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Abstract. This article investigates the geometrically nonlinear free vibration of
piezoelectric-piezomagnetic nanobeams subjected to magneto-electro-thermal loading
taking into account size effect using the nonlocal elasticity theory. To this end, the size-
dependent nonlinear governing equations of motion and corresponding boundary
conditions are derived according to the nonlocal elasticity theory and the first-order
shear deformation theory with von Kármán-type of kinematic nonlinearity. The effect-
s of size-dependence, shear deformations, rotary inertia, piezoelectric-piezomagnetic
coupling, thermal environment and geometrical nonlinearity are taken into accoun-
t. The generalized differential quadrature (GDQ) method in conjunction with the
numerical Galerkin method, periodic time differential operators and pseudo arc-
length continuation method is utilized to compute the nonlinear frequency response
of piezoelectric-piezomagnetic nanobeams. The influences of various parameter-
s such as non-dimensional nonlocal parameter, temperature change, initial applied
electric voltage, initial applied magnetic potential, length-to-thickness ratio and dif-
ferent boundary conditions on the geometrically nonlinear free vibration character-
istics of piezoelectric-piezomagnetic nanobeams are demonstrated by numerical ex-
amples. It is illustrated that the hardening spring effect increases with increasing the
non-dimensional nonlocal parameter, positive initial applied voltage, negative initial
applied magnetic potential, temperature rise and decreases with increasing the nega-
tive initial applied voltage, positive initial applied magnetic potential and length-to-
thickness ratio.
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1 Introduction

Nanostructured elements such as nanobeams, nanoplates and nanoshells have been wide-
ly used as main components in nano- and micro-electro-mechanical systems (NEMS and
MEMS). Especially, nano-sized structures made of the piezoelectric-piezomagnetic ma-
terials have attracted a great deal of attention in many research interests due to their
outstanding inherent magneto-electro-thermo-mechanical coupling effects [1–6]. As the
typical component in the NEMS and MEMS, piezoelectric-piezomagnetic nanobeams,
nanoplates and nanoshells have a wide range of applications in nano actuators, trans-
ducers, resonators and robotics [7–12]. Hence, understanding the linear and nonlinear
static and dynamic mechanical behaviors of piezoelectric-piezomagnetic nanostructures
is essential for their applications. The investigation of geometrically nonlinear free vibra-
tion of piezoelectric-piezomagnetic nanostructures in the thermal environment is a major
topic of current interest, which is utilized to fully realize the dynamic characteristic of
piezoelectric-piezomagnetic nanostructures in the large amplitude vibrations.

There are some typical experiments such as nano/micro-bend test, nano/micro-
torsion test and micro/nano indentation test [13–19] and atomistic simulations [20–22],
which have reported the size-dependent mechanical characteristics of small-scale struc-
tures. Hence, it is of great signicance to consider the size effect in mechanical charac-
teristics of piezoelectric-piezomagnetic nanostructures. Since the molecular dynamics
simulations for large-scale nanostructures are restricted by computational capacities and
conducting controlled experiments and operating precision at the nanoscale are difcult,
the size-dependent continuum theories including the nonlocal elasticity theory [23], s-
train gradient elasticity theory [24], modified couple stress theory [25], modified strain
gradient theory [26] and surface stress elasticity theory [27, 28] have been proposed and
have been widely utilized to develop the size-dependent beam, plate and shell models
for the analysis of size-dependent mechanical characteristics of these small-scale struc-
tures [29–37]. Among these theories, the Eringen’s nonlocal elasticity theory is common-
ly utilized to develop the nonlocal continuum models in which the effect of small scale
parameter is incorporated.

Recently, several studies have been performed to study the size-dependent static and
dynamic behaviors of nanostructures based on the nonlocal elasticity theory. More re-
cently, the nonlocal theory has been extended to investigate the size-dependent me-
chanical behaviors of the piezoelectric-piezomagnetic nano-scale structures. Ke and
his co-authors studied the size-dependent thermoelectric-mechanical free vibration [38],
geometrically nonlinear free vibration characteristics [39] and buckling and postbuck-
ling [40] of piezoelectric nanobeams by means of the proposed linear and nonlinear
Timoshenko beam models and nonlocal elasticity theory. Moreover, Ke et al. [41, 42]
performed a series of studies to investigate the thermo-electro-mechanical vibration of
piezoelectric nanoplates using the classical and first-order shear deformable plate theo-
ries. Asemi et al. [43] examined the geometrically nonlinear free vibration of piezoelectric
nanoelectromechanical resonators. In another work, a nonlocal Love thin shell model
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was proposed by Ke et al. [44] to analyze the free vibration of piezoelectric cylindrical
nanoshells under various edge supports. Moreover, a few studies have been performed
on the piezoelectric-piezomagnetic nanostructures including nanobeams, nanoplates and
nanoshells by means of nonlocal elasticity theory. Ke and Wang [45] examined the influ-
ence of the size effect, electric voltage and magnetic potential on the free vibration of a
piezoelectric-piezomagnetic Timoshenko nanobeam. Ansari and Gholami [46] numeri-
cally investigated the free vibration characteristics of piezoelectric-piezomagnetic rectan-
gular nanoplates with various boundary condition in the pre- and post-buckled states.
Recently, Ke et al. [47, 48] analyzed the size-dependent free vibration of piezoelectric-
piezomagnetic nanoplates and embedded nanoshells subjected to the magneto-electro-
thermo-mechanical loading.

Unlike nanostructures made of piezoelectric materials, the mechanical behaviors
of nanostructures made of piezoelectric-piezomagnetic materials have not been exten-
sively explored. Specifically, to the best of authors’ knowledge, the size-dependent
geometrically nonlinear free vibration characteristics of first-order shear deformable
piezoelectric-piezomagnetic nanobeams with different boundary conditions and under
magneto-electro-thermal loading have not been studied so far. In this regard, this s-
tudy is intended to analyze the size-dependent geometrically nonlinear free vibration
of the piezoelectric-piezomagnetic nanobeams by means of the nonlocal elasticity the-
ory and von Kármán geometric nonlinearity. The nonlocal piezoelectric-piezomagnetic
nanobeam model is developed based on the first-order shear deformation beam theory.
The influences of small-scale effect, magneto-electro-thermal coupling effect, transverse
shear deformation and rotary inertia are taken into account. The nonlinear partial dif-
ferential governing equations of motion and corresponding boundary conditions are dis-
cretized using the generalized differential quadrature (GDQ) method. Afterwards, the
numerical Galerkin method and the periodic time differential operators together with
pseudo arc-length continuation scheme are conducted to obtain the nonlinear frequency-
amplitude response curves associated with the geometrically nonlinear free vibration of
the piezoelectric-piezomagnetic nanobeams with various edge supports. The effects of
non-dimensional nonlocal parameter, temperature change, initial applied electric volt-
age, initial applied magnetic potential, length-to-thickness ratio and end supports on the
nonlinear free vibration characteristics of piezoelectric-piezomagnetic nanobeams are in-
vestigated through various numerical examples.

2 Nonlocal theory for the piezoelectric-piezomagnetic elastic

materials

As mentioned in Section 1, the nonlocal elasticity theory emerged from the Erin-
gen [49–51], which could potentially play an important role in the analysis of engineer-
ing problems related to nanotechnology applications, has been utilized in the mathemat-
ical formulation and mechanical analysis of nanostructures made of the piezoelectric-
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piezomagnetic elastic materials. According to the theory of nonlocal elasticity, the e-
quivalent differential forms of the nonlocal constitutive equations for the piezoelectric-
piezomagnetic elastic materials can be expressed as

σij−(e0a)2∇2σij = cijklεkl−emijEm−qnijHn−βij∆T, (2.1a)

Di−(e0a)2∇2Di= eiklεkl+simEm+din Hn+pi∆T, (2.1b)

Bi−(e0a)2∇2Bi=qiklεkl+dimEm+µinHn+λi∆T, (2.1c)

in which ε ij, Ei, Bi, Hi, denote the components of stress tensor, strain tensor, electric
displacement vector, electric field vector, magnetic induction vector and magnetic field
vector, respectively. Moreover, Φ, Ψ, cijkl , emij, sim, qij, dij, µij, pi, λi, denote the elastic,
piezoelectric, dielectric constants, piezomagnetic, magnetoelectric, magnetic, pyroelec-
tric and pyromagnetic material properties, respectively; the thermal moduli and temper-
ature change are represented by βij, ∆T, ∇2, e0a, is the nonlocal parameter.

3 Nonlocal geometrically nonlinear

piezoelectric-piezomagnetic nanobeam model

A first-order shear deformable piezoelectric-piezomagnetic nanobeam with length L,
thickness h, area of cross section A and moment of inertia I subjected to thermo-electro-
magnetic loading is considered in the Cartesian coordinate system. Upon the first-
order shear deformation beam theory, the displacement field of an arbitrary point in the
piezoelectric-piezomagnetic nanobeam can be expressed as

ux (t,x,z)=U(t,x)+zΘx (t,x) , uz(t,x,z)=W (t,x), (3.1)

where ux and uz are the displacements parallel to the x- and y- axes, respectively; U and
W represent the axial and transverse displacements of a given point in the mid-plane,
respectively; Θx denotes the rotation of beam cross-section with respect to y-axis and t is
the time.

According to the von Kármán type geometrical nonlinearity, the non-zero compo-
nents of strain tensor based on the aforementioned displacement field (3.1) can be written
as:

εxx =
∂ux

∂x
+

1

2

(

∂W

∂x

)2

=
∂U

∂x
+z

∂Θx

∂x
+

1

2

(

∂W

∂x

)2

, γxz=

(

Θx+
∂W

∂x

)

. (3.2)

Assuming e0a to be equal to zero, Eq. (2.1) can be used to express the classical coupled
constitutive relations for piezoelectric-piezomagnetic nanobeam under the hypothesis of
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plane stress state as follows:

σxx = c̃11εxx− ẽ31Ez− q̃31Hz− β̃1∆T, (3.3a)

σxz = c̃44γxz− ẽ15Ex− q̃15Hx, (3.3b)

Dx= ẽ15γxz+ s̃11Ex+ d̃11Hx, (3.3c)

Dz= ẽ31εxx+ s̃33Ez+ d̃33Hz+ p̃3∆T, (3.3d)

Bx= q̃15γxz+ d̃11Ex+µ̃11Hx, (3.3e)

Bz= q̃31εxx+ d̃33Ez+µ̃33Hz+λ̃3∆T, (3.3f)

in which the parameters c̃ij, eij, q̃ij and s̃ij appeared in Eq. (3.3) are the reduced elastic,

piezoelectric, piezomagnetic and magneto-electric constants, respectively. Also, d̃ij and
µ̃ij represent the reduced dielectric and magnetic permeability coefficients, respectively.
These reduced material parameters are described as

c̃11= c11−
c2

13

c33
, c̃44= c44, ẽ31= e31−

c13e33

c33
, ẽ15= e15, q̃31=q31−

c13q33

c33
, (3.4a)

s̃11= s11, s̃33= s33+
e2

33

c33
, d̃11=d11, d̃33 =d33+

q33e33

c33
, µ̃11=µ11, (3.4b)

µ̃33=µ33+
q2

33

c33
, q̃15=q15, β̃1=β1−

c13β3

c33
, p̃3= p3+

β3e33

c33
, λ̃3=λ3+

β3q33

c33
. (3.4c)

Moreover, Ei and Hi denote the electric and magnetic fields intensity, respectively. U-
tilizing the quasi-static approximation, the electric and magnetic fields intensity can be
obtained as

E=−∇Φ, (3.5a)

H=−∇Ψ, (3.5b)

where Φ and Ψ denote the scalar electric and magnetic potentials, respectively. Moreover,
it is approximately assumed that the distributions of electric and magnetic potentials are
as follows

Φ=−cos(βz)φE(t,x)+
2z

h
VE, (3.6a)

Ψ=−cos(βz)ψH (t,x)+
2z

h
ΩH, (3.6b)

in which β = π/h, VE and ΩH are the initial applied electric voltage and magnetic po-
tential, respectively. Also, ΦE and ΨH represent the spatial variation of the electric and
magnetic potentials in the x-directions, respectively.

Ex =−
∂Φ

∂x
=cos(βz)

∂φE

∂x
, Ez=−

∂Φ

∂z
=−βsin(βz)φE−

2VE

h
, (3.7a)

Hx =−
∂Ψ

∂x
=cos(βz)

∂ψH

∂x
, Hz=−

∂Ψ

∂z
=−βsin(βz)ψH−

2ΩH

h
. (3.7b)
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The strain energy of the first-order shear deformable piezoelectric-piezomagnetic
nanobeams can be expressed as

Πs1=
1

2

∫ L

0

∫

A
(σxxεxx+σxzγxz−DxEx−DzEz−BxHx−BzHz)dAdx

=
1

2

∫ L

0

{

Nx

[

∂U

∂x
+

1

2

(

∂W

∂x

)2
]

+Mx
∂Θx

∂x
+Qx

(

∂W

∂x
+Θx

)

}

dx

+
1

2

∫ L

0

∫

A

(

−Dxcos(βz)
∂φE

∂x
+Dz

(

βsin(βz)φE+
2VE

h

))

dAdx

+
1

2

∫ L

0

∫

A

(

−Bxcos(βz)
∂ψH

∂x
+Bz

(

βsin(βz)ψH+
2ΩH

h

))

dAdx, (3.8)

where the normal resultant force Nx, shear force Qx and bending moment Mx in a section
are expressed as

Nx =
∫

A
σxxdA, Mx =

∫

A
σxxzdA, Qx=κs

∫

A
σxzdA, (3.9)

in which κs is the shear correction factor. Moreover, the kinetic energy of piezoelectric-
piezomagnetic nanobeam; ΠT can be described as follows:

ΠT =
1

2

∫ L

0

∫

A
ρ

{

(

∂ux

∂t

)2

+

(

∂uz

∂t

)2
}

dAdx

=
1

2

∫ L

0

[

I0

(

∂U

∂t

)2

+ I2

(

∂Θx

∂t

)2

+ I1

(

∂W

∂t

)2
]

dx, (3.10)

where {I0, I2}=ρ{A, I} and A=bh, I=(bh3)/12.
The Hamilton principle is employed to derive the geometrically nonlinear govern-

ing equations of motion of first-order shear deformable piezoelectric-piezomagnetic
nanobeams and associated with corresponding boundary conditions. Thus, the geomet-
rically nonlinear governing equations are obtained as

∂Nx

∂x
= I0

∂2U

∂t2
, (3.11a)

∂

∂x

(

Nx
∂W

∂x

)

+
∂Qx

∂x
= I0

∂2W

∂t2
, (3.11b)

∂Mx

∂x
−Qx = I2

∂2Θx

∂t2
, (3.11c)

∫

A

(

cos(βz)
∂Dx

∂x
+βsin(βz)Dz

)

dA=0, (3.11d)

∫

A

(

cos(βz)
∂Bx

∂x
+βsin(βz)Bz

)

dA=0. (3.11e)
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Moreover, the corresponding essential and natural boundary conditions can be expressed
as

δU=0 or Nx =0, (3.12a)

δW=0 or Nx
∂W

∂x
+Qx =0, (3.12b)

δΘx =0 or Mx=0, (3.12c)

φE=0 or
∫

A
cos(βz)DxdA=0, (3.12d)

δψH =0 or
∫

A
cos(βz)BxdA=0. (3.12e)

The aforementioned governing equations are derived according to the classical shear de-
formable theory. Therefore, they are not capable of depicting the small-scale effect due
to the lack of a material length scale parameter. Hence, the nonlocal elasticity theory is
used to incorporate the material length scale parameter into account. According to the
Eqs. (2.1), (3.2), (3.7) and (3.9), one can write the following nonlocal relations in a section
of the piezoelectric-piezomagnetic nanobeams

Nx−(e0a)2 ∂2Nx

∂x2
=A11

[

∂U

∂x
+

1

2

(

∂W

∂x

)2
]

+NE+NH+NT , (3.13a)

Mx−(e0a)2 ∂2Mx

∂x2
=D11

∂Θx

∂x
+E31φE+Q31ψH, (3.13b)

Qx−(e0a)2 ∂2Qx

∂x2
= ks A44

(

Θx+
∂W

∂x

)

−κsE15
∂φE

∂x
−κsQ15

∂ψH

∂x
, (3.13c)

∫

A

{

Dx−(e0a)2 ∂2Dx

∂x2

}

cos(βz)dA=E15

(

Θx+
∂W

∂x

)

+X11
∂φE

∂x
+Y11

∂ψH

∂x
, (3.13d)

∫

A

{

Dz−(e0a)2 ∂2Dz

∂x2

}

βsin(βz)dA=E31
∂Θx

∂x
−X33φE−Y33ψH, (3.13e)

∫

A

{

Bx−(e0a)2 ∂2Bx

∂x2

}

cos(βz)dA=Q15

(

Θx+
∂W

∂x

)

+Y11
∂φE

∂x
+T11

∂ψH

∂x
, (3.13f)

∫

A

{

Bz−(e0a)2 ∂2Bz

∂x2

}

βsin(βz)dA=Q31
∂Θx

∂x
−Y33φE−T33ψH, (3.13g)

where

NE =
2ẽ31VEA

h
, NH =

2q̃31ΩH A

h
, NT =−β̃1 A∆T, (3.14a)

A11= c̃11 A, A44= c̃44A, D11= c̃11 I, (3.14b)

E31=
∫

A
ẽ31βsin(βz)zdA, Q31=

∫

A
q̃31βsin(βz)zdA, (3.14c)

E15=
∫

A
ẽ15cos(βz)dA, Q15=

∫

A
q̃15cos(βz)dA, (3.14d)
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X11=
∫

A
s̃11cos2(βz)dA, Y11=

∫

A
d̃11cos2(βz)dA, T11=

∫

A
µ̃11cos2(βz)dA, (3.14e)

X33=
∫

A
s̃33[βsin(βz)]2dA, Y33=

∫

A
d̃33[βsin(βz)]2dA, T33=

∫

A
µ̃33[βsin(βz)]2dA. (3.14f)

Using Eqs. (3.11a)-(3.11c) and (3.13a)-(3.13c), the explicit form of Nx, Mx and Qx including
the nonlocal parameter can be expressed as

Nx =A11

[

∂U

∂x
+

1

2

(

∂W

∂x

)2
]

+NE+NH+NT+(e0a)2 I0
∂3U

∂t2∂x
, (3.15a)

Mx =D11
∂Θx

∂x
+E31φE+Q31ψH+(e0a)2

{

I0
∂2W

∂t2
+ I2

∂3Θx

∂t2∂x
−

∂

∂x

(

Nx
∂W

∂x

)}

, (3.15b)

Qx =ks A44

(

Θx+
∂W

∂x

)

−κsE15
∂φE

∂x
−κsQ15

∂ψH

∂x
+(e0a)2 ∂

∂x

{

I0
∂2W

∂t2
−

∂

∂x

(

Nx
∂W

∂x

)}

. (3.15c)

Note that inserting Eqs. (3.13d) and (3.13e) into Eqs. (3.11d)-(3.13g) is unable to give the
explicit forms of Dx, Dz, Bx and Bz. However, the size-dependent geometrically nonlin-
ear governing equations for piezoelectric-piezomagnetic nanobeams in terms of displace-
ment can be obtained by substituting Eq. (3.15) and other related equations into Eq. (3.11)
and can be expressed as follows:

A11

(

∂2U

∂x2
+

∂W

∂x

∂2W

∂x2

)

= I0

[

∂2U

∂t2
−(e0a)2 ∂4U

∂t2∂x2

]

, (3.16a)

ks A44

(

∂Θx

∂x
+

∂2W

∂x2

)

+(NE+NH+NT)

(

∂2W

∂x2
−(e0a)2 ∂4W

∂x4

)

−κs

(

E15
∂2φE

∂x2
+Q15

∂2ψH

∂x2

)

+Z1−(e0a)2Z2= I0

(

∂2W

∂t2
−(e0a)2 ∂4W

∂t2∂x2

)

, (3.16b)

D11
∂2Θx

∂x2
−ks A44

(

Θx+
∂W

∂x

)

+(E31+κsE15)
∂φE

∂x
+(Q31+κsQ15)

∂φE

∂x

= I2

(

∂2Θx

∂t2
−(e0a)2 ∂4Θx

∂t2∂x2

)

, (3.16c)

E31
∂Θx

∂x
+E15

(

∂2W

∂x2
+

∂Θx

∂x

)

+X11
∂2φE

∂x2
+Y11

∂2ψH

∂x2
−X33φE−Y33ψH =0, (3.16d)

Q31
∂Θx

∂x
+Q15

(

∂2W

∂x2
+

∂Θx

∂x

)

+Y11
∂2φE

∂x2
+T11

∂2ψH

∂x2
−Y33φE−T33ψH =0, (3.16e)

where

Z1=A11

(

∂2U

∂x2

∂W

∂x
+

∂U

∂x

∂2W

∂x2
+

3

2

(

∂W

∂x

)2 ∂2W

∂x2

)

, (3.17a)

Z2=A11

(

∂4U

∂x4

∂W

∂x
+3

∂3U

∂x3

∂2W

∂x2
+3

∂2U

∂x2

∂3W

∂x3
+

∂U

∂x

∂4W

∂x4

)
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+A11

[

3

(

∂2W

∂x2

)2

+9
∂W

∂x

∂2W

∂x2

∂3W

∂x3
+

3

2

(

∂W

∂x

)2 ∂4W

∂x4

]

. (3.17b)

Introducing the following non-dimensional quantities

ξ=
x

L
, (u,w)=

(U,W)

h
, θx =Θx , φ=

φE

φ0
, ψ=

ψH

ψ0
, φ0=

√

A11/X33, (3.18a)

ψ0=
√

A11/T33, τ=
t

L

√

A11/I0, ε=
e0a

L
, η=

L

h
, (N̄T,N̄E,N̄H)=

(

NT

A11
,

NE

A11
,

NH

A11

)

,

(3.18b)

(Ā11, Ā44,D̄11)=

(

A11

A11
,
A44

A11
,

D11

A11h2

)

, ( Ī0, Ī2)=

(

I0

I0
,

I2

I0h2

)

, (Ē15,Ē31)=

(

E15φ0

A11h
,
E31φ0

A11h

)

,

(3.18c)

(Q̄15,Q̄31)=

(

Q15ψ0

A11h
,
Q31ψ0

A11h

)

, (X̄11,X̄33)=

(

X11φ2
0

A11h2
,
X33φ2

0

A11

)

, (3.18d)

(T̄11,T̄33)=

(

T11ψ2
0

A11h2
,
T33ψ2

0

A11

)

, (Ȳ11,Ȳ33)=

(

Y11φ0ψ0

A11h2
,
Y33φ0ψ0

A11

)

, (3.18e)

the non-dimensional form of size-dependent geometrically nonlinear governing equa-
tions (3.13) can be expressed as

Ā11

(

∂2u

∂ξ2
+

1

η

∂w

∂ξ

∂2w

∂ξ2

)

= Ī0

(

∂2u

∂τ2
−2 ∂4u

∂τ2∂ξ2

)

, (3.19a)

ks Ā44

(

∂2w

∂ξ2
+η

∂θx

∂ξ

)

+(N̄T+N̄E+N̄H)

(

∂2w

∂ξ2
−2 ∂4w

∂ξ4

)

−ksĒ15
∂2φ̄E

∂ξ2
−ksQ̄15

∂2ψ̄H

∂ξ2
+Z̄1

−2Z̄2= Ī0

(

∂2w

∂τ2
−2 ∂4w

∂τ2∂ξ2

)

, (3.19b)

D̄11
∂2θx

∂ξ2
−ks Ā44η

(

∂w

∂ξ
+ηθx

)

+η(Ē31+κsĒ15)
∂φ

∂ξ
+η
(

Q̄31+κsQ̄15

) ∂ψ

∂ξ

= Ī2

(

∂2θx

∂τ2
−2 ∂4θx

∂τ2∂ξ2

)

, (3.19c)

Ē31η
∂θx

∂ξ
+Ē15

(

∂2w

∂ξ2
+η

∂θx

∂ξ

)

+X̄11
∂2φ

∂ξ2
+Ȳ11

∂2ψ

∂ξ2
−X̄33η2φ−Ȳ33η2ψ=0, (3.19d)

Q̄31η
∂θx

∂ξ
+Q15

(

∂2w

∂ξ2
+η

∂θx

∂ξ

)

+Ȳ11
∂2φ

∂ξ2
+ T̄11

∂2ψ

∂ξ2
−Ȳ33η2φ− T̄33η2ψ=0, (3.19e)

where

Z̄1=
a11

η

(

∂2u

∂ξ2

∂w

∂ξ
+

1

η

(

∂w

∂ξ

)2 ∂2w

∂ξ2
+

∂u

∂ξ

∂2w

∂ξ2

)

, (3.20a)

Z̄2=
a11

η

(

∂4u

∂ξ4

∂w

∂ξ
+3

∂3u

∂ξ3

∂2w

∂ξ2
+3

∂2u

∂ξ2

∂3w

∂ξ3
+

∂u

∂ξ

∂4w

∂ξ4

)
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+
a11

η2

[

3

(

∂2w

∂ξ2

)3

+9
∂w

∂ξ

∂2w

∂ξ2

∂3w

∂ξ3
+

3

2

(

∂w

∂ξ

)2 ∂4w

∂ξ4

]

. (3.20b)

The electric potential and magnetic potential can be assumed to be zero at the two ends
of the piezoelectric-piezomagnetic nanobeams. Therefore, the following boundary con-
ditions can be considered for the piezoelectric-piezomagnetic nanobeams under various
types of edge supports

u=w= θx=φ=ψ=0 at ξ=0,1, (3.21)

for a clamped-clamped (C-C) edge supports,

u=w= M̄x=φ=ψ=0 at ξ=0,1, (3.22)

for a simply supported -simply supported (SS-SS) edge supports and

u=w= θx =φ=ψ=0 at ξ=0, (3.23a)

u=w= M̄x=φ=ψ=0 at ξ=1, (3.23b)

for a clamped -simply supported (C-SS) edge supports, in which

M̄x=D̄11
∂θx

∂ξ
+ηĒ31φ+ηQ̄31ψ+ǫ2

(

Ī0η
∂2w

∂τ2
+ Ī2

∂3ψ

∂τ2∂ξ
−η(N̄E+N̄H+N̄T)

∂2w

∂ξ2

)

−ǫ2 Ā11
∂

∂ξ

([

∂u

∂ξ
+

1

2η

(

∂w

∂ξ

)2
]

∂w

∂ξ

)

. (3.24)

4 Numerical solution approach

In this section, an efficient numerical solution approach is utilized to solve the problem
of the geometrically nonlinear free vibration of piezoelectric-piezomagnetic nanobeam-
s. To this end, the GDQ method [52–54] as a high accurate and convergent strategy is
utilized to discretize the nonlinear equations of motion and associated boundary condi-
tions in the spatial domain. Afterwards, the numerical Galerkin method is applied to the
aforementioned discretized equations to obtain a set of Duffing-type ordinary differential
equations. Then, the periodic time differential operators are introduced to achieve a set
of nonlinear algebraic parameterized equations. Finally, the set of nonlinear algebraic e-
quations is solved by means of the pseudo arc-length continuation algorithm to calculate
nonlinear frequency-response of piezoelectric-piezomagnetic nanobeams.

4.1 Discretization

Based upon the shifted ChebyshevGaussLobatto grid points, the discrete grid points in
ξi direction can be generated as

ξi =
1

2

(

1−cos
i−1

N−1
π

)

, i=1,2,··· ,N, (4.1)
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in which N is the number of total grid points in ξ-direction. Therefore, the discretized
form of displacement components u, w, θx, the electric potential φ and magnetic potential
ψ can be expressed as follows:

U=
[

u1 u2 ··· uN

]T
, W=

[

w1 w2 ··· wN

]T
, θ=

[

θx1 θx2 ··· θx N

]T
, (4.2a)

Φ=
[

φ1 φ2 ··· φN

]T
, Ψ=

[

ψ1 ψ2 ··· ψN

]T
, (4.2b)

in which ui = u(ξi), wi = w(ξi), θx i = θx (ξi), φi = φ(ξi) and ψi = ψ(ξi). The discretized
governing equations of motion can be written in a matrix form as

MẌ+KX+N(X)=0, (4.3)

in which field variables vector X, stiffness matrix K, mass matrix M and nonlinear part
vector N(X) are defined as

X=
[

UT WT θT
Φ

T ψT
]T

, (4.4a)

K=



















Ā11D
(2)
ξ 0 0 0

0 ks Ā44D
(2)
ξ +Nx

0 ks Ā44ηD
(1)
ξ −ksĒ15D

(2)
ξ

0 −ks Ā44Dη
(1)
ξ −ks Ā44η2D

(0)
ξ +D̄11D

(2)
ξ −ks Ā44η2D

(0)
ξ +D̄11D

(2)
ξ

0 Ē15D
(2)
ξ (Ē31+Ē15)ηD

(1)
ξ −X̄33η2D

(0)
ξ +X̄11D

(2)
ξ

0 Q̄15D
(2)
ξ

(

Q̄31+Q̄15

)

ηD
(1)
ξ −Ȳ33η2D

(0)
ξ +Ȳ11D

(2)
ξ

0

−ksQ̄15D
(2)
ξ

η
(

Q̄31+κsQ̄15

)

D
(1)
ξ

−Ȳ33η2D
(0)
ξ +Ȳ11D

(2)
ξ

−T̄33η2D
(0)
ξ + T̄11D

(2)
ξ



















, (4.4b)

M=−



















Ī0

(

D
(0)
ξ −2D

(2)
ξ

)

0 0 0 0

0 Ī0

(

D
(0)
ξ −2D

(2)
ξ

)

0 0 0

0 0 Ī2

(

D
(0)
ξ −2D

(2)
ξ

)

0 0

0 0 0 0 0
0 0 0 0 0



















, (4.4c)

N(X)=
[

NT
u (X) NT

w(X) NT
θ (X) NT

φ(X) NT
ψ(X)

]T
, (4.4d)

where

Nx
0 =(N̄T+N̄E+N̄H)

(

D
(2)
ξ −2D

(4)
ξ

)

.
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Moreover, the components of N(X) can be expressed as

Nu (X)=
Ā11

η

(

D
(1)
ξ W

)

◦
(

D
(2)
ξ W

)

, (4.5a)

Nw (X)

=
Ā11

η

(

(

D
(1)
ξ U

)

◦
(

D
(2)
ξ W

)

+
(

D
(2)
ξ U

)

◦
(

D
(3)
ξ W

)

+
3

2η

(

D
(2)
ξ W

)

◦
(

D
(1)
ξ W

)

◦
(

D
(1)
ξ W

)

)

−ǫ2

{

Ā11

η

((

D
(4)
ξ U

)

◦
(

D
(1)
ξ W

)

+3
(

D
(3)
ξ U

)

◦
(

D
(2)
ξ W

)

+3
(

D
(2)
ξ U

)

◦
(

D
(3)
ξ W

)

+
(

D
(1)
ξ U

)

◦
(

D
(4)
ξ W

))

+
Ā11

η2

(

3
(

D
(2)
ξ W

)

◦
(

D
(2)
ξ W

)

◦
(

D
(2)
ξ W

)

+9
(

D
(1)
ξ W

)

◦
(

D
(2)
ξ W

)

◦
(

D
(3)
ξ W

)

+
3

2

(

D
(1)
ξ W

)

◦
(

D
(1)
ξ W

)

◦
(

D
(4)
ξ W

)

)}

,

(4.5b)

Nθ (X)=Nφ (X)=Nψ (X)=0, (4.5c)

in which ◦ denotes the Hadamard product (see the Appendix). Moreover, the weighting
coefficients corresponding to the r-th-order derivative with respect to ξ can be calculated
by means of the following equation

[

D
(r)
ξ

]

ij
=W

(r)
ij =



















































Ix, r=0,

P (ξi)
(

ξi−ξ j

)

P
(

ξ j

) , i 6= j and i, j=1,··· ,N and r=1,

r

[

W
(1)
ij W

(r−1)
ii −

W
(r−1)
ij

ξ i−ξ j

]

, i 6= j and i, j=1,··· ,N and r=2,3,··· ,N−1,

−
N

∑
j=1; j 6=i

W
(r)
ij , i= j and i, j=1,··· ,N and r=1,2,3,··· ,N−1,

(4.6)

where Ix stands for a N×N identity matrix and

P (xi)=
N

∏
j=1; j 6=i

(

ξi−ξ j

)

.

The boundary conditions can be discretized in a same way. For instance, the discretized
counterpart of Eq. (3.11) corresponding to the nanobeams with C-C end support is given
by

U=W=θ=Φ=ψ=0 at ξ=0,1. (4.7)

4.2 Duffing-type equations

A numerical Galerkin technique is utilized to covert the discretized nonlinear Eq. (4.3)
into a time-varying set of Duffing-type ordinary differential equations. Hence, neglecting
the nonlinear term in Eq. (4.3) and considering the harmonic solution as

X= X̃ejωl τ

result in the following eigenvalue problem

KX̃=−ω2
l MX̃, (4.8)
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in which ωl denotes the linear frequency of piezoelectric-piezomagnetic nanobeams. Af-
ter replacing the discretized boundary conditions elements associated with the boundary
nodes in the aforementioned matrices and solving the obtained eigenvalue problem, the
calculated linear mode shapes can be expressed as follows:

X=Φq, (4.9)

in which q is the reduced generalized coordinates. Also, Φ stands for a sparse matrix
including the first m eigenvectors which is utilized as the base function in the numerical
Galerkin technique. q and Φ are defined as follows

qT
(5m)×1=

[

q1
u q2

u ··· qm
u q1

w q2
w ··· qm

w q1
θ q2

θ ··· qm
θ q1

φ q2
φ ···

qm
φ q1

ψ q2
ψ ··· qm

ψ

]

, (4.10a)

Φ(5N)×(5m)=









Φu 0 0 0
0 Φw 0 0
0 0 Φψ 0
0 0 0 Φϕ









(4.10b)

with

ΦuN×m=
[

[

X̃1
u

]

N×1
···

[

X̃m
u

]

N×1

]

, (4.11a)

ΦwN×m=
[

[

X̃1
w

]

N×1
···

[

X̃m
w

]

N×1

]

, (4.11b)

Φθ N×m=
[

[

X̃1
θ

]

N×1
···

[

X̃m
θ

]

N×1

]

, (4.11c)

ΦφN×m
=
[
[

X̃1
φ

]

N×1
···

[

X̃m
φ

]

N×1

]

, (4.11d)

ΦψN×m
=
[
[

X̃1
ψ

]

N×1
···

[

X̃m
ψ

]

N×1

]

. (4.11e)

Inserting Eq. (4.9) into the nonlinear set of discretized equation (4.3) gives the following
residual vector

R=MΦq̈+KΦq+Knl (Φq). (4.12)

Now, multiplying each equation by the associated linear mode shape and integrating
along the piezoelectric-piezomagnetic nanobeam length, results in the following Duffing-
type equation

M̃q̈+K̃q+K̃nl (q)=0, (4.13)

in which

Gm×5N =Φ
Tdiag(S), S=

[

Sξ Sξ Sξ Sξ Sξ

]

1×(5N)
, (4.14a)

M̃=GMΦ, K̃=GKΦ, K̃nl (q)=GKnl (Φq). (4.14b)
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In the aforementioned equation, Sξ denotes the integral operator (see the Appendix).
Therefore, by utilizing the numerical Galerkin method, the 5N general coordinates are
reduced to 5m reduced coordinates in which m denotes the number of selected mode
shapes. Another benefits of present numerical Galerkin technique are that this method
can be easily applied to all kinds of edge supports in addition to the essential boundary
condition, the natural boundary conditions can be satisfied and also the nonlocal effect
is incorporated into the mode shapes. Therefore, the desire accuracy can be obtained by
lower numbers of mode shapes and significantly lower computational efforts.

4.3 Solution procedure in the time domain

Introducing τ∗=τ/T and Ω=2π/T, Eq. (4.13) can be expressed as

(

Ω

2π

)2

M̃q̈+K̃q+K̃nl (q)=0. (4.15)

To discretize Eq. (4.15) on the time domain, the discrete grid points in the time domain
τ∗ can be generated as

τ∗
i =

i

Nt
, 0<τ∗

i ≤1, i=1,2,··· ,Nt=2k, (4.16)

in which Nt stands for the number of discrete points on the time domain and must be an
even number. Therefore, the discretized form associated with q in Eq. (4.10a) on the time
domain can be expressed as follows

Q5m×Nt =
[

q1
u1×Nt

··· qm
u 1×Nt

q1
w1×Nt

··· qm
w1×Nt

q1
θ1×Nt

··· qm
θ 1×Nt

q1
φ1×Nt

··· qm
φ 1×Nt

q1
ψ1×Nt

··· qm
ψ 1×Nt

]

. (4.17)

Now, the highly precise differentiation matrix operators which are calculated from
the derivatives of periodic sinc function as base function in the spectral collocation
method [55] are utilized to discretize the periodic problem (4.15) on the time domain.
By means of Eqs. (4.15) and (4.17), one can write

(

Ω

2π

)2

M̃QDτ
(2)T

+K̃Q+K̃nl (Q)=0, (4.18)
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in which D
( )
τ denotes the time differentiation matrix operator whose explicit formulation

is defined as



















































b11=−
Nt

2

12
−

1

6
,

bi1=
(−1)i−1

2sin2 π(i−1)
Nt

,

b1j =
(−1)Nt−j+1

2sin2 π(Nt−j+1)
Nt

,

b(i+1)(j+1)=bij,

i, j=2,3,4,··· ,Nt, D
(2)
τ =(2π)2[bij

]

, (4.19)

in which D
(2)
τ is Teoplitz matrix.

Considering the relation (BT⊗A)vec(X)=vec(AXB) in which A and B represent the
constant matrices, X denotes an unknown matrix, vec(X) is the vectorization of matrix
X and ⊗ stands for the Kronecker product (see the Appendix), the vectorized form of
Eq. (4.18) can be expressed as

(

(

Ω

2π

)2
(

D
(2)
τ ⊗M̃

)

+
(

Iτ⊗K̃
)

)

vec(Q)+vec
(

K̃nl (Q)
)

=0. (4.20)

The preceding equation can be stated as the following set of nonlinear parameterized
equations

H : 5m×Nt+1→ 5m×Nt, H(vec(Q),Ω)=0, (4.21)

that can be directly solved using the pseudo-arc length continuation technique [56] to ob-
tained the nonlinear frequency-response of the piezoelectric-piezomagnetic nanobeams.

5 Results and discussion

On the basis of the proposed nonlocal nonlinear piezoelectric-piezomagnetic nanobeam
model, the selected numerical results are presented on the size-dependent geometrical-
ly nonlinear free vibration of first-order shear deformable piezoelectric-piezomagnetic
nanobeams with SS-SS, C-SS and C-C boundary conditions subjected to thermo-electro-
magnetic loadings. It is assumed that the nanobeam is made of the two-phase BiTiO3-
CoFe2O4 composites with the material properties given in Table 1 [45, 57–59]. The influ-
ences of the non-dimensional nonlocal parameter, temperature rise, initial applied volt-
age, initial applied magnetic potential and length-to-thickness ratio on the geometrically
nonlinear free vibration characteristics of the first-order shear deformable piezoelectric-
piezomagnetic nanobeams are discussed in detail.
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Table 1: Material properties of BiTiO3CoFe2O4 composite materials [57–59].

Properties BiTiO3CoFe2O4

Elastic (GPa) c11=226; c12=125; c13=124; c33=216; c44=44.2
Piezoelectric (C/m2) e31=2.2; e33=9.3; e15=5.8
Dielectric (109C/V·m) s11=5.64; s33=6.35
Piezomagnetic (N/A·m) q15=275; q31=290.1; q33=349.9
Magnetoelectric (1012Ns/VC) d11=5.367; d33=2737.5
Magnetic (106Ns2/C2) µ11=−297; µ33=83.5
Thermal moduli (105N/K·m2) β1=4.74; β3=4.53
Pyroelectric (106C/N) p3=25
Pyromagnetic (106N/A·m·K) λ3=5.19
Mass density (103Kg/m3) ρ=5.55

Table 2: Nonlinear frequency ratios for the isotropic homogeneous beams with C-C and SS-SS edge supports
(L/h=100).

Wmax/r
C-C SS-SS

Present Reference [60] Present Reference [60]
1 1.0297 1.0301 1.1178 1.1193
2 1.1145 1.1150 1.4171 1.4176
3 1.2418 1.2422 1.7892 1.8088
4 1.3979 1.3988 2.2394 2.2448
5 1.5746 1.5756 2.6873 2.6996

To check the accuracy of solution procedure for presented nonlinear analysis, the
comparison of nonlinear frequency ratios (ωnl/ωl) corresponding to various nondimen-
sional maximum vibration amplitude (Wmax/r) for isotropic homogeneous beams with
C-C and SS-SS edge supports obtained via the present solution and the direct iterative
method given by Wu et al. [60] is provided in Table 2. Herein, Wmax and r =

√

(I/A)
denote the maximum vibration amplitude and radius of gyration of the beam (I and A
stand for the area moment of inertia and cross section area of beam with the rectangu-
lar cross-section). Excellent agreement is reached between the present results and those
given by Wu et al. [60], that shows the validation of the present solution methodology.
Furthermore, in order to verify the convergence of the present mathematical formulation,
numerical method and also check the validity and accuracy of the present analysis, the
first three natural frequencies of a piezoelectric-piezomagnetic nanobeam with different
boundary conditions related to various total numbers of grid points are provided and are
compared with those of the natural frequencies given in [45], as shown in Table 3. A rea-
sonable agreement between the present results and those of [45] is observed. Moreover,
according to Table 3, N=15 is used for all of the following numerical calculations.

In the following figures, the frequency ratio (ωNl/ωl) versus the maximum vibration
amplitude of piezoelectric-piezomagnetic nanobeam (wmax) is plotted. The nonlinear
and linear frequencies are denoted by ωNl and ωl, respectively. The non-dimensional
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Table 3: First three natural frequencies (GHz) of piezoelectric-piezomagnetic nanobeam with ∆T=0◦C, VE=0V,
ΩH =0A, µ=0.1.

Number of grid nodes
C-C C-SS SS-SS

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

7 7.1228 15.6993 23.9546 5.1811 13.4399 21.9255 3.4945 11.3427 19.5048
9 7.1247 15.3315 22.9946 5.1822 13.4177 21.4648 3.4932 11.4073 19.8141

11 7.1246 15.3291 22.9849 5.1821 13.4098 21.4166 3.4932 11.4012 19.7389
13 7.1246 15.3290 22.9837 5.1820 13.4101 21.4191 3.4932 11.4013 19.7438
15 7.1246 15.3290 22.9838 5.1820 13.4101 21.4189 3.4932 11.4013 19.7436
17 7.1246 15.3290 22.9838 5.1820 13.4101 21.4189 3.4932 11.4013 19.7436
21 7.1246 15.3290 22.9838 5.1820 13.4101 21.4189 3.4932 11.4013 19.7436
25 7.1246 15.3290 22.9838 5.1820 13.4101 21.4189 3.4932 11.4013 19.7436
31 7.1246 15.3290 22.9838 5.1820 13.4101 21.4189 3.4932 11.4013 19.7436

Reference [45] 7.2371 15.615 23.4883 5.2781 13.6863 21.9225 3.5670 11.6620 20.2435

maximum amplitude is expressed as the ratio of the maximum amplitude to the thickness
of the piezoelectric-piezomagnetic nanobeam (i.e., wmax = Wmax/h) and the frequency
ratio is described as the ratio of the nonlinear frequency to the linear frequency of the
piezoelectric-piezomagnetic nanobeam. Moreover, the linear frequencies are given for a
direct comparison.

Represented in Fig. 1 is the effect of the non-dimensional nonlocal parameter µ on the
frequency-response of piezoelectric-piezomagnetic nanobeams with SS-SS, C-SS and C-C
edge supports. In these figures, the nonlinear frequency curves associated with the clas-
sical piezoelectric-piezomagnetic beam model (µ=0) are given for a direct comparison.
The vibrating piezoelectric-piezomagnetic nanobeams exhibit a hardening spring type of
nonlinearity and the hardening behavior is seen at large amplitude, i.e., for all types of
boundary conditions, the increase of the vibration amplitude causes the increase of the
frequency ratio. The non-dimensional nonlocal parameter has a considerable effect on
the geometrically nonlinear free vibration characteristics. For all types of edge supports
and at a given vibration amplitude, the increase of non-dimensional nonlocal parameter
leads to the decrease of non-dimensional linear and nonlinear frequencies and the in-
crease of the frequency ratio and the hardening behavior of nanobeams. Moreover, the
non-dimensional nonlocal parameter has more considerable effect on the hardening be-
havior of C-C piezoelectric-piezomagnetic nanobeams, while a weak effect on the SS-SS
nanobeams is observed. It shows the necessity of such a size-dependent beam model for
the analysis of geometrically nonlinear free vibration of the piezoelectric-piezomagnetic
nanobeams, especially for nanobeams with C-C end supports.

The effect of the temperature rise on the frequency-response of piezoelectric-
piezomagnetic nanobeams is illustrated in Fig. 2 . Due to the introducing the compressive
in-plane forces, an increase in the temperature change decreases the linear frequency of
piezoelectric-piezomagnetic nanobeams and causes the increase of the hardening behav-
ior of nanobeams. However, the increase of the temperature change has not a consider-
able effect on the linear frequency and frequency ratio of nanobeams.

The effect of initial applied negative and positive electric voltages on the frequency
response of piezoelectric-piezomagnetic nanobeams with different edge supports is in-
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Fig 1. Frequency–response of piezoelectric-piezomagnetic nanobeams associated with different nonlocal 

Figure 1: Frequencyresponse of piezoelectric-piezomagnetic nanobeams associated with different nonlocal pa-
rameters and boundary conditions (L/h=10, h=10nm, VE =−0.02V, ΩH =0.02A, ∆T=20◦C).

Fig 2. Frequency–response of piezoelectric-piezomagnetic nanobeams associated with different 
Figure 2: Frequencyresponse of piezoelectric-piezomagnetic nanobeams associated with different temperature
changes and boundary conditions (L/h=10, h=10nm, VE =0V, ΩH =0A, µ=0.1).
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Fig 3. Frequency–response of piezoelectric-piezomagnetic nanobeams associated with different initial 

Figure 3: Frequencyresponse of piezoelectric-piezomagnetic nanobeams associated with different initial applied
electric voltages and boundary conditions (L/h=10, h=10nm, ΩH =0A, ∆T=0◦C, µ=0.1).

Fig 4. Frequency–response of piezoelectric-piezomagnetic nanobeams associated with different initial 

Figure 4: Frequencyresponse of piezoelectric-piezomagnetic nanobeams associated with different initial applied
magnetic potentials and boundary conditions (L/h=10, h=10nm, VE =0V, ∆T=0◦C, µ=0.1).
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vestigated in Fig. 3 . Compared to the temperature change, it is seen that initial applied
electric voltage has a considerable influence on the linear frequency, nonlinear frequen-
cy and typical hardening behavior of piezoelectric-piezomagnetic nanobeams. Because
of the producing the compressive and tensile in-plane forces, respectively, the increase
of the initial imposed positive and negative electric voltages decreases and increases
the linear frequencies of nanobeams. Moreover, increasing the positive and negative
electric voltages leads to a signicant increase and decrease in the typical hardening be-
haviors of nanobeams, respectively. This change is more considerable for piezoelectric-
piezomagnetic nanobeams with SS-SS boundary conditions.

The effect of the initial applied magnetic potential on the frequency-response of
piezoelectric-piezomagnetic nanobeams is also demonstrated in Fig. 4 . Both the lin-
ear and nonlinear frequencies of piezoelectric nanobeams decrease with increasing the
negative initial applied magnetic potential. It is because that negative magnetic potential
generates a compressive in-plane force in the nanobeams. Moreover, due to the intro-
ducing the tensile in-plane force, the stiffness of piezoelectric-piezomagnetic nanobeams
increases as the positive magnetic potential increases. Therefore, the linear frequency
increases and a decrease in the typical hardening behavior of nanobeams is observed,
especially for the nanobeams with SS-SS edge supports.

The effect of length-to-thickness ratio (L/h) on the frequency-response of

Fig 5. Frequency–response of piezoelectric-piezomagnetic nanobeams associated with length-to-thickness 
Figure 5: Frequencyresponse of piezoelectric-piezomagnetic nanobeams associated with length-to-thickness
ratios and boundary conditions (h=10nm, VE =−0.1V, ΩH =0.02A, ∆T=20◦C, µ=0.1).
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piezoelectric-piezomagnetic nanobeams with various edge supports is studied in Fig. 5 .
For all types of boundary conditions, the increase of the length-to-thickness ratio causes
a decrease in both linear and nonlinear frequencies of the piezoelectric-piezomagnetic
nanobeams. Moreover, the typical hardening behavior of nanobeams decreases as the
length-to-thickness ratio increases.

6 Conclusions

The geometrically nonlinear free vibration of piezoelectric-piezomagnetic nanobeam-
s under the magnetic, electric and thermal loadings was investigated by means of a
proposed nonlocal rst-order shear deformable beam model. To this end, utilizing the
first-order shear deformation theory and nonlocal elasticity theory, the nonlocal govern-
ing differential equations of motion and corresponding boundary conditions were de-
rived with considering the influences of size effect, shear deformations, rotary inertia,
piezoelectric-piezomagnetic coupling, thermal environment and geometrical nonlinear-
ity. Then, the GDQ method was used to discretize the set of nonlinear PDEs. Next, the
discretized PDEs were transformed to the Dufng-type ODEs by means of the numer-
ical Galerkin method. The periodic time differential operators and pseudo arc-length
continuation method were employed to numerically solve the set of nonlinear algebraic
parameterized equations. Finally, the influences of the non-dimensional nonlocal pa-
rameter, temperature change, initial applied electric voltage, initial applied magnetic po-
tential, length-to-thickness ratio and various boundary conditions on the geometrically
nonlinear free vibration characteristics of piezoelectric-piezomagnetic nanobeams were
investigated. The main results can be given as:

1. The non-dimensional nonlocal parameter reduces the natural frequencies, but
increases the nonlinear frequency ratios of the piezoelectric-piezomagnetic
nanobeams. In other words, the classical models overestimate and underestimate
the natural frequencies and nonlinear frequency ratios, respectively.

2. The hardening spring effect increases with increasing the non-dimensional nonlo-
cal parameter and decreases with increasing the length-to-thickness ratio, which
indicates the necessity of implementing a nonlinear analysis in lower length-to-
thickness ratios.

3. The natural frequencies of piezoelectric-piezomagnetic nanobeams decreases as the
change in the temperature increases, but this change in the temperature has less
significant effects on the nonlinear frequency ratio.

4. The positive and negative initial applied voltages decrease and increase the natural
frequencies of piezoelectric-piezomagnetic nanobeams, respectively. Also, greater
hardening effect is observed for the positive initial applied voltages.
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5. A change in the initial applied magnetic potential from a positive value to a nega-
tive value decreases the natural frequencies and increases the nonlinear frequency
ratio.

6. Greater hardening effect is observed for SS-SS piezoelectric-piezomagnetic
nanobeams as compared to nanobeams with C-SS and C-C edge conditions.

Appendix

A Hadamard and Kronecker products

Definition A.1. Considering the matrices A=
[

Aij

]

N×M
and B=

[

Bij

]

N×M
, the Hadamard

product of these matrices can be stated as A◦B=
[

AijBij

]

N×M
.

Definition A.2. If A and B are m-by-n and p-by-q matrices, then the Kronecker product
A⊗B denotes an mp-by-nq block matrix and defined as

A⊗B=







a11B ··· a1nB
...

. . .
...

am1B ··· amnB







mp×nq

.

B Integral matrix operators

∫ xN

x1

f (x)dx=

(

N−1

∑
r=0

X̃(r)D
(r)
x

)

F=SxF,Sx=[Sx]1×N ,

where D
(r)
x is the GDQ differential operator and

X̃(r)=

[

(x2−x1)
r+1

2r+1(r+1)!
,··· ,

(xi+1−xi)
r+1−(xi−1−xi)

r+1

2r+1(r+1)!
,··· ,−

(xN−1−xN)
r+1

2r+1(r+1)!

]

,

i=2,3,··· ,N−1.
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