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Abstract. In this paper, we consider the mixed finite element method (MFEM) of the
elasticity problem in two and three dimensions (2D and 3D). We develop a new resid-
ual based stabilization method to overcome the inf-sup difficulty, and use Langrange
elements to approximate the stress and displacement. The new method is uncondi-
tionally stable, and its stability can be obtained directly from Céa’s lemma. Optimal
error estimates for the H'-norm of the displacement and H(div)-norm of the stress
can be obtained at the same time. Numerical results show the excellent stability and
accuracy of the new method.
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1 Introduction

In this paper, we consider the MFEM of the elasticity problem based on the Hellinger-
Reissner variational principle. As is known to all, this method requires the pairs of the
finite element space satisfy the so-called inf-sup condition. Since the stress tensor re-
quires symmetry, it is difficult to construct the stable mixed finite elements (MFEs). Some
early works employed composite elements [1], or imposed the symmetry of stress tensor
weakly [2-6]. Until 2002, Arnold and Winther proposed the first family of stable MFEs
with respect to triangular meshes which used polynomial shape functions to approxi-
mate the stress and displacement [7], of which the simplified lowest order element has
21 degrees of freedom for the stress and 3 for the displacement (21 plus 3 DOFs), and
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optimal order error estimates were obtained for all variables. An analogous family of
conforming MFEs based on rectangular meshes were proposed in [8], involving 36 plus
3 DOFs for the simplified lowest order element. In [11], using the similar method of [7],
Arnold et al. presented some stable elements in 3D with respect to simplicial meshes,
and even the simplified lowest element has 156 plus 6 DOFs. In addition, some efficient
nonconforming MFEs for this problem also have been proposed. For example, two tri-
angular elements were presented in [9], and the simplified element has 12 plus 3 DOFs;
and a group of rectangular elements were introduced in [10], with the O(h) convergence
order in L?-norm for both the stress and the displacement, and the simplest element em-
ployed 12 plus 4 DOFs. Although many other stable elements were also constructed
based on the ideas of [7], (see [12-17]), these elements still have too many DOFs, and the
implementations are expensive [18], especially for the 3D case.

Recently, some new methods were proposed to construct stable elements for elasticity
problem. In [19], a family of nonconforming rectangular and cubic elements were con-
structed, and an explicit constructional proof of the discrete inf-sup condition was given.
The DOFs are 2 plus 1 in 1D, 7 plus 2 in 2D, and 15 plus 3 in 3D, and the error estimates
for all variables are optimal. In [20-22], some conforming rectangular and cubic elements
were presented, of which the lowest order elements have 8 plus 2 DOFs in 2D, and 18
plus 3 DOFs in 3D. In [23-25], some conforming elements on simplicial meshes were de-
veloped, and the lowest order elements only involve 18 plus 3 DOFs in 2D and 48 plus 6
in 3D. Compared with Arnold-Winther elements, these elements are more compact, and
have less DOFs.

On the other hand, some stabilized methods were also studied for the elasticity prob-
lem to overcome the inf-sup difficulty, such as Galerkin least-squares method [26], Brezzi-
Pitkdranta stabilization [27], variational multiscale method [28], projection stabilization
method [29,30], edge stabilization method [31, 32], and least-squares method [33-36]. In
this paper, we propose a new residual based stabilization method for the elasticity prob-
lem. The equilibrium term is used to augment the coercivity, and the term derived from
the pure displacement equation is used to control the H!-norm of the displacement. The
method is consistent and unconditionally stable. The bilinear form is strongly coercive,
and its stability can be obtained directly from Céa’s lemma. The Language elements of
any order can be used to approximate stress and displacement, so the lowest elements
on simplicial meshes have 9 plus 6 DOFs in 2D, and 24 plus 12 DOFs in 3D, and the
numerical implementations are more easily. In addition, Optimal error estimates for the
H'-norm of the displacement and H (div)-norm of the stress can be obtained at the same
time.

The rest of this paper is organized as follows. In Section 2, we introduce the mixed
form of the elasticity problem and some notations used throughout the paper. In Section
3, we present the new stabilization scheme, prove the stability, and give the error analysis.
In Section 4, we implement two numerical examples to test the stability and convergence
rate of the new method. Throughout the paper we use C to denote a generic positive
constant whose value may change from place to place but that remains independent of
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the mesh size h.

2 Notations and preliminaries

Firstly, we introduce some notations and function spaces. Let (2 be a bounded polygon
domain in RY, d=2,3, and T be the boundary. The unit outward normal vector to I' is
denoted by n=(n1,n,,-+,n4)T, where superscript T represents the transpose of vector or
matrix. In what follows, all vectors are the column vectors. S is the space of symmetric
tensors.

Let p,v = (v1,02,++,04)" and T = (Tjj)axq be a scalar-valued function, vector-valued
function and tensors, respectively. We define

_ (9 9p  op\T
(22, 2y
T . 801 802 aZ)d
Vo= (Vv,Voy,---,Voy)', divo=—+—""H4-+—,
ox;  dx2 X,

divt = (divy,div, - ,divrd)T, where T;= (71, T, /Tid)T/

1
6(’0) = E(VU—F(VU)T), trr=t1+12+- - +14,
d
o= 05jTj, Tn=(T1n,Tn,,TyN).
ij=1
The Sobolev space H*(Q),X) is defined as
HY(Q,X) ={ve *(Q,X)|D"e L*(Q,X), V|a| <k}, (2.1)

where X ranges R,R? or S. When X =R or k =0, we use H*(Q)) or L?(Q,X) instead,
respectively. Let || - || be the standard Sobolev norm of H*(Q,X). The divergence space
H(div,),5) is defined by

H(div,0,8) ={t € L*(Q,9)|divt € L>(O,RY)} (2.2)

equipped with the norm

el =/ I3+ lldive . 2.3)

Next, we consider the elasticity problem: given a body force f, find a symmetric stress
tensor ¢ and a displacement u such that

Aoc=¢e(u) in Q,
—dive=f in Q,
u=0 on I'p,
cn=g on I'y,

(2.4)



M. H. Li, D. Y. Shi and Y. Dai / Adv. Appl. Math. Mech., 10 (2018), pp. 100-113 103

where I'p and I'y are Dirichlet and Neumann boundary, respectively, I'pUI'y =T, and
ITp|>0. The compliance tensor A and the elasticity tensor A~ is defined as

1 A
Ao = ﬂ o— W (tro)l, (2.5a)
A e(u) = Mr(e(u))14-2pe(u), (2.5b)

where I is the identical matrix, and A and y are Lamé constants. Let E be Young’s modu-
lus, and v be Poisson’s ratio, then

Ev _E
A+rv1-2v)” " 2a30)

(2.6)

Let
L=H(div,Q,8), V={veH (Q,R)o|r,=0},

then the pure displacement scheme of (2.4) is to find u € V such that

/QA1e(u):e(v)dx:/nf-vdx—k/mg-vds, VoeV. (2.7)

By use of (2.7), our new MFE scheme of (2.4) is to find (o,u) € Z x V such that

( /A(T:de—/ e(u):'rdx—i-'yl/ dive-divtdx
0 0 0
:—'yl/ f-divtdx, VTeL,
, o , (2.8)
—/ e(v):crdx—’yz/ A le(u):e(v)dx
0 0
——(1 [ frodes [ govds), Yoev,
k (+’)’2)( va x+ rNgvs) v

where 7y; >0, 72 >0 are stabilization parameters, and independent of &. In what follows,
we let

Q((U,u),(r,v)):/QAU:de—/ﬂ‘t:G(u)dx—k/éU:G@)dx

+'Yl/ diva'-divrdx+’yz/ A te(u):e(v)dx, (2.9a)
0 0

F(t,0)= —'yl/nf-divrdx—k(l—k’h) (/Qf-vdx—l—/rNg-vds). (2.9b)
We rewrite the problem (2.8) as: find (o,u) € X x V such that
Q((e,u),(t,0))=F(t,v), Y(t,v)eXxV. (2.10)
The norm |||-||| on X x V is defined by

()P =17l iy + 1215, (2.11)
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then Q(+,-) is continuous with respect to |||-|||, and there holds
Q(ou),(,u)) 2 Cl|[(e,u)||?, V(o,u) €LV, (2.12)
s0 (2.8) or (2.10) has a unique solution.

Remark 2.1. Our stabilized scheme (2.8) is similar to the Galerkin least squares method
in [26], but our scheme is unconditionally stable.

3 The stabilized MFEMs

Let 7, be a family of regular meshes of (). For each T € 7j,, T can be a triangle or a
quadrilateral in two dimensions, or a hexahedron or a tetrahedron in three dimensions.
For simplicial elements, we consider the affine finite element families

Pe={q,€C°(Q)|qn|r €P(T), VT € Tp}, (3.1)

where Py(T) is the space of k-degree polynomials on T. For quadrilateral and hexahedral
elements, we consider the space

Qe={q,€C°(Q)|gnlT=GnoF*, G e Qx(T)}, (3.2)

where T is a reference element, Qi (T) is the space of polynomials on T whose degrees do
not exceed k in each coordinate direction, and F:T— T is a bilinear or a trilinear mapping.
For convenience, in what follows we will use the symbol Ry to represent both kinds of
finite element spaces Py and Qy. Then we define finite element spaces for the stress and
displacement as

(3.3)

Zh:{TEZh”TERk(T,S)},
V,={veV|v|r €R(T,RH}.

Let I;, and J, be the associated L?-projection operators on Vj, and X, respectively. Then
the mixed finite element approximation of (2.10) is given as: find (o7y,uy) € Zj, x V}, such
that

Q((op,up),(thon)) =F(th,on), V(Th,on) €Ly X V. (3.4)
Since L, x V;,, CE x V, from (2.12), we have
Q((an,up), (enun)) >Cll||(onun)|||?  Y(onuy) €Ly %V, (3.5)

then the scheme (3.4) has a unique solution.
From Céa’s lemma, we have the following error estimate.

Theorem 3.1. Let (o,u) and (oy,,uy,) be the solutions of (2.10) and (3.4), respectively, (o,u) €
H1(Q,S) x (HF1(Q,RY)NV), then we have

o=l gy 1= mally < CH (7l + o). (3.6)
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Proof. Firstly, subtracting (3.4) from (2.10), we can get the following error equation
Q((e—opu—uy),(ty,on)) =0, V(t,01) ELY XV (3.7)

From (3.5) and (3.7), we can obtain

Cll| (o~ Jneup— )| |

<Q(ap—Jyo,uy—Iu),(op— Jyo,u,—Iu))
=Q((c—Jyo,u—Iyu),(o,—Jyo,u,—Iu))
<Cl||(¢ = Jno,u—DLu)||[||[ (o) — Juo,uy,— Lu)ll], (3-8)

that is
(o= Jwerun = D) ||| < Cl[| (o = o, u— L) [[]. (39)
Then by the triangle inequality and interpolation theory we have
(o=, u—wy)[[| <Cl[| (e —Juo,u—Ba) ||| < CH ([l st + |2 flir)- (3.10)
The proof is completed. U

Remark 3.1. For any y; >0, 2 >0, we can obtain the optimal error estimates for the H L
norm of the displacement and H(div)-norm of the stress at the same time. If take y; =0,
or vy = (’)(hZ) as that in [26], our method is still stable, and we can obtain the optimal
error estimate of L2-norm for the displacement by Aubin-Nitsche duality technique, but
can not get the error estimate of the H(div)-norm for the stress.

4 Numerical implementation

In this part, we test the stability and accuracy of the stabilization method. To compare
the results of different elements, we employ the following relative error

l|u—uyllo [t —uy |1

ewo= 14— ttlo, R LY @.12)
[[u]lo ]2
o—o0, o —onl ai
ero—17=lo oty = L) (4.1b)
lo[lo o]l 1 (aiv)

Next we compute two examples.

Example 4.1. This is a two dimensional example with Q= [0,1]?, and the exact displace-
ment u is given as

u:< e1=22) 31 (1—x7) 22 (1—1x7) > (4.2)

sin(7txq ) sin(7tx;)
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Table 1: The errors of the P; —P; pair for y1=1, 7, =1.

w0 order €yl order s 0 order €o div order
1 1.27E-01 3.90E-01 1.95E-01 5.30E-01
2 3.32E-02 1.94019 1.96E-01 0.98980 1.34E-01 0.54079 2.74E-01 0.95018
3 836E-03 199100 9.83E-02 0.99828 7.61E-02 0.81705 1.43E-01 0.94233
4 208E-03 2.00363 4.92E-02 0.99985 3.22E-02 1.24036 7.47E-02 0.93363
5 b5.21E-04 199954 246E-02 1.00004 1.14E-02 1.49419 3.85E-02 0.95728
Table 2: The errors of the P; — Py pair for y1 =1, 7, =0.1.
w0 order eyl order s 0 order €q div order
1 3.55E-01 6.47E-01 1.92E-01 5.31E-01
2 976E-02 1.86369 240E-01 1.43067 1.34E-01 0.51768 2.74E-01 0.95240
3 266E-02 1.87545 1.05E-01 1.19209 7.61E-02 0.81613 1.43E-01 0.94293
4 7.13E-03 1.89818 5.01E-02 1.06648 3.22E-02 1.24065 7.47E-02 0.93377
5 1.85E-03 1.94408 247E-02 1.02047 1.14E-02 1.49416 3.85E-02 0.95733
Table 3: The errors of the P; — Py pair for y1=1, 7, =0.01.
w0 order eyl order s 0 order €q div order
1 1.15E+00 1.73E+00 1.91E-01 5.40E-01
2 299E-01 194364 4.66E-01 1.89038 1.34E-01 0.51019 2.76E-01 0.97112
3 7.99E-02 190203 1.49E-01 1.64133 7.61E-02 0.81878 1.43E-01 0.94804
4 213E-02 190504 5.81E-02 1.36036 3.22E-02 1.24183 7.47E-02 0.93509
5 553E-03 1.94979 2059E-02 1.16370 1.14E-02 1.49410 3.85E-02 0.95768
Table 4: The errors of the P; — P pair for 41 =0.1, yp=1.
€0 order €yl order s order €o div order
1 1.20E-01 3.89E-01 1.45E-01 5.49E-01
2 3.08E-02 196213 196E-01 0.98659 5.47E-02 1.41108 2.93E-01 0.90508
3 7.80E-03 1.98358 9.83E-02 0.99759 1.86E-02 1.55452 1.53E-01 0.94208
4 1.96E-03 1.99279 4.92E-02 0.99955 6.07E-03 1.61605 7.78E-02 0.97268
5 491E-04 199589 246E-02 0.99991 2.00E-03 1.60456 3.92E-02 0.98807

Let E=1, v=0.3. The computations are carried out on the uniform rectangular and tri-
angular meshes, and the triangular meshes are obtained from the uniform rectangular
meshes by inserting diagonal edges. The mesh size & is taken as }, 3, 1%, 35, z4- We com-
pute the P; —P; pair and Q; —Q; pair with different stabilization parameters, to check
the influence of stabilization parameters on numerical results, and the errors and conver-
gence orders are shown in Tables 1-10 and Figs. 1-2.

From Tables 1-10 and Figs. 1-2, we can see that the convergence orders of the L?-norm
for the displacement and stress are 2.0 and 1.0-2.0, respectively, which are higher than our
theoretical analysis. The H!-norm error of the displacement and the H(div)-norm error

of the stress can achieve one order, which accord with our theoretical analysis. The error
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Table 5: The errors of the P; — Py pair for 1 =0.01, yp=1.

€10

order

eu,l

order s 0

order € div

order

1.18E-01
2.98E-02
7.46E-03
1.87E-03
4.67E-04

Gl LN =

1.98242
1.99581
1.99890
1.99948

3.89E-01
1.96E-01
9.82E-02
4.91E-02
2.46E-02

1.25E-01
0.98645 3.17E-02
0.99702 8.07E-03
0.99928 2.10E-03
0.99982 5.63E-04

6.39E-01
3.16E-01
1.97275 1.58E-01
1.94351 7.88E-02
1.89702 3.94E-02

1.98011

1.01542
1.00324
0.99938
0.99890

Table 6:

The errors of the Q1 —Qq pair for y1=1, yp=1.

€10

order

eu,l

order s 0

order €o div

order

4.21E-02
9.73E-03
2.32E-03
5.68E-04
1.41E-04

Qs WO N =

2.11259
2.06813
2.03057
2.01203

2.28E-01
1.14E-01
5.69E-02
2.84E-02
1.42E-02

1.81E-01
1.00323 9.23E-02
1.00139 3.30E-02
1.00052 1.03E-02
1.00016 3.11E-03

2.99E-01
0.96983 1.61E-01
1.48275 8.62E-02
1.68553 4.45E-02
1.72534  2.25E-02

0.89393
0.89965
0.95529
0.98412

Table 7:

The errors of the Q1 — Q4 pair for y1=1, 7, =0.1.

€10

order

eu,l

order €s0

order €o div

order

1.54E-01
4.60E-02
1.29E-02
3.41E-03
8.72E-04

Gl LN~

1.73963
1.83006
1.92173
1.96805

3.05E-01
1.29E-01
5.93E-02
2.88E-02
1.43E-02

1.80E-01
9.20E-02
3.29E-02
1.02E-02
3.10E-03

1.24828
1.11723
1.04294
1.01251

2.99E-01
1.61E-01
8.62E-02
4.45E-02
2.25E-02

0.96724
1.48231
1.68469
1.72423

0.89450
0.89987
0.95540
0.98416

Table 8: The errors of the Q1 — Q1 pair for y1 =1, 9, =0.01.

€10

order

€u1

order s 0

order €o div

order

4.45E-01
1.26E-01
3.47E-02
9.06E-03
2.30E-03

Qi WO N -

1.81919
1.86463
1.93639
1.97624

5.66E-01
1.93E-01
7.31E-02
3.11E-02
1.46E-02

1.79E-01
9.14E-02
3.27E-02
1.02E-02
3.09E-03

1.55374
1.39898
1.23437
1.09299

3.01E-01
1.61E-01
8.63E-02
4.45E-02
2.25E-02

0.96785
1.48239
1.68376
1.72271

0.90263
0.90222
0.95609
0.98435

Table 9:

The errors of the Q1 —Qq pair for y1=0.1, 72 =1.

€10

order

eu,l

order €s0

order Co div

order

4.09E-02
9.87E-03
2.44E-03
6.07E-04
1.51E-04

Qs WD =

2.05164
2.01847
2.00637
2.00221

2.29E-01
1.14E-01
5.69E-02
2.84E-02
1.42E-02

6.99E-02
1.99E-02
5.66E-03
1.64E-03
4.98E-04

1.00510
1.00127
1.00034
1.00009

3.35E-01
1.76E-01
8.96E-02
4.51E-02
2.26E-02

1.81240
1.81366
1.78262
1.72293

0.92819
0.97472
0.99160
0.99716

estimate of L2-norm for the stress is suboptimal, while that of the L2-norm and H!-norm

for the displacement, and the H(div)-norm for the stress can all achieve optimal.
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Table 10: The errors of the Q1 —Qq pair for 1 =0.01, 7, =1.

€0 order €yl order s order Co div order
1 4.24E-02 2.28E-01 4.56E-02 3.54E-01
2 1.05E-02 2.01318 1.14E-01 1.00370 1.11E-02 2.04061 1.80E-01 0.97901
3 2.62E-03 2.00335 5.69E-02 1.00064 2.77E-03 2.00307 9.03E-02 0.99392
4 6.55E-04 2.00096 2.84E-02 1.00014 6.98E-04 1.98581 4.52E-02 0.99821
5 1.64E-04 2.00029 1.42E-02 1.00004 1.78E-04 1.96795 2.26E-02 0.99944

When reduce 1, and keep <1 unchanged, the L?>-norm errors of the displacement
increase, the H!'-norm errors of the displacement increase slightly, and the L?>-norm and
H(div)- norm errors of the stress have no obvious change. When reduce 7; and keep
72 unchanged, the L2-norm errors of the stress reduce, the H (div)-norm errors of the
stress increase slightly, and the L?>-norm and H'-norm errors of the displacement have no
obvious change.

Then we give the errors and convergence orders of the P, — P, pair and Q, — Q> pair

in Tables 11-12 and Fig. 3. In the computation, we take 1 =1, 2 =1 for both pairs.

@

107

—&-VY,=1,P,-P,
—%—Y,=0.1,P,-P,
—©—v,70.01, P P,
-8-%71.Q,-Q,

- %-v,701,Q-Q, ||
-©-Y,700L Q,;-Q,

10" 10°
element size h

()

—B-Y,7L PPy
. —%—V,=0.1,P,-P,
—©—Y,70.01,P,-P,
-B-Y,"1,Q,-Q,

- %-Y,70.1,Q,-Q,
-©-Y,7001,Q-Q

10" 10°
element size h

(b)

10
10°
had -1
S 10 ¢ —8—v,~LP-P,
- —%—V,=0.1,P,-P,
s @ —6—v,=0.01, P, -P,
10 ¢ -B-Y%"1LQ-Q
-%-Y,70.1,Q-Q,
s -©-Y,70.01,Q-Q,
10 :
107 10" 10°
element size h
(d)
10° :
107
=
°© —
oS & {Fv{l, PP,
S —%—V,70.1,P,-P,
10 ¢ —O—Y,70.0L, P P i
-B-Y71Q,-Q,
-%-Y,70.1,Q,-Q,
4 -©-Y,70.01,Q-Q,
1070 — .
10 10 10

element size h

Figure 1: The errors of the P, —P; pair and Q; —Qy pair with 93 =1 and 7, =1,0.1,0.01. (a) L?-norm of the
displacement; (b) H'-norm of the displacement; (c) L2-norm of the stress; (d) H(div)-norm of the stress.
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Figure 2: The errors of the P, —P; pair and Q1 —Q; pair with 91 =1,0.1,0.01 and 9, =1. (a) L?-norm of the
displacement; (b) H'-norm of the displacement; (c) L?-norm of the stress; (d) H(div)-norm of the stress.

Table 11: The errors of P, — P, element for y1 =1, v, =1.

€u,0

order

eu,l

order s 0

order

€ div

order

7.36E-03
5.59E-04
4.27E-05
3.84E-06
4.16E-07

Gl LN =

8.52E-02

3.06E-02

1.29E-01

3.71772
3.71032
3.47779
3.20584

2.04E-02
5.02E-03
1.25E-03
3.12E-04

2.06077
2.02468
2.00729
2.00194

7.12E-03
1.73E-03
4.30E-04
1.07E-04

2.10405 3.33E-02
2.03814 8.41E-03
2.01024 2.11E-03
2.00259 5.28E-04

1.95726
1.98622
1.99514
1.99809

Table 12: The errors of Q; — Q5 element for y1 =1, y,=1.

€10

order eyl

order €s0

order €o div

order

4.02E-03
4.97E-04
6.18E-05
7.71E-06
9.64E-07

Gl WD =

2.33E-02
5.78E-03
1.44E-03
3.60E-04
8.99E-05

3.01773
3.00734
3.00215
3.00058

1.40E-02
2.38E-03
4.71E-04
1.02E-04
2.38E-05

2.01059
2.00426
2.00125
2.00033

3.13E-02
2.55726 8.27E-03
2.33833 2.11E-03
2.20213 5.30E-04
2.10525 1.33E-04

1.91985
1.97387
1.98995
1.99592
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Figure 3: The errors of the P,—P, pair and Qy — Q5 pair. (a) L2-norm of the displacement; (b) H-norm of
the displacement; (c) L2-norm of the stress; (d) H(div)-norm of the stress.

From Tables 11-12 and Fig. 3, we can see that the convergence orders of the L2-norm
for the displacement and the stress are 3.0 and 2.0-3.0, respectively, which are higher
than our theoretical analysis. The H!-norm error of the displacement and H(div)-norm
error of the stress can achieve two order convergence, which accord with our theoretical
analysis.

Example 4.2. We compute the following three dimensional example with Q= [0,1]?

le(l—xl)XQ(l—xZ)X3(1—X3)
u=| 4x;(1—x1)x2(1—x2)x3(1—x3)
6X1(1—X1)XQ(1—JC2) (

(4.3)

Let E=1, v=0.3. The mesh size h is taken as %, %, %6, 3i We give the errors and conver-
gence orders of P; —P; and Q1 —Q; pairs in Tables 13-14 and Fig. 4. In the computation,
we take 71 =0.1, 72 =1 for P, —P; pair and 71 =1, y2=1 for Q1 —Q;.

From Tables 13-14 and Fig. 4, we can see that our method can keep the accuracy and
the convergence order in 3D as that in 2D.
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Table 13: The errors of Py —P; element with 1 =0.1, 1, =1.

€0 order eyl order €r0 order €o div order
1 1.41E-01 4.34E-01 1.75E-01 2.54E-01
2 3.27E-02 210783 222E-01 096851 7.41E-02 1.24200 1.39E-01 0.87278
3 7.84E-03 2.05988 1.12E-01 0.98986 3.14E-02 1.24099 7.43E-02 0.89963
4 191E-03 2.03296 5.61E-02 0.99529 1.29E-02 1.27710 3.90E-02 0.93017
Table 14: The errors of Q1 — Q1 element with 1 =1, 7, =1.
w0 order eul order o0 order €q div order
1 7.71E-02 2.55E-01 1.52E-01 8.04E-02
2 190E-02 2.02371 1.26E-01 1.02014 5.16E-02 1.56034 4.28E-02 0.90808
3 4.74E-03 2.00155 6.26E-02 1.00516 1.88E-02 1.45699 2.23E-02 0.94460
4 1.19E-03 1.98990 3.13E-02 1.00129 7.50E-03 1.32630 1.14E-02 0.96668
b
100 (?) 100 ( ‘)
107}
¢ 107l e /
107}
—A— PP slope=2.0 —A— PP slope=1.0
o —B— Q1_Q1' slope=2.0 " —B— Ql—Ql. slope=1.0
10 - 10 -
107 107 10° 107 10" 10°
element size h element size h
d
100 (?) 100 ( ‘)
107
107}
S 107 é B//
(]
107
107
—A— Pl—Pl, slope=1.0~2.0 —A— Pl_Pl' slope=1.0
_E_Q1_Q1' slope=1.0~2.0 s —a— Pl—Pl, slope=1.0
10™ ‘ 10 ‘
107 107 10° 107 107" 10°

element size h

element size h

Figure 4: The errors of the P; —P; pair and Q —Qy pair in 3D. (a) L?-norm of the displacement; (b) H'-norm
of the displacement; (c) L?-norm of the stress; (d) H(div)-norm of the stress.
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