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Abstract. Nonlocal diffusion models involve integral equations that account for nonlo-

cal interactions and do not explicitly employ differential operators in the space variables.

Due to the nonlocality, they might look different from classical partial differential equa-

tion (PDE) models, but their local limit reduces to partial differential equations. The

effect of mesh element anisotropy, mesh refinement and kernel functions on the condi-

tioning of the stiffness matrix for a nonlocal diffusion model on 2D geometric domains is

considered, and the results compared with those obtained from typical local PDE mod-

els. Numerical experiments show that the condition number is bounded by cδ−2 (where

c is a constant) for an integrable kernel function, and is not affected by the choice of the

basis function. In contrast to local PDE models, mesh anisotropy and refinement affect

the condition number very little.

AMS subject classifications: Peridynamics, condition number, finite element method.

Key words: 65R20, 65M60

1. Introductions

Nonlocal diffusion equations and nonlocal peridynamic models have received consider-

able attention in recent years. Peridynamic theory was developed by Silling [1]. Nonlocal

diffusion and peridynamic theory involve integral equations rather than differential equa-

tions to model cracked surfaces and deformations, and have also been extensively applied

elsewhere — e.g. to turbulence [2], porous flow [3], nanofibers [4, 5], and fracture and

damage modelling of membranes [4]. Refs. [6, 7] provide recent surveys of nonlocal dif-

fusion and peridynamic models, and their applications. It has been shown that a nonlocal

peridynamic model reduces to a classical local model (such as in elasticity theory) when

the length scale (horizon) goes to zero [8]. The effect of various kernel functions on the

nonlocal advection problem has been investigated for a 1D problem [9]. Researchers have

also studied finite difference and finite element discretisation of nonlocal diffusion and
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peridynamic models [10–13], including a posteriori error analysis and the connection be-

tween the horizon and the condition number in Ref. [10]. Condition number estimates and

upper bounds for the discretised linear system, and the effect of the horizon and mesh size

on the condition number for isotropic elements, have been investigated [14]. Interactions

between mesh geometry, mesh refinement and the condition number of the global stiff-

ness matrix for classical PDE have also been considered. Thus the connection between the

anisotropy of mesh elements and the condition number for elliptic PDE was investigated in

Ref. [15]; various mesh quality metrics, interpolation error and the condition number for

elliptic, parabolic and hyperbolic PDE were explored in Ref. [16]; and connections between

the mesh quality metric, preconditioner and the linear solver for elliptic PDE were studied

computationally in Refs. [17,18].

In this article, the Galerkin finite element method is used to discretise a linear nonlocal

diffusion system, in order to study the effect of the anisotropy of the mesh element (element

shape), mesh refinement (element size) and kernel functions on the condition number for

a nonlocal diffusion model on 2D geometric domains. There are various nonlocal models,

such as a bond-based model [1, 13] and a state-based model [19]. We consider a bond-

based nonlocal model that involves central forces between particles [1,13,20], and numer-

ically demonstrate the effect of an integrable kernel function on the condition number for

both piecewise linear and piecewise constant basis functions. Conditioning is important,

because it affects the accuracy of the solution and the convergence rate in solving the dis-

cretised linear system [15,16]. This article is the first to explore the connections between

anisotropy, mesh refinement and the condition number for 2D meshes with various kernel

functions for a scalar nonlocal diffusion model. This is computationally challenging for var-

ious reasons. First, two different quadrature rules are needed to approximate the double

integral terms on 2D geometric domains, to avoid the singularity of the denominator when

the condition number of the global stiffness matrix is computed. Second, it is desirable to

compute approximately the area of intersection between the horizon (δ) and the triangular

element when the quadrature rule is used. Finally, the number of intersections between the

horizon and the triangular element increases significantly as the level of mesh refinement

increases, and so is computationally expensive.

The conditioning of the stiffness matrix is investigated for both piecewise constant and

piecewise linear basis functions, assuming an integrable kernel function. In each case, the

effect of changing the anisotropy and mesh size (h) on the conditioning of the scalar non-

local diffusion model is examined. The analytical results show that the condition number

is bounded by cδ−2 (where c is a constant) when a finite integrable kernel function is em-

ployed [14]. For an integrable kernel function, it is shown numerically in each case that

the condition number is barely affected by the choice of basis function. The constant c

in the condition number bound (cδ−2) is computed for uniform triangular and rectangu-

lar meshes in 2D. For general elliptic PDE, it is well-known that the condition number is

proportional to h−2 when the mesh has the same anisotropy on uniform triangular and

rectangular meshes in 2D [16]. Mesh anisotropy also affects the condition number for gen-

eral elliptic PDE — e.g. if θ is the smallest angle in the right triangle, then the condition

number is proportional to sin−1(2θ) [15] such that the condition number sharply increases
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as θ approaches 0. The effect of the anisotropy and mesh size on the condition number

is investigated, and the difference between the nonlocal diffusion model and the related

classical PDE model is also discussed.

This article is organised as follows. In Section 2, the nonlocal diffusion model is de-

scribed, and in Section 3 the quadrature rules and basis functions employed are discussed.

The condition number of the global stiffness matrix is considered in Section 4, and results

from numerical experiments on 2D rectangular meshes are presented in Section 5. Conclu-

sions and plans for future work are in Section 6.

2. A Scalar Nonlocal Diffusion Model

The nonlocal diffusion model considered replaces a PDE with an integral equation, on

assuming that a solid body consists of small particles that interact with each other [20].

The interaction between particles is called a bond , and each particle interacts with other

particles within a spherical surface of radius δ (the horizon). The internal force applied to

particle at any point v = (x , y) is denoted by

Lu (v) =

∫

H

f
�

u
�

v′
�

− u (v)
�

dv′ , (2.1)

where L is a linear integral operator, u is a displacement vector, H is a spherical neighbour-

hood of particles which interact with a particle x , f is a pairwise peridynamic force, and

dv′ is an infinitesimal volume related with a particle v′. From Newton’s Second Law,

ρü (v) = Lu (v) + b (v) , (2.2)

where ρ is the mass density, and b(v) is an external force. Combining (2.1) and (2.2)

results in

ρü (v) =

∫

H

f
�

u
�

v′
�

− u (v)
�

dv′+ b (v) . (2.3)

If ξ denotes the distance between v and v′, then f is 0 if ξ is larger than δ (the notion of

nonlocality). The horizon (δ) and force ( f ) between v and v′ over the geometric domain Ω

are illustrated in Fig. 1. For a microelastic material, commonly considered in the nonlocal

literature and also assumed here, the interaction between two particles is modelled by an

elastic spring [1, 13]. For the bond-based nonlocal model with a microelastic material,

(2.3) can be reduced to the linearised model described by

ρü (v) =

∫

H

c

�

v′ − v
�

⊗
�

v′ − v
�

|v′ − v|p
�

u
�

v′
�

− u (v)
�

dv′+ b (v) , (2.4)

where ⊗ is the Kronecker product. Refs. [1,13] provide further information on the proper-

ties of microelastic models. A steady state is assumed here such that ü(v) = 0, when (2.4)

reduces to
∫

H

c

�

v′ − v
�

⊗
�

v′ − v
�

|v′ − v|p
(u
�

v′
�

− u (v)) dv′+ b (v) = 0 . (2.5)
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Figure 1: The horizon (δ) and the for
e ( f ) between v and v′ inside the neighbourhood H, within the

domain Ω. (The point v does not intera
t with any points beyond the distan
e δ.)

For a one-dimensional domain (e.g. v = x) with a Dirichlet boundary condition, (2.5)

becomes

1

δ4−p

∫ v+δ

v−δ

u (v)− u
�

v′
�

|v − v′|p
dv′ = b (v) , v ∈ Ω, (2.6)

where u (v) = g (v) on the boundary ∂Ω, and the global stiffness matrix A may be com-

puted using a standard Galerkin finite element method with basis functions φ (v) further

discussed in Section 3. The M × M matrix A, where M respectively denotes the number

of mesh elements for a piecewise constant basis function or the number of vertices for a

piecewise linear basis function, is

Ai j =
1

δ4−p

�∫

H

φ j (v)−φ j

�

v′
�

|v − v′|p
,φi (v)

�

(2.7)

involving an inner product — i.e. more explicitly, we have the double integral form

Ai j =
1

δ4−p

∫

I

φi (v)

∫

H

φ j (v)−φ j

�

v′
�

|v − v′|p
dv′ dv , (2.8)

in which I represents all neighbourhoods of the point v where φi (v) is nonzero and 1/|v−
v′|p is called the kernel function. The matrix A is symmetric, positive-definite and sparse [13].

Fig. 2 shows an example of the sparsity pattern of the global stiffness matrix (2.8) on a 2D

geometric domain.

Compared with the corresponding PDE model sparsity pattern, more nonzero values

arise due to the nonlocality. The sparsity band of the global stiffness matrix is determined

by the horizon length δ and mesh size h. Another important difference between classi-

cal PDE and nonlocal diffusion models is the definition of the boundary condition. Fig. 3

shows the difference between the classical PDE boundary condition and the nonlocal dif-

fusion boundary condition. For classical PDE, the boundary condition on ∂Ω is defined for

boundary points — whereas in nonlocal diffusion models the boundary conditions refer to

a boundary area BΩ, so additional mesh generation is required on the boundary area BΩ

to the horizon δ.
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Figure 2: One example of the sparsity pattern of the matrix A for the nonlo
al di�usion model, where

nz is the number of nonzero values in A.

Figure 3: Boundary 
onditions for (a) a 
lassi
al PDE model and (b) a nonlo
al di�usion model. For


lassi
al PDE problems, the boundary 
ondition is only spe
i�ed on the boundary points, whereas for

nonlo
al di�usion models all mesh elements belonging to BΩ 
orrespond to the boundary 
ondition.

3. Quadrature Rules and Basis Functions

3.1. Quadrature rules for a triangle

It is computationally inexpensive to compute (2.8) using quadrature rules similar to [13].

In particular, one may choose two different quadrature rules for inner and outer integrals,
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Figure 4: Three di�erent 
ases for 
omputing |T |, involving the interse
tion of T with δ. (Only inter-

se
tion areas inside the horizon are 
omputed.)

because the denominator term
�

�v − v′
�

� could otherwise be singular. The quadrature rule

for the integration of f over a triangle is

∫

T

f (x , y) d x d y ≈ |T |
m
∑

i=1

f (x i, yi)wi , (3.1)

where T is a triangle in Ω, |T | is the area of T and m is the number of points used in the

associated quadrature rule [21]. One-point and three-point quadrature rules are used to

approximate the outer and inner integrals, respectively. For the unit triangle with vertices

{(0,0), (0,1), (1,0)}, the one-point quadrature rule (centroid) with degree of precision 1 is

�

(x1, y1) = (1/3,1/3) ,

w1 = 1 .
(3.2)

For the unit triangle with vertices {(0,0), (0,1), (1,0)}, the three-point quadrature rule with

degree of precision 3 is [21]

�

(x1, y1) = (2/3,1/6) , (x2, y2) = (1/6,2/3) , (x3, y3) = (1/6,1/6) ,

w1 = 1/3 , w2 = 1/3 , w3 = 1/3 .
(3.3)

Since the horizon is a circle and the mesh element is a triangle, another approximation

is used to compute the intersection area of T with the horizon (circle). Three different

cases are considered where the intersection of T with δ is computed. In the first case, the

entire triangle is inside the horizon, when |T | is the area of a triangle — cf. case 1 in Fig. 4.

When only part of a triangle is located inside the horizon as shown in cases 2 and 3 in

Fig. 4, the exact intersection area is expensive to compute, so approximations are used to

compute the intersection areas of T with δ.



318 J. Kim

3.2. Basis functions

It has been reported that the stiffness matrix conditioning for nonlocal diffusion prob-

lems is less affected by the choice of the basis functions than by the mesh size [10]. Both

piecewise constant and piecewise linear basis functions are considered here, to investigate

the effect of mesh geometry on stiffness matrix conditioning for nonlocal diffusion models,

and whether the choice of basis functions is important. (Previously, the interactions be-

tween the mesh anisotropy, basis functions and the stiffness matrix conditioning have not

been investigated.)

Continuous piecewise constant (PC) basis functions cannot be used for classical PDE

models because the derivative of zero is not defined, but they can be used for nonlocal

diffusion models since they involve integral equations. The PC basis function is 1 if x is on

the j th element, but otherwise it is 0. The continuous PC basis functions used are

φ j (x , y) =

�

1 , if (x , y) ∈ Tj ,

0 , otherwise .
(3.4)

As in a popular approach to the numerical solution of classical PDE models, standard "hat"

functions are used for continuous piecewise linear (PL) basis functions, and only function

values for points inside the support of the basis function need be computed. The continuous

PL basis function with respect to the j th vertex is

φ j(x , y) =







− [(yl−yk)(x−xk)+(xk−xl )(y−yk)]

[(x j−xk)(y j−yl)−(x j−xl)(y j−yk)]
, if (x , y) ∈ neighbourhood of j th vertex ,

0 , otherwise ,

(3.5)

where k and l are two other vertices of a triangular element to which (x , y) belongs.

4. Condition Number of the Global Stiffness Matrix

4.1. A nonlocal diffusion model

The connection between the horizon, mesh size, and condition number of the global

stiffness matrix is studied analytically for an integrable kernel function [14]. The condition

number is bounded as follows:

cond(A)≤ c min
�

δ−2,h−2
	

,

where c is a constant and h is the mesh size (here the diagonal length of right triangles).

Since many nonlocal problems assume that δ is greater than h, the condition number of the

global stiffness matrix is bounded by the horizon δ— i.e. the condition number is propor-

tional to δ−2 when δ is greater than h, indicatomg that decreasing the horizon increases

the upper bound of the condition number.
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Two different choices of basis and kernel functions in (2.8) are considered. The power

of a kernel function p is such that in d-dimensional space (where d ∈ {1,2,3}),
∫

H

1

|v − v′|p
d x

�

=∞, p ≥ d ,

<∞, p < d ,
(4.1)

and the case d=2 is considered here. If the power of a kernel function p ≥ 2, (2.8) is not

integrable (infinite), but otherwise (if p < 2) it is integrable (finite).

For the integrable kernel function, p in (4.1) is set to 1.

1. Piecewise constant basis function with an integrable kernel function.

For this kernel function, the condition number is bounded — i.e.

cond(A)≤ c min
�

δ−2,h−2
	

(4.2)

where c is a constant, or

cond(A) ≤ cδ−2 (4.3)

when δ is taken to be larger than the mesh size h.

2. Piecewise linear basis function with an integrable kernel function.

Similarly, the condition number is bounded — i.e.

cond(A) ≤ c δ−2, (4.4)

when δ is larger than the mesh size h.

Consequently, the condition number converges to a stable level for the mesh refinement

and anisotropy in each case.

4.2. General second-order elliptic PDE

The effect of the mesh size and mesh anisotropy on the conditioning of the global stiff-

ness matrix has been studied for general second-order elliptic PDE models [15]. Suppose a

general second-order elliptic PDE model is to be solved on a uniform structured triangular

mesh with right triangles in a 2D rectangular domain. Let θ be the smallest angle in the

right triangle, when the condition number is proportional to sin−1(2θ) [15], so the con-

dition number sharply increases and approaches infinity as θ approaches 0. If the mesh

elements are assumed to have the same anisotropy, the condition number is proportional

to h−2.

The mathematical relationship between the mesh element shape, mesh size, and the

condition numbers of the stiffness matrix for second-order elliptic PDE was investigated

in Ref. [16]. The Galerkin formulation of the finite element method results in the global

stiffness matrix K . If λmax andλmin respectively denote the largest and smallest eigenvalues

of the global stiffness matrix (K) for the isotropic second-order elliptic PDE, then

cond(K) = λmax/λmin . (4.5)
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For the second-order elliptic PDE with isotropic PDE coefficients considered, λmin is pro-

portional to the area of the smallest element on the mesh, while λmax is highly related with

the mesh element shape. It was also reported that λmax increases as the anisotropy of the

mesh element increases. In particular, for 2D geometric domains with triangular elements

λmax is approximately bounded by

λmax ≤
l2
1 + l2

2 + l2
3

4 A
, (4.6)

where l1,l2, and l3 are three edge lengths of the triangle and A is the area of the triangle.

5. Numerical Results on 2D Rectangular Meshes

The effect of mesh element anisotropy, mesh refinement and various kernel functions

on the condition number of the global stiffness matrix A in (2.8) was investigated on 2D

structured rectangular meshes — i.e. Ω = (0,1)× (0,1). The mesh size h is the diagonal

length of each right triangle, and θ and 2/π−θ were the two acute angles of each triangle.

The 2-norm condition number was used to compute the condition number of the global

stiffness matrix A — and an OpenMP library with C sped up the computation for computing

the condition number with the code parallelised, leaving the condition number unaffected.

The machine employed had a 48 core AMD opteron 2.3 GHz processor with 8GB of RAM.

Structured triangular meshes on the rectangular geometric domain were considered, as

shown in Fig. 5. Additional triangular elements were generated in the area surrounding Ω,

inside the area where the boundary conditions are defined. One example of the anisotropic

mesh, where the aspect ratio is 4, is shown in Fig 6. The total number of elements was fixed

for both isotropic and anisotropic meshes, for given mesh refinements and δ. The aspect

ratio of a right triangle is defined by

aspect ratio =W/w , (5.1)

where w and W are the shortest and second shortest edge lengths, respectively. Fig. 7

shows the definition of the aspect ratio of a triangle.

5.1. Case 1: Piecewise constant basis function with an integrable kernel

function

For the piecewise constant basis functions, the power of the kernel function p in (2.8)

was 1 for an integrable kernel function. Table 1 shows the condition number of the global

stiffness matrix A, for various mesh sizes and horizons (δ) and both isotropic and anisotropic

meshes. When δ is small (viz. δ = 0.2), a large portion of the triangular elements within

the horizon intersects the horizon (cf. cases 2 and 3 in Fig. 4), and the increased ratio

of intersections between the horizon and the triangular elements decreases the numerical

stability.
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Table 1: Condition number of the global sti�ness matrix A for pie
ewise 
onstant basis fun
tions with

an integrable basis kernel fun
tion (p=1). The number of mesh elements is the number of elements in

Ω.

(a) Isotropic meshes with aspect ratio 1

Isotropic mesh δ=0.2 δ=0.3 δ=0.4

200 elements (no mesh refinement) 16.33 8.70 5.65

800 elements (1 level of mesh refinement) 17.47 9.06 5.79

3,200 elements (2 levels of mesh refinement) 18.09 9.10 5.83

12,800 elements (3 levels of mesh refinement) 18.40 9.13 5.89

(b) Anisotropic meshes with aspect ratio 4

Anisotropic mesh δ=0.2 δ=0.3 δ=0.4

200 elements (no mesh refinement) 15.98 8.00 5.53

800 elements (1 level of mesh refinement) 17.55 8.95 5.70

3,200 elements (2 levels of mesh refinement) 17.88 8.29 5.86

12,800 elements (3 levels of mesh refinement) 18.24 8.77 5.92

(a) Isotropic mesh with no mesh refinement (δ =

0.2)

(b) Refined isotropic mesh with one level of mesh

refinement (δ = 0.2)

Figure 5: (a) Initial isotropi
 mesh; (b) re�ned mesh with one level of mesh re�nement.

1. Number of elements (level of mesh refinement) and δ fixed, but the anisotropy

of the elements varied. Figs. 8 and 9 show the connection between δ, anisotropy

and the condition number. It is observed that increasing anisotropy of the elements

does not affect the condition number, and that the condition number of the global

stiffness matrix A is proportional to δ−2 when δ is larger than h. The condition

number is bounded by cδ−2, where c is a constant close to 1.

2. Anisotropy of the elements and δ fixed, but the level of mesh refinement varied.

Figs. 10 and 11 show the connection between the horizon (δ), mesh refinement and

the condition number of the global stiffness matrix. Similar to the previous numer-
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Figure 6: Anisotropi
 mesh (aspe
t ratio= 4, δ = 0.2).

Figure 7: The aspe
t ratio of a triangle, de�ned as W/w [22℄.

(a) 800 elements (1 level of mesh refinement) (b) 3,200 elements (2 levels of mesh refinement)

Figure 8: Case 1: Condition number of the global sti�ness matrix A for a �xed level of mesh re�nement,

and the anisotropy of the elements and δ varied.

ical results, the condition number of the global stiffness matrix A is proportional to

δ−2 when δ is larger than h. The condition number of the global stiffness matrix A

converges to a stable level as the number of mesh refinement levels increases, and it

is bounded by cδ−2 where c is a constant close to 1.
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(a) 800 elements (1 level of mesh refinement) (b) 3,200 elements (2 levels of mesh refinement)

Figure 9: Case 1: Condition number of the global sti�ness matrix A as a fun
tion of δ−2
for a �xed

number of elements (mesh re�nement), and the anisotropy of the elements and δ varied.

(a) Isotropic mesh (aspect ratio=1) (b) Anisotropic mesh (aspect ratio=4)

Figure 10: Case 1: Condition number of the global sti�ness matrix A for �xed anisotropy, and the level

of mesh re�nement and δ varied.

5.2. Case 2: Piecewise linear basis function with an integrable kernel function

For the piecewise linear basis functions, the power of the kernel function p in (2.8) was

1 for an integrable kernel function. Based on the analytical results in Section 4, the overall

trend was expected to be similar to that seen for piecewise constant basis functions with

an integrable kernel function. However, since hat basis functions were used, the condition

numbers are not exactly same. Table 2 shows the condition number of the global stiffness

matrix for various mesh sizes and horizons (δ), for both isotropic and anisotropic meshes.

1. Fix the level of mesh refinement and δ, and vary the anisotropy of the elements.

Figs. 12 and 13 show the connection between the horizon (δ), anisotropy, and the

condition number of the global stiffness matrix. Similar to the case of the piecewise

constant basis function with integrable function, the condition number of the global
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(a) Isotropic mesh (aspect ratio = 1) (b) Anisotropic mesh (aspect ratio = 4)

Figure 11: Case 1: Condition number of the global sti�ness matrix A as a fun
tion of δ−2
for �xed

anisotropy, and the level of mesh re�nement and δ varied. (Here, �level" means the level of mesh

re�nement.)

Table 2: Condition number of the global sti�ness matrix A for pie
ewise linear basis fun
tions with an

integrable basis kernel fun
tion (p = 1). The total number of elements 
hanges with respe
t to the

horizon δ. (The number of mesh elements is the number of elements in Ω.)

(a) Isotropic meshes with aspect ratio 1

Isotropic mesh δ=0.2 δ=0.3 δ=0.4

200 elements (no mesh refinement) 10.28 6.12 4.00

800 elements (1 level of mesh refinement) 13.35 7.20 4.70

3,200 elements (2 levels of mesh refinement) 15.31 7.85 4.98

12,800 elements (3 levels of mesh refinement) 16.08 8.16 5.08

(b) Anisotropic meshes with aspect ratio 4

Anisotropic mesh δ=0.2 δ=0.3 δ=0.4

200 elements (no mesh mesh refinement) 11.69 7.36 4.31

800 elements (1 level of mesh refinement) 14.43 7.46 4.89

3200 elements (2 levels of mesh refinement) 15.78 8.17 5.18

12800 elements (3 levels of mesh refinement) 16.73 8.58 5.33

stiffness matrix A is proportional to δ−2. Also, the condition number is bounded by

a constant number even if the aspect ratio of the triangular elements is increased.

These results are consistent with the analytical results in Section 4. The condition

number is seen to be bounded by δ−2.

2. Fix the anisotropy of the elements and δ, and vary the level of mesh refinement.

Figs. 14 and 15 show the connection between the horizon (δ), mesh refinement, and

the condition number. We also observe that the condition number is proportional to

δ−2 and is bounded by cδ−2. We also observe that the condition number of the global
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(a) 800 elements (1 level of mesh refinement) (b) 3,200 elements (2 levels of mesh refinement)

Figure 12: Case 2: Condition number of the global sti�ness matrix A for a �xed level of mesh re�nement

(number of elements), but the anisotropy of the elements and δ varied.

(a) h=0.05 (b) h=0.025

Figure 13: Case 2: Condition number of the global sti�ness matrix A for a �xed level of mesh re�nement,

but the anisotropy of the elements and δ varied.

stiffness matrix A converges to a stable level as the number of mesh refinement levels

increases. Numerical results show that c is close to 1.

6. Conclusions

The effects of anisotropy, mesh refinement and various kernel functions on the condition

number for a 2D nonlocal diffusion model have been investigated. This is the first study

to examine the connections between the anisotropy and the conditioning on 2D geometric

domains with a scalar nonlocal diffusion model. The Galerkin finite element method is used

to discretise the nonlocal diffusion model and investigate the effects of various choices of

basis functions on the condition number of the global stiffness matrix. Numerical results
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(a) Isotropic mesh (aspect ratio=1) (b) Anisotropic mesh (aspect ratio=4)

Figure 14: Case 2: Condition number of the global sti�ness matrix A for �xed anisotropy, but the level

of mesh re�nement and δ varied.

(a) Isotropic mesh (aspect ratio=1) (b) Anisotropic mesh (aspect ratio=4)

Figure 15: Case 2: Condition number of the global sti�ness matrix A for �xed anisotropy and varying

the level of mesh re�nement and δ. (Here, �level" means the level of mesh re�nement.)

consistent with the analytical results were obtained when an integrable kernel function is

employed. In respect of the integrable kernel function, the condition number is bounded by

cδ−2 (where c is a constant) and is unaffected by the choice of the basis functions when δ is

larger than the mesh size h. The numerical results show that the constant c is close to 1 on

2D uniform triangular and rectangular domains for an integrable kernel function. Unlike

elliptic PDE calculations, the mesh anisotropy and mesh refinement affect the condition

number very little.

For future research, other nonlocal diffusion models on unstructured geometric do-

mains may be considered. The sparsity pattern of a nonlocal diffusion model differs from

that of PDE model, since the sparsity pattern is affected by the horizon radius. A precon-

ditioner to decrease the condition number for a 2D nonlocal diffusion model could also be

developed.
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