interplant jh such that jhu−u is orthogonal to
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the projection space. This is similar to the orthogonal projection method. So the actual
stabilized term in (3.7) is

Mh(dt pn
h ,qh)=Ch2 ((id−πh)∇dt pn

h ,(id−πh)∇qh),

where s0=min(l0,m0+1).

Find
(

u0
h0,p0

h0

)

∈Vh×Qh such that

{

a
(

u0
h,vh

)

−b
(

vh,p0
h

)

= a
(

u0
h0,vh

)

−b
(

vh,p0
h0

)

, ∀vh∈Vh,

d
(

p0
h,qh

)

=d
(

p0
h0,qh

)

, ∀qh∈Qh.
(3.29)

Then we have the error estimates,

∣

∣u0−u0
h

∣

∣

1
≤Chs

(

∥

∥u0
∥

∥

l+1
+
∥

∥p0
∥

∥

m+1

)

, (3.30a)

∥

∥p0−p0
h

∥

∥

0
≤Chs0

(

∥

∥u0
∥

∥

l0+1
+
∥

∥p0
∥

∥

m0+1

)

+Chm+1
∥

∥p0
∥

∥

m+1
. (3.30b)

4 Numerical experiments

This section includes two numerical examples to verify and illustrate the convergence
and performance of our stabilized methods.

4.1 Convergence verification

To simplify of notaions, we set d= 2, Ω=(0,1)×(0,1), T = 1, µ=λ= κ = η = 1, and the
border condition is u=0, p=0 on Γ. The true solution of (2.2) is











u1=10x2(1−x)2y(1−y)(1−2y)exp(−t),

u2=−10x(1−x)(1−2x)y2(1−y)2exp(−2t) ,

p=10x2(1−x)2y(1−y)(1−2y)exp(−3t) .

(4.1)

The computational mesh is a regular triangulation with 2×2×n (n=1/h) triangles, and
the stabilized method (3.3) with the cases

M1











Vh0×Qh0=(V∩P2(Th))×(V∩P1(Th)),

Vh×Qh=(V∩P1(Th))×(V∩P1(Th)),

∆t=h, Mh(ph,qh)=h2(∇ph,∇qh),

(4.2a)

M2











Vh0×Qh0=(V∩P2(Th))×(V∩P1(Th)),

Vh×Qh=(V∩P1(Th))×(V∩P1(Th)),

∆t=h, Mh(ph,qh)=((id−π0)ph,(id−π0)qh),

(4.2b)
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M3











Vh0×Qh0=(V∩P2(Th))×(Q∩P1(Th)),

Vh×Qh=(V∩P1(Th))×(V∩P1(Th)),

∆t=h, Mh(ph,qh)=h2 ((id−πh)∇ph,(id−πh)∇qh),

(4.2c)

M4











Vh0×Qh0=(V∩P3(Th))×(Q∩P2(Th)),

Vh×Qh=(V∩P2(Th))×(V∩P2(Th)),

∆t=h2, Mh(ph,qh)=h2((id−πh)∇ph,(id−πh)∇qh).

(4.2d)

Tables 1-4 give the errors of these methods, where rH(u), rL(p), rmax(u) and rmax(p) repre-
sented the convergence rate of EH(u), EH(p), Emax(u) and Emax(p), and

EH(u)=∆t

(

N

∑
n=1

|un−un
h |

2
1

)
1
2

, EH(p)=∆t

(

N

∑
n=1

|pn−pn
h |

2
1

)
1
2

, (4.3a)

Emax(u)= max
1≤n≤N

|un−un
h |1 , Emax(p)= max

1≤n≤N
|pn−pn

h |1 . (4.3b)

From the tables we can see the convergence rates of our stabilized methods are exactly as
we predicted in Section 3.

Table 1: Errors of M1.

1
h EH(u) EH(p) Emax(u) Emax(p) rH(u) rL(p) rmax(u) rmax(p)

8 0.05258960 0.02320830 0.0820553 0.0478414
16 0.02776750 0.01297680 0.0453947 0.0290779 0.92 0.84 0.85 0.72
32 0.01419200 0.00683919 0.0237734 0.0160180 0.97 0.92 0.93 0.86
64 0.00717135 0.00350619 0.0121638 0.0084005 0.98 0.96 0.97 0.93

Table 2: Errors of M2.

1
h EH(u) EH(p) Emax(u) Emax(p) rH(u) rL(p) rmax(u) rmax(p)

8 0.05259010 0.02283020 0.0820569 0.0469630
16 0.02776760 0.01293830 0.0453949 0.0289757 0.92 0.82 0.85 0.70
32 0.01419200 0.00683482 0.0237734 0.0160054 0.97 0.92 0.93 0.86
64 0.00717135 0.00350566 0.0121638 0.0083989 0.98 0.96 0.97 0.93

Table 3: Errors of M3.

1
h EH(u) EH(p) Emax(u) Emax(p) rH(u) rL(p) rmax(u) rmax(p)

8 0.05258990 0.02290340 0.0820562 0.0471696
16 0.02776750 0.01294160 0.0453949 0.0289886 0.92 0.82 0.85 0.70
32 0.01419200 0.00683498 0.0237734 0.0160062 0.97 0.92 0.93 0.86
64 0.00717135 0.00350567 0.0121638 0.0083989 0.98 0.96 0.97 0.93
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Table 4: Errors of M4.

1
h EH(u) EH(p) Emax(u) Emax(p) rH(u) rL(p) rmax(u) rmax(p)

4 0.02685460 0.01352580 0.0439391 0.0310246
8 0.00745967 0.00373234 0.0126604 0.0094883 1.85 1.86 1.80 1.71

16 0.00190719 0.00095230 0.0032665 0.0024278 1.97 1.97 1.95 1.97
32 0.00047886 0.00023862 0.0008220 0.0005997 1.99 2.00 1.99 2.02

4.2 The performances close to initial time

In this section we show the performances close to initial time using M1-M4 and the stan-
dard Galerkin method (2.19) with the cases

G1 :Vh×Qh =(V∩P1(Th))×(V∩P1(Th)), (4.4a)

G2 :Vh×Qh =(V∩P2(Th))×(V∩P2(Th)), (4.4b)

G3 :Vh×Qh =(V∩P2(Th))×(V∩P1(Th)), (4.4c)

in which we do not have to solve the initial problems. We let ∆t = 10−6. The error of
pressure when t≤10−4 is presented in Fig. 1.

In Fig. 2, we can see that the error of pressure is pretty big when t is towards 0 using
equal-order elements; our stabilized method and the standard Galerkin method using
LBB stabile element have very good numerical performances.

Figure 1: Comparison of different methods.
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Figure 2: The pressure solved by G1 and the exact pressure.

4.3 Terzaghi problem

We compare the performance of standard Galerkin method and our stabilized method.
Consider the 1-d Terzaghi problem:















−
∂2u

∂x2
+

∂p

∂x
=0, (x,t)∈ (0,1)×(0,T],

∂

∂t

(

∂u

∂x

)

−
∂u

∂x
=0, (x,t)∈ (0,1)×(0,T],

(4.5)

the initial and border condition are


























∂u

∂x
(0,t)=−1, p(0,t)=0, t∈ [0,T],

u(1,t)=0,
∂p

∂x
(1,t)=0, t∈ [0,T],

∂u

∂x
(x,0)=0, x∈ [0,1].

(4.6)

The true solution of the equation is


















u(x,t)=(1−x)−
∞

∑
i=0

2cos(mix)

m2
i

exp
(

−m2
i t
)

,

p(x,t)=
∞

∑
i=0

2sin(mix)

mi
exp

(

−m2
i t
)

,

(4.7)

where

mi=
2n+1

2
π. (4.8)
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Figure 3: The pressure solved by G2 and the exact pressure.

in which π is the circumference ratio. In our computation, we use 32 elements and ∆t=
T=10−6. Compare the standard Galerkin method G1-G3 and the stabilized method (3.3)
with the cases

S1 :







Vh×Qh =Vh0×Qh0=(V∩P1(Th))×(V∩P1(Th)),

Mh(ph,qh)=Mh0(ph,qh)=h2

(

∂ph

∂x
,
∂qh

∂x

)

,
(4.9a)

S2 :

{

Vh×Qh=Vh0×Qh0=(V∩P1(Th))×(V∩P1(Th)),

Mh(ph,qh)=Mh0(ph,qh)=δ((id−π0)ph,(id−π0)qh),
(4.9b)

S3 :







Vh×Qh =Vh0×Qh0=(V∩P1(Th))×(V∩P1(Th)),

Mh(ph,qh)=Mh0(ph,qh)=h2

(

(id−π)
∂ph

∂x
,(id−π)

∂qh

∂x

)

,
(4.9c)

S4 :

{

Vh×Qh=Vh0×Qh0=(V∩P2(Th))×(V∩P2(Th)),

Mh(ph,qh)=Mh0(ph,qh)=((id−π1)ph,(id−π1)qh).
(4.9d)

The figures are presented in Fig. 2-Fig. 8.

From the figures we can see: using the equal-order elements to solve the Biot’s prob-
lem, the pressure produces severe concussion; using the LBB stable elements the con-
cussion is minimized; our stabilized methods using equal-order elements overcome the
non-physical concussion pretty well.



G. Chen and M. F. Feng / Adv. Appl. Math. Mech., 10 (2018), pp. 77-99 93

Figure 4: The pressure solved by G3 and the exact pressure.

Figure 5: The pressure solved by S1 and the exact pressure.

4.4 Flow through a cylinder

We consider the problem on Fig. 9, on the outer border u= 0, p= 0, on the inner border
(λ∇·uI+2µε(u))n=n, p=1 and f =0, g=0 and

λ=
νE

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
, (4.10a)

κ=10−7, η=10−4, E=3×104, ν=0.2, T=∆t=10−6. (4.10b)
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Figure 6: The pressure solved by G3 and the exact pressure.

Figure 7: The pressure solved by S3 and the exact pressure.

We plot the pressure at ∆t=10−6 with G1-G3 and S1-S4 in Figs. 10-16. From the figures
we can see: the Galerkin methods using LBB stable elements reduces the oscillations the
Galerkin methods with LBB unstable elements, but there are still oscillations on the outer
border; our stabilized methods eliminate the oscillations and perform well.

5 Conclusions

This paper gives a new class of weak consistent stabilized methods for the Biot’s con-
solidation problems. We prove the stability and the convergence of our method. The
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Figure 8: The pressure solved by S4 and the exact pressure.

Figure 9: Domain and mesh.

numerical experiments illustrate and confirm the theoretical analysis. Nonconforming
stabilized methods for the Biot’s soil consolidation problems will be a new topic in forth-
coming research.
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Figure 10: The pressure solved by G1.

Figure 11: The pressure solved by G2.

Figure 12: The pressure solved by G3.
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