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Abstract

The present article is concerned with the numerical solution of boundary integral equa-

tions by an adaptive wavelet boundary element method. This method approximates the

solution with a computational complexity that is proportional to the solution’s best N-term

approximation. The focus of this article is on algorithmic issues which includes the crucial

building blocks and details about the efficient implementation. By numerical examples

for the Laplace equation and the Helmholtz equation, solved for different geometries and

right-hand sides, we validate the feasibility and efficiency of the adaptive wavelet boundary

element method.

Mathematics subject classification: 41A25, 65N38, 65T60.
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1. Introduction

In science and engineering, one often comes across partial differential equations, some of

which can be formulated as boundary integral equations on the boundary of the domain of

interest. Solving the original problem would result in having to discretize the problem in a

domain (e.g. with finite element methods), which would lead to a sparse but extremely large

system of linear equations, especially in the three-dimensional situation. Rewriting the problem

by a boundary integral equation not only reduces the dimensionality by one, but does give the

possibility to solve also exterior boundary value problems. Particularly for such problems, this

approach brings many advantages, since it is not necessary to find a way (e.g. by introducing

artificial boundaries) to handle the infinite expansion of the domain. Of course, this advantage

does not come entirely without cost. Since the involved operators are not local, the resulting

matrices are dense and the complexity to solve the linear system by the boundary element

method is at least O(N2), with N denoting the degrees of freedom.

Modern approaches like the fast multipole method [1,2], the panel clustering [3], the adaptive

cross approximation [4, 5], or hierarchical matrices [6, 7] are known to reduce the complexity

to log-linear or even linear cost. Another approach is wavelet matrix compression [8]. The

wavelets’ vanishing moments lead, in combination with the fact that the kernel of the integral

operator becomes smoother when getting farther away from the diagonal, to a quasi-sparse

system matrix. As shown in [9], only O(N) matrix entries are relevant for maintaining the

convergence rate of the underlying Galerkin scheme.

A further issue to be addressed for the efficient solution of boundary integral equations is

the one of adaptivity. For non-smooth geometries or right-hand sides, it is necessary being able

to resolve specific parts of the geometry, while other parts could stay coarse. In contrast to
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uniform refinement, an adaptive refinement reduces the degrees of freedom drastically without

compromising the accuracy. This means that not only a lot of computation power can be

saved, but also a lot of memory, making the computation of certain problems possible in the

first place. Efficient and reliable a posteriori error estimators have first been introduced in [10]

and convergence of adaptive refinements for traditional boundary element methods has been

established in [11, 12]. But we are not aware of an implementation which combines these error

estimators with fast boundary element methods.

We thus follow here an different approach which has been proposed in [13, 14] for local

operators and in [9,15] for nonlocal operators. Namely, we cast the boundary integral equation

into an infinite system of linear equations and solve it then approximately by an iterative

method. As the application of the infinite system matrix has to be approximated during

the solution process, we have to choose a certain portion out of this infinite matrix. Hence,

refinement rather means that more wavelets are added. In fact, we aim at choosing the N

wavelets which will contribute most to the approximate solution. This concept is referred to as

the best N -term approximation, see e.g. [16].

Where the efficient computation of the matrix entries is the most demanding and time

consuming part of the whole implementation, it is not possible to achieve efficiency without

using the appropriate adaptive structures. It is absolutely necessary to work with element

and wavelet trees as already proposed in [17, 18]. We will introduce related building blocks

Rhs, Coarse, Apply, and Solve, which are already known in theory from e.g. [13,14,18,19].

The implementation of these routines is discussed in the present context of boundary element

methods. The numerical method is able to compute the solution of the boundary integral

equation in asymptotically optimal complexity. This means that any target accuracy can be

achieved at a computational expense that stays proportional to the number of degrees of freedom

(within the setting determined by an underlying wavelet basis) that would ideally be necessary

for realizing that target accuracy if full knowledge about the unknown solution were given.

In this article, besides presenting results for the single-layer operator of the Laplacian, which

is symmetric and positive definite, we also present results for the Brackhage-Werner formula-

tion of the (low-frequency) Helmholtz equation. We thus arrive at a linear combination of the

acoustic single-layer operator and the acoustic double-layer operator. Here, the theory of [9,15]

does not hold anymore. Nevertheless, the arguments of [20] are applicable for proving opti-

mality of the underlying adaptive scheme since the operator under consideration is a compact

perturbation of a symmetric and positive definite operator.

The outline of this article is as follows. At first, in Section 2, we introduce the boundary

integral equation and the surface representation under consideration. Then, in Section 3, we

present the piecewise constant wavelet basis which we will employ to cast the boundary integral

equation into an equivalent, bi-infinite system of linear equations. Section 4 is dedicated to the

realization of an adaptive algorithm of optimal complexity. Numerical results are given in

Section 5. Finally, in Section 6, we state concluding remarks.

2. Boundary Integral Equations and Surface Representation

Let Ω ⊂ R
3 be a bounded and simply connected domain. Its boundary Γ := ∂Ω is assumed

to be composed by a union of smooth, four-sided patches Γi:

Γ =

M⋃

i=1

Γi, Γi = γi(�) i = 1, . . . ,M.
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The composition is regular, i.e., the intersection Γi ∩ Γj , i 6= j, of two different patches is

either empty, a common edge, or a common vertex. The mappings γi : � → Γi are smooth

diffeomorphisms from the unit square � = [0, 1]2 to the patch Γi.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit square into

4j squares

�j,k := [2−jk1, 2
−j(k1 + 1)]× [2−jk2, 2

−j(k2 + 1)] ⊆ �,

where k = (k1, k2) with 0 ≤ k1, k2 < 2j. This generates 4jM elements (or elementary domains)

Γi,j,k := γi(�j,k) ⊆ Γi, i = 1, . . . ,M , see Figure 2.1 for an illustration.

Γi,1,(1,1)

Γi,2,(0,1)

Fig. 2.1. Element Γi,1,(1,1) and element Γi,2,(0,1).

In order to ensure that the collection of elements {Γi,j,k} on the level j forms a regular

mesh on Γ, the parametric representation is subjected to the following matching condition: For

each x in the intersection of two patches Γi ∩ Γi′ , there exists an affine map Ξ : � → � such

that x = γi(s) = (γi′ ◦ Ξ)(s). In other words, the diffeomorphisms γi and γi′ coincide on the

common edge except for orientation. This setting is frequently used and well understood in

Computer Aided Geometric Design and is the topic of recent studies in isogeometric analysis,

cf. [21].

In what follows, we shall be concerned with the numerical solution of a boundary integral

equation

(Au)(x) =
∫

Γ

k(x,y)u(y) dσy = f(x) for x ∈ Γ. (2.1)

The boundary integral operator A : Hq(Γ) → H−q(Γ) is assumed to be a bijective operator

of order 2q, where Hq(Γ) denotes the Sobolev space of functions of smoothness q and H−q(Γ)

denotes its dual. Unique solvability follows thus for arbitrary right-hand side f ∈ H−q(Γ). The

kernel k(x,y) under consideration has for our purpose to be analytically standard.

Definition 2.1. Consider a kernel k(x,y) of order 2q, the multi indices α = (α1, α2), β =

(β1, β2) and |α| = α1 + α2. Then, the transported kernel functions

ki,i′ (s, t) := k
(
γi(s),γi′ (t)

)
µi(s)µi′(t), 1 ≤ i, i′ ≤M

are called analytically standard of order 2q if the partial derivatives are bounded by

|∂αs ∂βt ki,i′ (s, t)| .
(|α|+ |β|)!

(r‖γi(s)− γi′(t)‖)(2+2q+|α|+|β|)
(2.2)

for some r > 0 provided that 2 + 2q + |α|+ |β| > 0.

Remark 2.2. For geometries that are piecewise smooth, the kernels of the boundary integral

operators of order 2q are known to be in general analytically standard of order 2q.



On Adaptive Wavelet Boundary Element Methods 93

The L2(Γ)-inner product with respect to Γ is given by

〈u, v〉 =
∫

Γ

u(x) v(x) dσx =

M∑

i=1

∫

�

u
(
γi(s)

)
v
(
γi(s)

)
µi(s) ds. (2.3)

Here, the expression µi stands for the surface measure which is defined as

µi(s) :=

∥∥∥∥
∂γi(s)

∂s1
× ∂γi(s)

∂s2

∥∥∥∥ > 0. (2.4)

By extending the inner product (2.3) continuously to dualities as u ∈ H−q(Γ) and v ∈ Hq(Γ),

we arrive at the variational formulation of (2.1):

seek u ∈ Hq(Γ) such that 〈Au, v〉 = 〈f, v〉 for all v ∈ Hq(Γ).

3. Wavelet Bases on Surfaces

3.1. Wavelets on the interval

We shall consider piecewise constant wavelets with three vanishing moments. To that end,

let

V
[0,1]
j = span

{
ϕ
[0,1]
j,k : k ∈ ∆

[0,1]
j := {0, 1, . . . , 2j − 1}

}

be the space of piecewise constant ansatz functions relative to a subdivision of the interval [0, 1]

into 2j equidistant intervals. We assume that the basis functions are L2-normalized, leading to

ϕ
[0,1]
j,k (s) =

{
2j/2, if s ∈ [2−jk, 2−j(k + 1)],

0, otherwise.

The sequence of ansatz spaces is nested, i.e., V
[0,1]
j−1 ⊂ V

[0,1]
j for all j ∈ N. To keep track of the

increment of information between subsequent spaces, one decomposes W
[0,1]
j = V

[0,1]
j ⊖ V

[0,1]
j−1

with some complementary space Wj , which is generated by so-called wavelets

W
[0,1]
j = span

{
ψ
[0,1]
j,k : k ∈ ∇[0,1]

j := {0, 1, . . . , 2j−1 − 1}
}
.

According to [22], compactly supported, biorthogonal, piecewise constant wavelets with

three vanishing moments on the interval are given by

ψ
[0,1]
j,0 =

1√
2

(
−5

8
ϕ
[0,1]
j,0 +

11

8
ϕ
[0,1]
j,1 − 1

2
ϕ
[0,1]
j,2 − 1

2
ϕ
[0,1]
j,3 +

1

8
ϕ
[0,1]
j,4 +

1

8
ϕ
[0,1]
j,5

)
,

ψ
[0,1]
j,2j−1−1 =

1√
2

(
−1

8
ϕ
[0,1]
j,2j−6 −

1

8
ϕ
[0,1]
j,2j−5 +

1

2
ϕ
[0,1]
j,2j−3 +

1

2
ϕ
[0,1]
j,2j−4 −

11

8
ϕ
[0,1]
j,2j−2 +

5

8
ϕ
[0,1]
j,2j−1

)
,

ψ
[0,1]
j,k =

1√
2

(
−1

8
ϕ
[0,1]
j,2k−2 −

1

8
ϕ
[0,1]
j,2k−1 + ϕ

[0,1]
j,2k − ϕ

[0,1]
j,2k+1 +

1

8
ϕ
[0,1]
j,2k+2 +

1

8
ϕ
[0,1]
j,2k+3

)
,

where k ∈ {1, 2, . . . , 2j−1 − 2}. Thus, we have only two wavelets (one at each boundary) which

do not coincide with the interior wavelets, see Figure 3.1 for an illustration. All wavelets satisfy

∫ 1

0

siψ
[0,1]
j,k (s) ds = 0 for all i = 0, 1, 2. (3.1)

On the levels j = 1 and j = 2, we will just use Haar wavelets.
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Fig. 3.1. Wavelet with three vanishing moments with the left and right boundary modification.

3.2. Wavelet bases on the unit square

To obtain wavelets on the unit square, we start with the definition of the sets of ansatz

functions which are defined as tensor products of the one-dimensional ansatz functions

ϕ�
j,k(s) = ϕ

[0,1]
j,k1

(s1) · ϕ[0,1]
j,k2

(s2),

where s = (s1, s2) and k = (k1, k2) ∈ ∆�
j := ∆

[0,1]
j ×∆

[0,1]
j . This leads to the ansatz spaces

V �
j = span

{
ϕ�
j,k : k ∈ ∆�

j

}
,

which are again nested V �
j−1 ⊂ V �

j . To construct the wavelets in the complement spaces

W �
j = V �

j ⊖ V �
j−1, we use the splitting

V �
j = V

[0,1]
j ⊗ V

[0,1]
j

=
(
V

[0,1]
j−1 ⊕W

[0,1]
j

)
⊗
(
V

[0,1]
j−1 ⊕W

[0,1]
j

)

= V �
j−1 ⊕

(
W

[0,1]
j ⊗ V

[0,1]
j−1

)
⊕
(
V

[0,1]
j ⊗W

[0,1]
j

)
.

We hence arrive at two types of wavelets, namely

ψ�
j,k,1(s) = ψ

[0,1]
j,k1

(s1) · ϕ[0,1]
j−1,k2

(s2), k1 = (k1, k2) ∈ ∇�
j,1 := ∇[0,1]

j ×∆
[0,1]
j−1 ,

ψ�
j,k,2(s) = ϕ

[0,1]
j,k1

(s1) · ψ[0,1]
j,k2

(s2), k2 = (k1, k2) ∈ ∇�
j,2 := ∆

[0,1]
j ×∇[0,1]

j ,

see Figure 3.2 for an illustration of these wavelets.

3.3. Wavelet bases on surfaces

Having the bases for the unit square at hand, we can then construct the bases on the surface

Γ by using the mappings γi to lift functions from the unit square to the according patch Γi,

i.e.,

ϕΓi

j,k(x) = ϕ�
j,k

(
γ−1
i (x)

)
, k ∈ △�

j ,
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Fig. 3.2. Different wavelets on the unit square of type one (boundary wavelet: green / interior wavelet:

violett) and of type 2 (boundary wavelet: grey / interior wavelet: red).

and likewise

ψΓi

j,k,1(x) = ψ�
j,k,1

(
γ−1
i (x)

)
, k ∈ ∇�

j,1,

ψΓi

j,k,2(x) = ψ�
j,k,2

(
γ−1
i (x)

)
, k ∈ ∇�

j,2,

for all x ∈ Γi. We get the complete set of ansatz functions on the surface by collecting these

functions for all patches i = {0, 1, . . . ,M}, where we will from now on use the index λ to encode

the level, the location, and the type of the particular basis function. Specifically, |λ| decodes
the level j.

Hence, we arrive at ansatz spaces V Γ
j = {ϕλ : λ ∈ △Γ

j } which are nested V Γ
j−1 ⊂ V Γ

j for all

j ∈ N. The differences WΓ
j = V Γ

j ⊖ V Γ
j−1 are generated by the wavelets, i.e., WΓ

j = {ψλ : λ ∈
∇Γ
j }. Recursively, we obtain the multiscale decomposition

L2(Γ) =

∞⊕

j=0

WΓ
j , where W

Γ
0 := V Γ

0 .

3.4. Bi-infinite system of linear equations

Denoting the index set of all wavelets by I :=
⋃∞
j=0 ∇Γ

j and scaling the wavelets such that

it holds ‖ψλ‖Hs(Γ) ∼ 1 for all λ ∈ I, the wavelets Ψ := {ψλ : λ ∈ I} constitute a Riesz basis

for the Sobolev spaces Hs(Γ) for all s ∈ (−1/2, 1/2), meaning that

‖f‖ ∼
∥∥∥∥∥
∑

λ∈I

fλψλ

∥∥∥∥∥
Hs(Γ)

for all f = [fλ]λ∈I ∈ ℓ2(I), see e.g. [23]. Setting s := q, we can thus cast the boundary integral

equation (2.1) into a well-posed, bi-infinite system of linear equations: seek u =
∑

λ∈I uλψλ ∈
Hq(Γ) such that

Au = g, A =
[
〈Aψλ′ , ψλ〉

]
λ,λ′∈I

, u =
[
uλ

]
λ∈I

, g =
[
〈f, ψλ〉

]
λ∈I

. (3.2)

Of course, this bi-infinite system of linear equations cannot be solved numerically. So, we should

restrict the index set I to some finite subset T ⊂ I of cardinality N .

The following question arises: How small can the approximation error become when choosing

N terms of the expansion with respect to the wavelet basis Ψ? It is obvious that, having full
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information on the solution u, the best approximation by N terms is obtained by choosing

the N largest coefficients (and setting all the others to zero). This is called the best N -term

approximation. In particular, due to Céa’s lemma, by restricting the system (3.2) of linear

equation to this index set

AT uT = gT , AT =
[
〈Aψλ′ , ψλ〉

]
λ,λ′∈T

, uT =
[
uλ

]
λ∈T

, gT =
[
〈f, ψλ〉

]
λ∈T

, (3.3)

it holds the estimate
∥∥u− uT

∥∥ .
∥∥u− uT ′

∥∥

for any other index set T ′ of cardinality N . The goal of computation is thus the following.

Find an index set T of cardinality N such that the error of the numerical solution of (3.3)

stays proportional to the error of the best N -term approximation when full information on u

is given. We should quantify this in the following.

3.5. Approximation spaces

Due to the multiscale hierarchy of the basis construction, a natural quad-tree structure

underlies the wavelet basis. This is easily derived from observing that the ansatz function ϕ
[0,1]
j,k

has the two sons ϕ
[0,1]
j+1,2k and ϕ

[0,1]
j+1,2k+1. Likewise, the wavelet ψ

[0,1]
j,k has the two sons ψ

[0,1]
j+1,2k

and ψ
[0,1]
j+1,2k+1. Consequently, each wavelet ψλ has exactly four sons. This tree structure is

exploited for the efficient implementation of the wavelet boundary element method, see e.g. [9].

Therefore, we should restrict ourselves to index sets such that the associated wavelet bases are

arranged in a tree. To that end, we define the approximation classes

A
s
q :=

{
v ∈ ℓ2(I) : |v|As

q
:= sup

N∈N0

min
T ⊂I is a tree

#T=N

Ns
∥∥v − v|T

∥∥ <∞
}

of vectors v ∈ ℓ2(I) which can be approximated at rate N−s. The optimal approximation is

called the best N -term tree approximation, which is essentially as good as the pure best N -term

approximation, see e.g. [24].

On the continuous level, functions from the approximation classes Asq can be characterized

by Besov spaces . If the function v =
∑

λ∈I vλψλ is a member of Bq+2s
τ,τ (Γ), then it follows

v ∈ Asq for its discrete counterpart provided that 1/τ < s+ 1
2 , cf. [25,26]. Note that the highest

possible convergence rate, attainable for approximations in the energy norm ‖ · ‖Hq(Γ) from the

multiresolution spaces generated by piecewise constant wavelets, is N−s̄ with

s̄ :=
1− q

2
,

see e.g. [16].

With these preparations at hand, we can precisely formulate our goal of computation. If

u ∈ Asq for some s ≤ s̄, we aim at computing an approximation uT with support size #T .

ǫ−1/s|u|As
q
such that ‖u − uT ‖ ≤ ǫ for any target accuracy ǫ > 0, where the computational

over-all complexity scales linearly, i.e., like O(#T ).
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4. Adaptive Wavelet Boundary Element Methods

4.1. About the adaptive algorithm

We shall first summarize the ingredients which are needed to arrive at an adaptive algorithm

which achieves optimal complexity. The building blocks Coarse, Apply, Rhs, and Solve have

been introduced in [13, 14], where our particular implementation is based on [9], see also [15]

for related results. The adaptive algorithm itself has been proposed in [19, 20] and coincides

with classical methods which consist of the following steps:

Solve −→ Estimate −→ Mark −→ Refine

For a given index set T ⊂ I, we solve the Galerkin system (3.3) via uT = Solve[T ]. Then,

we estimate the residuum r = f −AuT with sufficient accuracy η > 0 by computing

rT ′ = Rhs[η/2]−Apply[η/2,uT ]

relative to a finite index set T ⊂ T ′ ⊂ I such that

‖r − rT ′‖ ≤ η.

Herein, Rhs[η/2] produces a finitely supported approximation of the right-hand side with ac-

curacy η/2 and Apply[η/2,uT ] approximates the matrix-vector product AuT with accuracy

η/2. In order to have ‖rT ′‖ proportional to ‖r‖, i.e.,

(1 − ω)‖rT ′‖ ≤ ‖r‖ ≤ (1 + ω)‖rT ′‖ (4.1)

for fixed 0 < ω < 1, we apply the following iteration for some initial precision ηinit:

set η = ηinit

do

set η = η/2

calculate rT ′ = Rhs[η/2]−Apply[η/2,uT ]

until η ≤ ω‖rT ′‖






(4.2)

The until-clause η ≤ ω‖rT ′‖ causes that this iteration terminates when (4.1) holds.

The supporting index set T ′ of the approximate residuum rT ′ enlarges the original index

set T enough to ensure that the Galerkin solution with respect to T ′ would reduce the error

by a constant factor. Nevertheless, to control the complexity, we have to coarsen the index set

T ′ such that

‖rT ′′‖ ≤ θ‖rT ′‖
for fixed 0 < θ < 1 sufficiently small. This is done by calling

rT ′′ = Coarse[θ, rT ′ ].

It combines the steps mark and refine since the new index set T ′′ is a refined version of the

original index set T . We emphasize that T ′′ is still large enough to guarantee the convergence

of the algorithm when starting the procedure again with T := T ′′.

In the subsequent sections, we provide the routines which have been mentioned before. They

are all of optimal computational complexity, leading to the desired linear over-all complexity.

For more details on the analysis and the choice of the constants, we refer the reader to [19,20].
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4.2. The routine Coarse

A coarsening algorithm, whose output is a near-best tree, has been established in [27]. The

idea of the algorithm is not to delete any wavelet coefficients from an input tree, but only to

cut whole branches, i.e., a node and all its successors.

To measure the error, we assign the ℓ2-norm of the branch at an index λ ∈ T ⊂ I. This is
recursively performed bottom-up by setting

e(λ) := |vλ|2 +
∑

λ′ is a
successor of λ

|vλ′ |2 = |vλ|2 +
∑

λ′ is a
son of λ

e(λ′).

Thus, the error induced by removing the branch at the node λ is simply given by
√
e(λ).

Since the coarsened tree is supposed to be minimal in size, it is imperative to find deep

branches with a small error e(λ). Hence, to incorporate the depth of the branches, we consider

the error functional ẽ(λ) by setting ẽ(λ) := e(λ) for the root node λ of T . For all the descendant

nodes, we compute

q(λ) :=
ẽ(λ)

e(λ) + ẽ(λ)

∑

λ′ is a
son of λ

e(λ′)

and set ẽ(λ′) := q(λ) for the four sons λ′ of λ. Note that it holds ẽ(λ′) < ẽ(λ) if λ′ is a

successor of λ. We can thus traverse the tree from the root node to the leaves in such a way

that the functional ẽ(λ) decreases monotonically. We stop if the error is sufficiently small,

yielding a near-best subtree T ′ ⊂ T such that
∥∥vT − vT ′

∥∥ ≤ ǫ.

Clearly, the construction of the subtree T ′ is performed within optimal complexity O(#T ).

In addition, we have the following result in accordance with [27].

Theorem 4.1 ([27]) For any given, finitely supported input vT , the computational cost of the

output vT ′ , produced by Coarse[ǫ,vT ], remains proportional to #T . The output tree T ′ ⊂ T
is near-best, i.e., it holds ‖vT − vT ′‖ ≤ ǫ and #T ′ is uniformly bounded by the size of the

optimal tree.

4.3. The routine Rhs

The construction of a sequence of approximations for the solution u, which converge with

a certain rate, requires the availability of a sequence of approximations for the right-hand side

f that converge with at least that rate. It can be shown that for any s < s⋆, if u ∈ A
s
q, then

f ∈ Asq with |f |As
q
. |u|As

q
. Nevertheless, this property does not tell us how to construct an

approximation which is qualitatively as good as the best N -term tree approximation of the

right-hand side and has a comparable support size. We will assume the availability of the

following routine, whose realization depends on the right-hand side at hand.

Assumption 4.1. Given a target accuracy ǫ > 0, the output of the routine fT = Rhs[ǫ]

satisfies ‖f − fT ‖ ≤ ǫ and

#T . ǫ−1/s|u|1/s
As

q

provided that u ∈ A
s
q for some s < s⋆. The cost to compute this output is proportional to

ǫ−1/s|u|1/s
As

q
+ 1.
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4.4. The routine Apply

In view of (3.1), the wavelets have m̃ = 3 vanishing moments, which amounts to the can-

cellation property

|〈v, ψλ〉| . 2−|λ|(q+m̃+1)|v|W m̃,∞(supp(ψλ)).

Here, the term |v|W m̃,∞(Ω) := sup|α|=m̃,x∈Ω |∂αv(x)| denotes the semi-norm in W m̃,∞(Ω). By

combining this estimate with (2.2), we can derive the following decay estimate for the matrix

entries, cf. [18, 28–31],

|〈Aψλ, ψλ′〉| . 2−(|λ|+|λ′|)(q+m̃+1)

(
dist supp(ψλ), supp(ψλ′)

)2+2q+2m̃
. (4.3)

Hence, wavelets having a larger distance from each other produce a larger value in the denomi-

nator of the term, giving a smaller matrix coefficient in total. The same holds for two wavelets

having a larger sum of refinement scales |λ| + |λ′|. Note that (4.3) gives rise to the so-called

first compression, cf. [18, 30].

In addition to (4.3), we can state a second estimate, cf. [18, 30, 31],

|〈Aψλ, ψλ′〉| . 2−|λ|(q+m̃+1)2|λ
′|(1−q)

dist
(
supp(ψλ), sing supp(ψλ′)

)2q+m̃ , (4.4)

where we assumed that |λ′| < |λ|. This estimate leads to the so-called second compression,

cf. [18,30]. The term sing supp(ψλ) stands for the singular support of a wavelet, i.e., the points

on which the wavelet is not smooth. The singular support coincides always with certain element

boundaries, see also Figure 4.1, which can be exploited to compute the particular distance in

accordance with [17].

ψλ

ψλ
′

ψλ′′

1
2

Fig. 4.1. Illustration of the situation which is affected by the first compression (1) and by the second

compression (2).

Estimates (4.3) and (4.4) are the key estimates to derive the sparse representation of the

operator A.

Definition 4.1. The operator A is called s⋆-compressible if, for any s < s⋆, there exist sub-

matrices Aj with at most the order of αj2
j non-zero entries per row and column such that

‖A−Aj‖ ≤ αj2
−sj,

with (αj)j∈N being a summable sequence of positive numbers satisfying
∑

j∈N
αj ≤ 1.
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Theorem 4.2 ([31]) Suppose that the operator A : Hq+σ(Γ) → H−q+σ(Γ) is bounded for a

sufficiently large range of positive σ. Then, A is s⋆-compressible with s⋆ > s̄ provided that

m̃ > 1− 2q.

Setting ĵ := j + log2(αj), the corresponding compression pattern has also been identified

in [31]. To obtain Aj from A replace 〈Aψλ, ψλ′〉 by zero according to the following compression

rule:

[
Aj

]
λ,λ′

=





0, if
∣∣|λ| − |λ′|

∣∣ > ĵ,

0, if 2min{|λ|,|λ′|} dist
(
supp(ψλ), supp(ψλ′ )

)
≥ B(j,1)

||λ|−|λ′||,

0, if |λ| − |λ′| > ĵ
2 and 2|λ

′| dist
(
supp(ψλ), sing supp(ψλ′)

)
≥ B(j,2)

||λ|−|λ′||,

0, if |λ′| − |λ| > ĵ
2 and 2|λ| dist

(
sing supp(ψλ), supp(ψλ′)

)
≥ B(j,2)

||λ|−|λ′||,

〈Aψλ, ψλ′〉, otherwise,

(4.5)

where the cut-off parameters B(j,1)
ℓ and B(j,2)

ℓ are given by

B(j,1)
ℓ := amax

{
1, 2(ĵ−2ℓ)b

}
, B(j,2)

ℓ := amax
{
γ
ℓ− ĵ

2

2ĵ−2ℓ, 2−ℓ
}
. (4.6)

Here, a > 1 and 1/4 ≤ b < 1/2 are suitable fixed parameters, and (γℓ)ℓ∈N is a polynomially

decreasing sequence such that
∑

ℓ=N
γℓ <∞. Specifically, we take γℓ := ℓ−2.

Given the target accuracy ǫ > 0 and a finitely supported vector v with the associated index

set T forming a tree, we can compute a sequence of nested trees ∅ = TJ ⊂ · · · ⊂ T1 ⊂ T0 := T
such that ∥∥v − v|Tj

∥∥ ≤ 2js̄ǫ, j = 1, . . . , J. (4.7)

Here, J is found by

J :=

⌈
log2(‖v‖/ǫ)

s̄

⌉
.

The difference sets ∆j := Tj \ Tj−1 are referred to as layers . We denote the according portions

of v by v|∆j
and write v =

[
v|∆J

,v|∆J−1
, . . . ,v|∆1

]⊤
. Using estimate (4.7), we deduce that

∥∥v|∆j

∥∥ =
∥∥v|Tj−1

− v|Tj

∥∥ ≤
∥∥v − v|Tj

∥∥ ≤ 2js̄ǫ.

Finally, we compute wǫ =
∑J

j=1 Ajv|∆j
to approximate the infinite matrix-vector product

Av up to an error ǫ:

‖Av −wǫ‖ =

∥∥∥∥∥Av −
J∑

j=1

Ajv|∆j

∥∥∥∥∥ ≤
J∑

j=1

‖A−Aj‖
∥∥v|∆j

∥∥ ≤
J∑

j=1

αj2
−js̄2js̄ǫ ≤ ǫ.

This is the first part of the following theorem.

Theorem 4.3 ([18]) Let ǫ > 0 and v be finitely supported with tree structured index set. Then,

the approximation wǫ = Apply(ǫ,v) is also a finitely supported tree and satisfies ‖Av−wǫ‖ ≤ ǫ

with, for any s < s⋆, #suppwǫ . ǫ−1/s|v|As
q
, where the number of arithmetic operations and

storage locations is bounded by some absolute multiple of ǫ−1/s|v|As
q
+ 1.

In our implementation, we employ the following modification of the approximate matrix-

vector product to obtain symmetric matrix pattern. Then, we can compute the system matrix
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basically along the lines of [17]. We first predict the supporting tree T ′ of the output at hand

by using (4.5). Then, setting ∆−1 := T ′ \ T , the approximation wǫ =
∑J
j=1 Ajv|∆j

can be

schematically written as

wǫ =


 AJ AJ−1 AJ−2 · · · A1 A0


 ·




v|∆J

v|∆J−1

v|∆J−2

...

v|∆1

0|∆0




.

This involves a quadratic matrix, where we can just set A0 := 0. We arrive at a symmetric

matrix pattern, if, whenever a coefficient 〈Aψλ, ψ
′
λ〉 is relevant according to (4.5), we also let the

transposed coefficient 〈Aψ′
λ, ψλ〉 be relevant. This formally leads to the matrix-vector product

wǫ =




AJ,J AJ,J−1 . . . AJ,0

AJ−1,J AJ−1,J−1 . . . AJ−1,0

...
...

...

A0,J A0,J−1 . . . A0,0



·




v|∆J

v|∆J−1

...

0|∆0




(4.8)

and gives rise to an even more accurate approximation, while the computational complexity is

at most doubled. We refer to Figure 4.2 for an illustration of this matrix compression.

Fig. 4.2. Original matrix (left) and compressed matrix (right).

4.5. The routine Solve

Starting from the Galerkin solution uT which satisfies ‖u−uT ‖ ≤ ǫ, we have extended the

index set T to the index set T ′′ which is sufficiently large to ensure the saturation property.

Hence, the error of the new Galerkin solution uT ′′ = Solve(T ′′) decreases by a constant factor

compared to the error ǫ of the old Galerkin solution uT .

In order to determine uT ′′ , we shall solve the system (3.3) for T ′′ with sufficient accuracy. In

order to damp the error induced by uT by a constant factor, it suffices to take the system matrix
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from the approximate matrix-vector product (4.8) for uT with a somewhat higher accuracy.

Setting ∆0 := T ′′ \ T and increasing the accuracy by ℓ := −⌊log2(δ)⌋ levels, we arrive at

ÂT ′′uT ′′ = fT ′′ , where ÂT ′′ =




AJ+ℓ,J+ℓ AJ+ℓ,J+ℓ . . . AJ+ℓ,ℓ

AJ+ℓ,J+ℓ AJ+ℓ−1,J+ℓ . . . AJ+ℓ,ℓ

...
...

...

Aℓ,J+ℓ Aℓ,J+ℓ . . . Aℓ,ℓ



. (4.9)

Here, 0 < δ < 1 is the desired damping factor. In view of Theorem 4.3, the computational

complexity of assembling and solving this system of linear equations is obviously O(ǫ−1/s|u|As
q
+

1).

Remark 4.1. The following modification turned out to improve the efficiency of the adaptive

algorithm since the loop in (4.2) for estimating the residuum already terminates after one

iteration when a good initial guess ηinit is applied. Namely, we already increase the accuracy

for the routine Apply by replacing j 7→ j + ℓ in the system matrix in (4.8). This is still

computationally optimal since ℓ is fixed. The main advantage is that then the system matrix

in (4.9) is simply obtained by removing all lines and columns which do not belong to indices

from the set T ′′. Consequently, only a single system matrix has to be assembled for one step

of the adaptive algorithm.

5. Numerical Results

5.1. Laplace equation in Fichera’s vertex

We shall consider the Laplace equation inside a given domain Ω with Dirichlet boundary

conditions:

∆U = 0 in Ω, U = f on Γ. (5.1)

We first consider Fichera’s vertex as seen in Figure 5.1, which consists of 12 patches. The

Dirichlet data in (5.1) are chosen as f ≡ 1 such that U ≡ 1 is the solution of the Laplace

equation.

We shall employ the indirect formulation to solve (5.1). We make the ansatz

U(x) =
1

4π

∫

Γ

u(y)

‖x− y‖ dσy, x ∈ Ω, (5.2)

which, due to the continuity of the single-layer potential at the boundary Γ, leads to the

boundary integral equation

1

4π

∫

Γ

u(y)

‖x− y‖ dσy = f(x), x ∈ Γ. (5.3)

This is a boundary integral equation of the first kind, involving the single-layer operator which

is of order 2q = −1. We solve this boundary integral equation by our adaptive method and

evaluate, in order to verify the solution, the potential (5.2) in many points {xi} which are

equi-distributed inside the Fichera vertex.

In Table 5.1, we see the output of the adaptive code. The numbers in the second and third

column are (in this order) the support size Nr for computing the residuum r and the degrees of

freedom Ndof , obtained after coarsening the residuum. The fourth column contains the norm
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Fig. 5.1. Solution (left) and refinement (right) of the Fichera vertex.

of the approximate residuum and the fifth column contains the error of the potential. The

sixth column (nnz (%)) shows us the percentage of non-zero entries in the system matrix after

compression. We can clearly see that not many matrix entries remain and the matrix gets very

sparse. Finally, the last column contains the computation time in seconds used for one step of

the code, that is the time for growing the tree until the terminating condition is met, together

with assembling and solving the system, but without evaluating the potential.

Table 5.1: Results for the single-layer potential and Fichera’s vertex.

step Nr Ndof ‖r‖ potential error nnz (%) time (s)

0 — 12 — 6.09·10−2 100 0.01

1 48 38 6.12·10−2 3.60·10−2 100 0.06

2 183 170 9.10·10−2 1.58·10−2 92.2 0.13

3 714 564 4.34·10−2 9.28·10−3 42.3 0.47

4 2840 1502 2.56·10−2 4.40·10−3 22.7 2.71

5 8511 4502 1.61·10−2 4.54·10−4 7.91 14

6 25022 12377 1.07·10−2 1.64·10−4 3.10 48

7 47717 25068 6.15·10−3 2.05·10−4 1.37 86

8 104464 50132 4.05·10−3 1.67·10−4 0.67 238

9 239922 110464 2.86·10−3 7.05·10−5 0.30 682

10 562938 239186 2.00·10−3 2.58·10−5 0.13 2105

11 1234025 518350 1.29·10−3 2.78·10−5 0.06 6633

12 2111448 890168 7.60·10−4 2.78·10−5 0.03 11521

13 3968557 1618570 5.79·10−4 1.17·10−5 0.02 34750

The first line of Table 5.1 has to be interpreted as follows. The calculation starts with the

piecewise constant ansatz functions associated with the 12 patches of the Fichera vertex, for

which we assemble the system matrix, the right-hand side and subsequently solve the linear

system of equations. Afterwards, we evaluate the potential and calculate its maximal error.

A general line is interpreted as follows: we have a solution of the previous step k − 1 which

consists of N
(k−1)
dof degrees of freedom, as found in the line above. In the k-th step, the residuum

is calculated for N
(k)
r degrees of freedom and then this residuum is coarsened to N

(k)
dof degrees
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of freedom, for which the solution is finally computed. The norm of the residuum and the

potential error are tabulated in the same line.
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Fig. 5.2. Residual and potential error for the single-layer potential and Fichera’s vertex.

Figure 5.2 shows the degrees of freedom Ndof , plotted against the norm ‖r‖ of the residuum,

as well as the potential error. We observe that the convergence rate for the residuum is N−0.5
dof ,

even slightly better. This is optimal for an isotropic discretization since the anisotropic sin-

gularities which appear at the edges cannot be resolved. The convergence rate for potential is

approximately N−0.75
dof , caused by super convergence effects of the potential evaluation.

The final solution which has been computed is shown in the left plot of Figure 5.1. In the

right plot of this figure, the mesh refinement, produced by the code, is visualized. Since we

would not be able to see the refinement by drawing the grid, this picture was produced in the

following way: After the code terminated, we assigned to each active wavelet a point in the

center of its support which is weighted with 2 to the power of the wavelet’s level, achieving that

a small wavelet gets assigned a large value. The picture below is thus to be interpreted as: The

lighter the colour, the finer are the elements in this area. The code refines the elements along

the edges and vertices of the geometry. This is the behaviour to be expected since the density

u exhibits the singularities of both, the solution of the interior as well as of the exterior Laplace

equation.

5.2. Laplace equation in a gearwheel

In our second example, we solve the Dirichlet problem (5.1) for the Laplacian in a nontrivial

geometry, namely a gearwheel, see Figure 5.3, which is represented by 504 patches. As Dirichlet

data in (5.1), we choose the restriction f = U |Γ of the harmonic polynomial U(x) = 4x21 −
3x22 − x23 where x = (x1, x2, x3). Hence, the analytical solution of (5.1) is given by U(x).

We again apply the indirect ansatz (5.2) by the single-layer potential, which again amounts

to solving the boundary integral equation (5.3) for the single-layer operator. The application of

the adaptive algorithm yields the results found in Table 5.2, the layout of which is the same as

in the previous example. The convergence rate and the potential error are shown in Figure 5.4.

Here, despite of edge singularities, we observe a convergence rate which is nearby the maximal

rate N−0.75. Compared to this, the potential error behaves this time only slightly better. The

final solution is found in the left plot of Figure 5.3, while the right plot of this figure illustrates
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Fig. 5.3. Solution (left) and refinement (right) on the gearwheel with a smooth right-hand side.

the refinement.

Table 5.2: Results for the gearwheel with a smooth right-hand side.

step Nr Ndof ‖r‖ potential error nnz (%) time (s)

0 2016 1716 6.35 8.98·10−1 98.48 17

1 5084 4191 6.72 1.59·10−1 55.15 38

2 6290 5605 3.04 7.82·10−2 47.23 51

3 16384 10640 2.68 2.54·10−2 28.37 151

4 29340 15999 1.92 1.75·10−2 19.60 271

5 35415 20896 1.14 1.24·10−2 17.00 385

6 41162 33010 3.72·10−1 7.13·10−3 13.15 721

7 136946 57152 8.54·10−1 2.29·10−3 10.12 3812

8 144262 101764 2.37·10−1 3.02·10−3 4.47 3554

9 319863 142179 4.31·10−1 1.69·10−3 3.78 10234

10 366229 254617 1.37·10−1 1.32·10−3 1.73 11844

11 929944 336611 2.86·10−1 4.25·10−4 1.83 45941

12 786306 597850 4.73·10−2 3.85·10−4 0.75 35142

13 2775537 811936 1.93·10−1 6.85·10−5 0.39 228111

14 1808460 1320772 2.97·10−2 6.92·10−5 0.16 104015

5.3. A cartoon image as right-hand side

We consider next the solution of a Dirichlet problem for the exterior (low frequency)

Helmholtz equation

∆U + U = 0 in R \ Ω, U = f on Γ.

In order to avoid spurious modes, we make the ansatz of Brakhage and Werner, cf. [32], and

combine the acoustic double-layer potential with the acoustic single-layer potential

U(x) =

∫

Γ

(
∂

∂ny

G(x,y)− iG(x,y)

)
u(y) dσy, x ∈ R \ Ω,
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Fig. 5.4. Residual and potential error for the single-layer potential and the gearwheel geometry.

where u ∈ L2(Γ) is an unknown density and

G(x,y) :=
1

4π

ei‖x−y‖

‖x− y‖

is the fundamental solution of the Helmholtz operator. Letting x tend to the boundary and

observing the jump condition of the double-layer potential yields the boundary integral equation

1

2
u(x) +

∫

Γ

(
∂

∂ny

G(x,y)− iG(x,y)

)
u(y) dσy = f(x), x ∈ Γ. (5.4)

It is a Fredholm integral equation of the second kind, which means that the underlying integral

operator is of order 2q = 0.

We will consider in this example a smooth boundary, so that the boundary integral operator

under consideration offers the full regularity, but a non-smooth right-hand side. Hence, we

choose the sphere S2 as geometry which is represented by six patches, see also Figure 5.5. The

right-hand side is given as

f(x) =

{
1, if ‖x− (0, 0, 1)‖2 ≤ 1

2 ,

0, elsewhere.

Such cartoon functions have been studied in [33] and can be approximated at the rate N−0.5.

Hence, the density u ∈ L2(Γ) of the boundary integral equation (5.4) is expected to converge

also with the rate N−0.5, see [26] for the details. Notice that uniform refinement would give

only half the rate, i.e., the rate N−0.25, since the right-hand side is only in the Sobolev space

H1/2−δ(Γ) with δ > 0 being arbitrarily small.

The results of the algorithm are presented in Table 5.3. Since the analytical solution is

not known for the Dirichlet data under consideration, we cannot compute the potential error.

Nevertheless, the norm of the residuum converges, and, as seen in Figure 5.6, the optimal rate

N−0.5 is achieved. The final solution is found in the left plot of Figure 5.5, while the right plot

of Figure 5.5 illustrates the refinement. It is clearly seen that refinement takes mainly place at

the jump of the right-hand side.
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Table 5.3: Results for the sphere with a discontinuous right-hand side.

step Nr Ndof ‖r‖ nnz (%) time (s)

0 6 — — 100 0.02

1 76 16 4.04·10−1 100 0.13

2 1496 110 1.64·10−1 22.7 7.51

3 3836 843 4.21·10−2 9.26 26

4 25574 4813 1.99·10−2 1.50 344

5 53156 13778 1.02·10−2 0.70 560

6 223563 46861 7.56·10−3 0.17 3813

7 636402 122534 4.57·10−3 0.06 12697

8 1624573 330860 2.81·10−3 0.02 43434

Fig. 5.5. Solution (left) and refinement (right) for the Brakhage-Werner formulation and the sphere.
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Fig. 5.6. Residual in case of a discontinuous right-hand side.

6. Conclusion

In this article, we presented an adaptive wavelet boundary element method which realizes

asymptotically optimal complexity. By asymptotically optimal we mean that any target accu-
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racy can be achieved at a computational expense that stays proportional to the solution’s best

N -term tree approximation. The layout of the algorithm mimics standard adaptive algorithms

with the only difference that we directly approximate the residuum with sufficient accuracy in-

stead of computing error estimators to estimate the residuum. The numerical results validate

the feasibility and efficiency of the proposed algorithm.
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