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Abstract. We consider a Robin inverse problem associated with the Laplace equation,

which is a severely ill-posed and nonlinear. We formulate the problem as a boundary

integral equation, and introduce a functional of the Robin coefficient as a regularisation

term. A conjugate gradient method is proposed for solving the consequent regularised

nonlinear least squares problem. Numerical examples are presented to illustrate the

effectiveness of the proposed method.
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1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω = Γ. Consider the follow-

ing Robin boundary value problem for the Laplace equation:







∆u= 0 , in Ω ,

∂ u

∂ ν
+ pu = g , on ∂Ω = Γ ,

(1.1)

where ν is the unit outward normal direction on Γ, p = p(x) is the Robin coefficient with

support contained in Γ1 ⊂ Γ, and g = g(x) is a given input function. In recent years, many

results have been developed on important properties of the forward map from p to u, such

as uniqueness, continuity with respect to proper norms, and differentiability and stability

in various forms [1,6,7,9,13,14].

The related Robin inverse problem involves recovering the Robin coefficient p from a

partial boundary measurement of function u — i.e. by using u = u0 on a part Γ0 of the
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boundary, where Γ0 ∩ Γ1 = ;. This kind of problem appears in various nondestructive

evaluation methods, where an unknown material profile with support contained within an

inaccessible part of the boundary is to be recovered using a partial boundary measurement

made on an accessible part of the boundary. For example, in corrosion detection the Robin

coefficient p represents the corrosion damage profile on an inaccessible part of the bound-

ary, and u0 is the electrostatic measurement on an accessible boundary [17, 21, 28]. In

the study of socalled MOSFET semiconductor devices, p encodes information on the qual-

ity and location of the inaccessible metal-to-silicon contact window and u0 is the voltage

measurement on an accessible part of the boundary [3,11,24,25].

To recover the Robin coefficient numerically, we need to express p as a linear combina-

tion of certain basis functions [4,5] or discretise the problem [12,19]. One can discretise

the problem (1.1) directly by using a finite difference method or finite element method

— e.g. see [19]; or alternatively, first reformulate (1.1) as a boundary integral equation

and then discretising the resulting integral equation using the boundary element method

or numerical quadratures [18, 23]. Since all the quantities involved in the Robin inverse

problem are on the boundary Γ, solving the problem using a boundary integral equation

seems natural. This approach has the advantage that the resulting discrete system is much

smaller than the system obtained by discretising the original partial differential equation.

Fasino & Inglese [13, 14, 17] have investigated the case where Ω = [0,1] × [0, a],

Γ1 = [0,1] × {a} and Γ0 = [0,1] × {0}. Their main idea is to apply a “thin-plate ap-

proximation”, which is very easy to carry out. Lin & Fang [23] transformed the Robin

inverse problem into a linear integral equation by introducing a new variable v and then

imposing regularisation on v, and then derived linear least-square-based methods to esti-

mate the Robin coefficient. Jin [18] considered solving the Robin inverse problem by using

conjugate gradient (CG) methods. Following transformation of the inverse problem into

an optimisation problem, two regularisation methods were considered together with CG

methods — one was to terminate the iterative procedure at an appropriate step according

to noise level in the data (without any penalty term and with the number of iterations serv-

ing as a regularisation parameter), and the other involved introducing a Tikhonov penalty

term and running a CG method until convergence was reached. Jin & Zou [20] considered

the estimation of piecewise constant Robin coefficients, by minimising the Modica-Mortola

functional via a concave-convex procedure. Chaabane et al. [8] considered the estimation

of piecewise constant Robin coefficients using the Kohn-Vogelius method. In this article,

we pursue further numerical methods for the Robin inverse problem (1.1) in the bound-

ary integral equation setting. In order to obtain a highly accurate approximation of the

Robin coefficient p, we introduce a penalty term directly defined by p different from that

in Ref. [23], where the penalty term is defined by a functional v (a function of p and u).

A conjugate gradient method is then used to solve the regularised nonlinear least squares

problem. Numerical results show that the approximate Robin coefficients obtained from

the method proposed here are better than those produced by the quadratic programming

model in Ref. [23].

In Section 2, we formulate the inverse problem as a boundary integral equation, and

then transform the problem to an unconstrained nonlinear least squares problem based on
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fit-to-data least squares and regularisation. In Section 3, we introduce a discrete presenta-

tion of the regularized least squares problem for planar domains. In Section 4, we propose

a conjugate gradient method for minimisation of the regularized least squares problem.

Numerical examples are presented in Section 5 to illustrate the effectiveness of our numer-

ical method in recovering the Robin coefficient from noisy data. Finally, brief concluding

remarks are given in Section 6.

2. Reformulation of the Robin Inverse Problem

We first introduce the boundary integral equation formulation for the boundary value

problem (1.1). Assume that the domain Ω has a smooth boundary Γ, the closed subsets Γ0

and Γ1 are disjoint, and p(t) is a nonnegative function on Γ with supp(p) ⊂ Γ1. Consider

the fundamental solution for the Laplace equation in R2

Φ(x , y) =
1

2π
ln

1

|x − y|
for x 6= y .

By Green’s formula, the solution u to (1.1) in Ω can be represented in terms of its boundary

value by

u(x) = −

∫

Γ

�

∂Φ(x , y)

∂ νy

+ p(y)Φ(x , y)

�

u(y) dsy +

∫

Γ

Φ(x , y) g(y) dsy , x ∈ Ω .

It is known that the boundary value of u satisfies the following boundary integral equa-

tion [2,22,26]:

1

2
u(x)+

∫

Γ

�

∂Φ(x , y)

∂ νy

+ p(y)Φ(x , y)

�

u(y)dsy =

∫

Γ

Φ(x , y)g(y)dsy , x ∈ Γ . (2.1)

On defining

(Du)(x) =

∫

Γ

∂Φ(x , y)

∂ νy

u(y)dsy ,

(S u)(x) =

∫

Γ

Φ(x , y)u(y)dsy ,

for x ∈ Γ ,

Eq. (2.1) can be written succinctly as

A (p)(u) :=

�

1

2
I +D
�

u+S (pu) = S g . (2.2)

We note that the forward problem is to solve Eq. (2.1) or Eq. (2.2) to obtain u on Γ for

given p, and the Robin inverse problem is to find p on Γ1 such that the solution u of

Eq. (2.1) matches the known u0 on Γ0 — i.e. u|Γ0
= u0.

Let us denote the restriction operator from Γ to Γ0 by R0 — i.e. for u defined on Γ,

R0u is defined on Γ0 with (R0u)(x) = u(x) for x ∈ Γ0. Then for a given input g, the
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measurement u0 of u on Γ0 can be expressed as R0u = u0. The solution of the inverse

problem does not depend continuously on the data even if it does exist, as immediately

seen from the severe ill-posedness of the Cauchy problem for the Laplace equation. Hence

instead of working directly with equation (2.1), we turn to a variational formulation of the

problem, thereby transforming it to a constrained minimisation problem — viz.







min
p,u

1

2





R0u− u0







2

L2(Γ0)
+
α

2
J(p) ,

s.t. A (p)(u) = f ,

(2.3)

where f = S g, J(p) is a regularisation functional and α > 0 is a regularisation parameter.

In this article we consider continuous Robin coefficients, so we choose the H1 semi-

norm of p(x) as a regularisation functional:

J(p) =

∫

Γ1

|p′(x)|2dsx . (2.4)

After solvingA (p)(u) = f to get

u =A (p)−1 f ,

we can transform the constrained minimisation problem (2.3) into an unconstrained non-

linear least-squares problem:

min
p

1

2





R0A (p)
−1 f − u0







2

L2(Γ0)
+
α

2
J(p). (2.5)

3. Discretisation for Planar Domains

In this section, we give a discrete representation of the minimisation problems (2.3)

and (2.5) for planar domains. For the sake of completeness here, we again give the

parametrisation of Γ and the discretisation of relevant operators — cf. [23].

3.1. Parametrisation of Γ

Suppose the boundary Γ of a planar domain Ω has a regular parametrisation given by

(x1, x2) = (φ(t),ψ(t)) for 0≤ t ≤ L ,

with (φ(0),ψ(0)) = (φ(L),ψ(L)). Assume also that φ(·) and ψ(·) are both C 2 functions.

Define

Kd(t, s) =
1

2π

ψ
′
(s)
�

φ(t)−φ(s)
�

+φ
′
(s)
�

ψ(t)−ψ(s)
�

�

φ(s)−φ(t)
�2
+
�

ψ(s)−ψ(t)
�2

and

Ks(t, s) = −
1

2π

�

ln
p

(φ(s)−φ(t))2 + (ψ(s)−ψ(t))2
�p

(φ′(s))2+ (ψ′(s))2 ,
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for x = (φ(t),ψ(t)) and y = (φ(s),ψ(s)) on Γ with x 6= y (t 6= s). We can write the

operators D and S as

(Du)(t) =

∫ L

0

Kd(t, s)u(s)ds ,

(S u)(t) =

∫ L

0

Ks(t, s)u(s)ds ,

where u(s) = u(φ(s),ψ(s)).

3.2. Discretisation.

We use the mid-point quadrature rule to discretise the integral operators and central

difference quotients to approximate derivatives. If the interval [0, L] be partitioned into

n uniform subintervals [(i − 1)h, ih], i = 1,2, . . . , n where h = L/n, then the quadrature

points are t i = (i − 1/2)h, i = 1,2, . . . , n. Suppose

{t i}
n
i=1

⋂

�

t : (φ(t),ψ(t)) ∈ Γ0

	

=
¦

tm1+1, · · · , tm2

©

and

{t i}
n
i=1

⋂

�

t : (φ(t),ψ(t)) ∈ Γ1

	

=
¦

tm3+1, · · · , tm4

©

.

Let u and p denote the discretised functions of u(t) on Γ and p(t) on Γ1, respectively —

i.e.

u =
�

u(t1), . . . ,u(tn)
�T

, p=
�

p(tm3+1), . . . , p(tm4
)
�T

;

and for the discrete data

u0 =
�

u0(tm1+1), · · · ,u0(tm2
)
�T

, f=
�

f (t1), · · · , f (tn)
�T

.

If the matrix representation of the operator D is denoted by D and that of S by S, then

the matrix representation of A (p) in (2.2) is

A(p) =
1

2
I + D+ SP , (3.1)

where I is the identity matrix of order n and

P = diag
�

[Om3×1; p; O(n−m4)×1]
�

.

Here Om×1 denotes the zero column of length m. As for the regularisation term defined by

(2.4), incorporating the factor 1/h into the regularisation parameter α we approximate it

by

J(p) = (pm3+1 − 0)2+ (pm3+2 − pm3+1)
2+ · · ·+ (pm4

− pm4−1)
2+ (0− pm4

)2

= (pm3+1)
2+

m4
∑

i=m3+2

(pi − pi−1)
2 + (pm4

)2 ,
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as (φ(tm3
),ψ(tm3

)), (φ(tm4+1),ψ(tm4+1)) 6∈ Γ1, pm3
= p(tm3

) = 0, pm4+1 = p(tm4+1) = 0

— i.e.

J(p) = pT Tp ,

where

T =

















2 −1

−1 2 −1
.. .

. . .
. . .

−1 2 −1

−1 2

















m4−m3

.

Thus the discrete representation of the nonlinear least-squares problem (2.5) is given by

min
p

1

2





R0A(p)−1f−u0







2
+
α

2
J(p) , (3.2)

where R0 is the discretisation of the restriction operator R0 — i.e.

R0 =
�

O(m2−m1)×m2
Im2−m1

O(m2−m1)×(n−m2)

�

,

where Or×s denotes the r × s zero matrix and Ir the identity matrix of order r.

3.3. Matrices D and S for elliptic domains.

Suppose Ω is an ellipse in R2:

Ω =

�

(x1, x2) :

�

x1

a

�2

+

�

x2

b

�2

< 1

�

with a, b > 0. The usual parametrisation for Γ is

(x1, x2) =
�

φ(t),ψ(t)
�

=
�

a cos(2πt), b sin(2πt)
�

for 0≤ t ≤ 1 .

In this case, the kernel in the integral operator D is

Kd(t, s) = −
ab

2(a2 sin2(π(t + s)) + b2 cos2(π(t + s)))
,

and since Kd(t, s) is smooth we have

D = h
�

Kd(t i, t j)
�n

i, j=1
.

The kernel in the integral operator S is weakly singular at s = t, (t, s) = (0,1) and (1,0)

— so should be taken into account in discretising
∫ 1

0
Ks(t, s)u(s)ds to avoid large errors.

Thus by decomposing Ks(t, s) as

Ks(t, s) =
�

Ks1(t, s) + Ks2(t, s)
�

Ks3(t, s) ,
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where

Ks1(t, s) = ln
�

2| sin(π(t − s))|
�

,

Ks2(t, s) = ln
p

a2 sin2(π(t + s)) + b2 cos2(π(t + s)) ,

Ks3(s) = −
p

a2 sin2(2π(s))+ b2 cos2(2π(s)) ,

on using the singularity subtraction technique (e.g. see [10]) we obtain

S =



hKs(t i, t j)− δi, j h

n
∑

k=1

Ks1(t i, tk)Ks3(t i)





n

i, j=1

,

involving the Kronecker delta

δi, j =

¨

1 , i = j ,

0 , i 6= j .

4. A Conjugate Gradient Method

We solve the regularised minimisation problem (3.2) by the well-known Conjugate

Gradient (CG) method, one of the most popular quasi-Newton methods for solving non-

linear optimisation problems without constraints. (It has been proven that the CG method

performs well even for non-smooth objective functions [27].) In order to do so, we need

to compute the gradients of F(p) := 1

2
‖R0A(p)−1f− u0‖

2
2 and J(p). Since

∂

∂ pi

R0A(p)−1f= lim
τ→0

R0

�

A(p+τei)
−1− A(p)−1)
�

f/τ

= lim
τ→0

R0A(p+τei)
−1 ·
�

A(p)− A(p+τei)
�

/τ · A(p)−1f

=− R0A(p)−1S diag(δm3+i,1, · · · ,δm3+i,n)A(p)
−1f ,

where ei is the ith column of the identity matrix of order n, we have

∂

∂ pi

R0A(p)−1f= −R0A(p)−1S (0, · · · , 0,um3+i, 0, · · · , 0)T , (4.1)

on identifying A(p)−1f with up = (u1, · · · ,un)
T . It follows that

∂

∂ pi

F(p) = −(0, · · · , 0,um3+i, 0, · · · , 0)ST A(p)−TRT
0 (R0up− u0) ,

so we get

∇F(p) = −diag(um3+1, · · · ,um4
)ST

1 A(p)−TRT
0 (R0up− u0) ,

where S1 = S(·, m3 + 1 : m4). We note that the gradient of J(p) = pT Tp is given by

∇J(p) = 2Tp, and it follows that the gradient of the objective function of the minimisation

(3.2) is given by

g= −diag(um3+1, · · · ,um4
)ST

1 A(p)−1RT
0

�

R0A(p)−1f− u0

�

+αTp . (4.2)
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Before we proceed to the Conjugate Gradient method, we discuss how to get a good

approximate step length in line search. Let p be the current approximate Robin coeffi-

cient and d the search direction. From Eq. (4.1) we see that the Jacobian of R0A(p)−1f is

−R0A(p)−1S1diag(um3+1, · · · ,um4
). Letting

δud = −A(p)−1S1diag(um3+1, · · · ,um4
)d and r= R0A(p)−1f− u0 = R0up− u0 , (4.3)

we have

R0A(p+ γd)−1f− u0 ≈ R0A(p)−1f− γR0A(p)−1S1diag(um3+1, · · · ,um4
)d− u0

= γR0δud + r ,

whence

F(p+ γd) +
α

2
J(p+ γd)

≈
1

2
‖γR0δud+ r‖2 +

α

2
(p+ γd)T T (p+ γd)

=
1

2

�

(R0δud)
T (R0δud) +αdT Td

�

γ2 +
�

rT (R0δud) +αdT Tp
�

γ+
1

2

�

rT r+
α

2
pT Tp

�

,

hence a good approximate step length in the direction d is

γ̃ = −
rT (R0δud) +αdT Tp

(R0δud)
T (R0δud) +αdT Td

. (4.4)

We now present the CG method, which is similar to the one presented in Ref. [18].

Algorithm 1. Conjugate Gradient Method

(a) Choose p0, and set k = 0.

(b) Compute up by solving the direct problem (2.2) with p= pk,

and compute the residual rk = R0up− u0.

(c) Compute the gradient gk by using (4.2) and calculate the descent direction

dk = −gk + βk−1dk−1 with the conjugate coefficient βk−1 being given by

βk−1 =
||gk||

2
2

||gk−1||
2
2

(assume that β−1 = 0).

(d) Solve A(pk)δudk
= S1diag(um3+1, · · · ,um4

)dk to get δudk
; see (4.3).

(e) Calculate an approximate step length γ̃k in the direction dk:

γ̃k = −
rT

k
(R0δudk

) +αdT
k

Tpk

(R0δudk
)T (R0δudk

) +αdT
k

Tdk

; see (4.4).

(f) Determine the step length γk by minimising the function

F(pk + γdk) +αJ(pk+ γdk) with γ̃k as the initial guess.

(f) Update the Robin coefficient: pk+1 = pk + γkdk.

(g) Increase k by one and go to step (b), r and then repeat the above procedure

until a stopping criterion is satisfied.
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Remark 4.1. The difference between Algorithm 1 (henceforth denoted by CG1) and the

one presented in [18] (denoted by CG2) is the method used for line search. Thus CG2

uses γ̃k as the step length, while CG1 uses γ̃k as the initial guess of the step length and

then carries out an exact line search (we use the Matlab function f minunc() to seek the

step length γk). It is obvious that CG1 involves more computational cost in each step than

CG2, and our numerical tests described below show that CG1 requires less iterations and

also produces better results.

5. Numerical Examples

We now discuss the results of applying our CG1 method to solve the inverse problem

corresponding to (1.1) on elliptic domains. For simplicity, in our numerical tests below we

assume the ellipse has the standard parametrisation

x = x(t) =
�

a cos(2πt), b sin(2πt)
�

, 0≤ t ≤ 1 ,

where a = 1 and b is a parameter to be chosen. The two segments Γ0 and Γ1 are chosen

as

Γ0 =
�

(a cos(2πt), b sin(2πt)) : t ∈ [0.55,0.85]
	

(a centred segment on the bottom half) ,

Γ1 =
�

(a cos(2πt), b sin(2πt)) : t ∈ [0.15,0.45]
	

(a centred segment on the top half) .

The function g(t) is chosen as

g
�

a cos(2πt)), b sin(2πt)
�

=

(

1 , if t ∈ [0.4,0.6] ,

0 , elsewhere on Γ .

We use two profiles for the Robin coefficient p(t) that previously have been tested in the

literature — cf. [9,23] for example.

Our tests were carried out by using Matlab. We set uniform partitions on the parameter

interval [0,1] with h = 0.0025. In all of our tests below, we first chose p(t) and obtained

approximate values of the solution to (2.2) at the grid points t1, t2, · · · , tn by solving a

corresponding discrete system

A(p)u= f

by using Gauss elimination, where A(p) is defined in Eq. (3.1). Then we produced the data

u0 from u|Γ0
with a certain level of random noise added — i.e.

u0(t i) = ui + 2δ(rand− 0.5), i = m1 + 1, · · · , m2 ,

where the symbol ‘rand’ denotes a random number from the uniform distribution of inter-

val (0,1), and δ is an absolute noise level. In all of our tests, we always chose the initial

guess to be p0 = (0.5,0.5, · · · , 0.5)T .
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It is known that regularisation parameters play an important role in solving ill-posed

problems, and the discrepancy principle can be used to obtain a valid regularisation pa-

rameter when an accurate estimate of the noise level of the data is available. However,

it may be that the value of the parameter α can vary in a slightly larger range — cf. Ex-

ample 5.1 below. In our numerical experiments, we assumed that an accurate estimate

of E := ‖R0u − u0‖ is known. We first chose an initial α, and then updated the value

of α according to the value of ||R0up − u0||2. More precisely, if ||R0up − u0||2 > 2E, we

replaced α by 0.5α; and if ||R0up − u0||2 < E, we replaced α by 2α. Finally, we modified

the parameter α slightly to get a best possible estimate of p.

Example 5.1 (Convergence process of CG1 and effect of regularisation parameter). We

set b = 0.2 and noise level δ = 10−3. In this case, the relative error in the input data is

about 2.6× 10−4 (we estimated the error by comparing u0 with a numerical solution ũ

obtained using a fine grid). At each step of the CG1 method, we computed the error of the

kth approximate Robin coefficient

er r(k) = ||pk− ptrue||2 ,

where ptrue denotes the true Robin coefficient, and the difference between upk
(determined

by the approximate Robin coefficient pk) and the measure data the u0 — viz.

E(k) = ||R0upk
− u0||2 .

In Fig. 1, er r(k) and E(k) are plotted as functions of the number of iterations k. We can

see that both er r(k) and E(k) decreased steadily in the early iterations, up to a certain

iteration, and then stalled. Moreover, the quality of the recovered Robin coefficient has no

significant difference for the value of α over a certain range.

Assuming that g ≥ 0 and does not vanish identically, then u > 0 over the boundary Γ,

which consequently guaranteed the identifiability of the Robin coefficient p by the maxi-

mum principle ( [16]). However, the approximate p obtained by using the CG1 method

may have components that are negative (see Fig. 2), which does not meet the condition

pi ≥ 0. There are many methods for handling this problem — e.g. see [4, 15]. In our

numerical tests, we simply replaced pi by max{pi , 0} for the final results from the CG1

method.

Example 5.2 (Comparison with a QP method). We compared the performance of the CG1

method with the quadratic programming (QP) method proposed in Ref. [23], which is a

very accurate method for recovering the Robin coefficient.

We set the noise level to δ = 10−3 and considered two profiles, which are shown

together with reconstructed profiles in Fig. 3. We note that the relative errors in the input

data for the above profiles are 2.6× 10−4 and 3.4× 10−4, respectively. We also observe

that the recovered profiles obtained using the CG1 method are more accurate than the

one recovered using the QP method. However, we point out that the regularisation term

we introduced is a functional of the profile p(x), while the one proposed in Ref. [23] is a

functional of v(x) = (p̄(x)− p(x))u(x), where p̄(x) is an upper bound of p(x). We also
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overed Robin 
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ient without trun
ation.
note that the recovered profiles obtained using the CG1 are better than those obtained

using CG2, which indicates that the recovered profiles are sensitive to minor details (the

only difference between CG1 and CG2 is in the line search).

Example 5.3 (Effect of noise level). In this example, we investigated the effect of the noise

level on the performance of the proposed method for reconstructing the Robin coefficient

p. We used the elliptic domain with a = 1, b = 0.1. The Robin coefficients recovered from

noisy data with δ = 10−2, 10−3, 10−4 are plotted in Fig. 4. (The relative errors in the input

data for the above two profiles are 3.0× 10−3 and 3.3× 10−3, 2.9× 10−4 and 3.2× 10−4,

4.1 × 10−5 and 3.7 × 10−5, respectively.) As expected, the quality of the reconstructed
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(a) Recovered profiles obtained using CG1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
CG2
Exact

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
CG2
Exact

(b) Recovered profiles obtained using CG2.
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(c) Recovered profiles obtained using QP.Figure 3: Re
overed pro�les obtained using CG1, CG2 and QP for a = 1, b = 0.2 and δ = 10−3.
Robin coefficient worsens as the noise level increases, but the CG1 method proved more

tolerant to noise than the QP method.
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(a) Recovered profiles obtained using CG1.
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(b) Recovered profiles obtained using QP.Figure 4: E�e
t of the noise level δ in the data on the di�erent methods with b = 0.1.
Example 5.4 (Effect of parameter b). In this example, we fixed a = 1 and varied b to

illustrate the effect of parameter b on the recovered profiles. The noise level was set to

δ = 10−3. The results for the two p profiles are presented in Fig. 5. Although we see that

the recovered p becomes less accurate as b increases, the results obtained using the CG1

method are still reasonably good, as we can obtain satisfactory reconstruction of p for both

profiles. Moreover, we see from the left column of Fig. 5 that the CG1 method performed

much better than the QP method when b was large.

6. Concluding Remarks

The Robin inverse problem considered is a severely ill-posed and nonlinear, where

numerical methods have attracted a lot of attention recently. We formulated our Robin

inverse problem in the setting of boundary integral equations as in Ref. [23], and then

introduced a functional of the Robin coefficient as a regularisation term. A conjugate

gradient method was proposed to solve the regularised nonlinear least squares problem.
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(a) Recovered profiles obtained by using CG1.
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(b) Recovered profiles obtained by using QP.Figure 5: Re
onstru
tion results with various parameter b.
Our numerical experiments have shown effectiveness and robustness in recovering the

Robin coefficient.
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